CSE 421/521 - Operating Systems
Fall 2011

LECTURE - [X
PROCESS SYNCHRONIZATION - Il

Tevfik Kosar

University at Buffalo
September 26th, 2011

Mutual Exclusion

Roadmap

« Critical-Section Problem
- Solutions to Critical Section
- Different Implementations
» Semaphores

« Classic Problems of Synchronization

> Implementation 1 — disabling hardware interrupts
1. thread A reaches the gate A i o
to the critcal region (CR) B~~~ ; critical region ¢
before B ;
2. assoonasAenters CR,it A K
disables all interrupts, B~
thus B cannot be : :
scheduled x\
3. assoon as Aexits CR, it B 3 E
enables interrupts; B can R
be scheduled again
4. thread B enters CR A k
3
Mutual Exclusion
> Implementation 2 — simple lock variable

4. thread B sets the lock to 1

1. thread AreachesCRand A

critical region

finds a lock at 0, which BN\/\/R‘
means that A can enter

2. thread Asetsthe lockto 1 A R
B .

and enters CR, which
prevents B from entering

3. thread A exits CR and
resets lock to 0; thread B
can now enter

and enters CR

Mutual Exclusion

v it works, but not reasonable!

v what guarantees that the user
process is going to ever exit the
critical region?

v meanwhile, the CPU cannot
interleave any other task, even
unrelated to this race condition

v the critical region becomes one
physically indivisible block, not
logically

v also, this is not working in multi-
processors

void echo()

char chin, chout;
do

chin = getchar();
chout = chin;
putchar (chout) ;

while (...);
}

Mutual Exclusion

> Implementation 2 — simple lock variable

v the “lock” is a shared variable

v entering the critical region means
testing and then setting the lock

v exiting means resetting the lock

while (lock);

/* do nothing: loop */ /

lock = TRUE;

bool lock = FALSE;

void echo()

{
char chin, chout;
do {

chout = chin;
putchar (chout) ;

while (...);
}

Mutual Exclusion

Mutual Exclusion

> Implementation 2 — simple lock variable ¢

v suffers from the very flaw we want
to avoid: a race condition

v the problem comes from the small
gap between testing that the lock
is off and setting the lock

v it may happen that the other
thread gets scheduled exactly in
between these two actions (falls
in the gap)

v so they both find the lock off and
then they both set it and enter

bool lock = FALSE;

void echo()

{
char chin, chout;
do {

chout = chin;
putchar (chout) ;

while (...);
}

> Implementation 2 — simple lock variable ¢
@

1. thread Areaches CRand A R ,
finds alock at 0, which B~~~ ¢ critical region
means that A can enter @

1.1 but before Acan setthe A K
lockto 1, Breaches CR g K‘
and finds the lock is 0, too Erga

1.2 A sets the lock to 1 and A K
enters CR but cannot B E,
prevent the fact that . . . K

1.3 ... Bis going to set the 2
lock to 1 and enter CR, too k ‘

B
7
Mutual Exclusion
> Implementation 3 — “indivisible” lock variable &

1. thread Areaches CRand A x@} N o
finds the lock at 0 and sets BMNX{ | Gillezl gl ;
it in one shot, then enters

1.1 even if B comes right A 3
behind A, it will find that the g .
lock is already at 1

2 threadAexits CR,then , 3 £
resets lock to 0 B MWT i

s thread B finds the lock at 0 Kt
and sets it to 1 in one shot,)
just before entering CR AR

9
Mutual Exclusion
> Implementation 3 — “indivisible” lock <> one key &

1. thread Areaches CRand A
finds a key and takes it

1.1 even if B comes right A vl
behind A, itwillnotfinda g -
key i

2 threadAexits CRandputs o Lo

B’\’Wk. Kj critical region

the key back in place BMNWV\T

3. thread B finds the key and :
takes it, just before
entering CR

Seaaees 4

Mutual Exclusion

> |mplementation 3 — “indivisible” lock variable &

v the indivisibility of the “test-lock-
and-set-lock” operation can be
implemented with the hardware
instruction TSL

enter_region:
TSLREGISTER LOCK | copy lock to registerand)set lock to 1
CMP REGISTER #0 | was lock zero?
JNE enter_region /
RET | return to caller; critical region entered

””” leave_region: T
MOVE LOCK #0 | store a 0 in lock
RET | return to caller

| if it was non zero, lock was set, so loop ,

void echo()

{
char chin, chout;
do {

chout = chin;
putchar (chout) ;

while (...);
}

Mutual Exclusion
> Implementation 4 — no-TSL toggle for two threads

1. thread Areaches CR, finds A
alock at 0, and enters
without changing the lock

2. however, the lock has an
opposite meaning for B:
“off” means do not enter

3. only when A exits CR does
it change the lock to 1;
thread B can now enter

4. thread B sets the lock to 1
and enters CR: it will reset
it to 0 for A after exiting

Mutual Exclusion

> |mplementation 4 — no-TSL toggle for two threads

v the “toggle lock” is a shared
variable used for strict alternation | yoi4 echo ()

v here, entering the critical region {
means only testing the toggle: it
must be at 0 for A, and 1 for B

v exiting means switching the 7
toggle: Asetsitto 1,andBto0 //

B's code

do {

A's code
while (...);

! while (!toggle)
}

/* loop */

while (toggle);
/* loop */

bool toggle = FALSE;

char chin, chout;

chout = chin;
putchar (chout) ;

Mutual Exclusion
> |mplementation 4 — no-TSL toggle for tw:

5. thread B exits CR and
switches the lock back to 0
to allow A to enter next

5.1 but scheduling happens to
make B faster than A and
come back to the gate first

5.2 as long as A'is still busy or

interrupted in its noncritical

region, B is barred access
toits CR
® this violates item 2. of the

A/\/\/\/\/\/\/\/\/\NWW\/\/\
B

=> this implementation avoids TSL by
splitting test & set and putting them in

chart of mutual exclusion

enter & exit; nice try... but flawed!
14

Mutual Exclusion

> |mplementation 5 — Peterson’s no-TSL, no-alternation

1. Aand B each have theirown A
lock; an extra toggle is also BN\NK‘L
masking either lock

2. Aarrives first, sets its lock, A Kx
pushes the mask to the other BW
lock and may enter

3. then, B also sets its lock & I

pushes the mask, but must
wait until A's lock is reset
4. Aexits the CR and resets its

lock; B may now enter A

Ly

@ critical region

sy R
B
|

Mutual Exclusion

> |mplementation 5 — Peterson’s no-TSL, no-alternation

lock[A]

bool lock[2];
int mask;

int A=0, B=1;
void echo()

v the mask & two locks are shared

v entering means: setting one’s
lock, pushing the mask and
tetsing the other’s combination

v exiting means resetting the lock

char chin, chout;
do {

chout = chin;

= TRUE; i lock[B] = TRUE;

putchar (chout) ;

mask = B; ! mask = A;
while (lock[B] && | while (lock[A] &&
mask == B); i mask == A); / /
/* loop */ /* loop */ while (...);

lock[A]

}

= FALSE;

Mutual Exclusion

> |mplementation 5 — Peterson’s no-TSL, no-alternation®>

1. Aand B each have their A
own lock; an extra toggle
is also masking either lock |

2.1 Ais interrupted between A
setting the lock & pushing g x%
the mask; B sets its lock

2.2 now, both A and B race to !
push the mask: whoever
does it last will allow the
other one inside CR o

pushed last, allowing B
. ANANANANANNAN
® mutual exclusion holds!! ™ % .
(no bad race condition) B ~R

B

pushed last, allowing A

ol
. R@ critical region

R

Mutual Exclusion

» Summary of these implementations of mutual exclusion

v Impl. 1 — disabling hardware interrupts
¢ NO: race condition avoided, but can crash the system!
v Impl. 2 — simple lock variable (unprotected)
¢ NO: still suffers from race condition
v" Impl. 3 — indivisible lock variable (TSL)
& YES: works, but requires hardware
v" Impl. 4 — no-TSL toggle for two threads
¢ NO: race condition avoided inside, but lockup outside

this will be the

v Impl. 5 — Peterson’s no-TSL, no-alternation
@ YES: works in software, but processing overhead
18

basis for ‘mutexes”

Mutual Exclusion
» Problem: all implementations (2-5) rely on busy waiting

v' “busy waiting” means that the process/thread continuously
executes a tight loop until some condition changes
v' busy waiting is bad:
= waste of CPU time — the busy process is not doing
anything useful, yet remains “Ready” instead of “Blocked”
= paradox of inversed priority — by looping indefinitely, a
higher-priority process B may starve a lower-priority

process A, thus preventing A from exiting CR and . . .
liberating B! (B is working against its own interest)

--> we need for the waiting process to block, not keep idling!

Semaphores

« Semaphore S - integer variable
- Two standard operations modify wait() and signal()
- Originally called P() and V()

- wait (5) {
while S <=0
; // no-op
53
}
- signal (S) {

S++;

3

e Less complicated
« Can only be accessed via two indivisible (atomic) operations

21

Synchronization Hardware

» Many systems provide hardware support for
critical section code
» Uniprocessors - could disable interrupts
- Currently running code would execute without
preemption
- Generally too inefficient on multiprocessor systems
- Operating systems using this not broadly scalable
« Modern machines provide special atomic
hardware instructions
« Atomic = non-interruptable
- Either test memory word and set value
- Or swap contents of two memory words

20

Deadlock and Starvation

« Deadlock - two or more processes are waiting indefinitely for an
event that can be caused by only one of the waiting processes

« Let S and Q be two semaphores initialized to 1

P Py
wait (S); wait (Q);
wait (Q); wait (S);
signal (S); signal (Q);
signal (Q); signal (S);

» Starvation - indefinite blocking. A process may never be removed
from the semaphore queue in which it is suspended.

23

Semaphores as Synchronization Tool

» Counting semaphore - integer value can range over an
unrestricted domain

« Binary semaphore - integer value can range only
between 0 and 1; can be simpler to implement
- Also known as mutex locks

» Provides mutual exclusion
- Semaphore S; // initialized to 1
- wait (S);
Critical Section
signal (S);

22

Classical Problems of Synchronization

Bounded-Buffer Problem
» Readers and Writers Problem
Dining-Philosophers Problem
» Sleeping Barber Problem

24

Bounded-Buffer Problem

Shared buffer with N slots to store at most N
items

Producer processes data items and puts into the
buffer

Consumer gets the data items from the buffer

Variable empty keeps number of empty slots in
the butter

Variable full keeps number of full items in the
buffer

25

Bounded Buffer - 1 Semaphore Soln

« The structure of the consumer process
do {

wait (mutex);
if (full>0){
// remove an item from buffer
full--; empty++;
}

signal (mutex);
// consume the removed item
} while (true);

consume non-existing item!
27

Bounded Buffer - 1 Semaphore Soln

« The structure of the producer process
int empty=N, full=0;
do {
// produce an item
wait (mutex);
if (empty> 0){
// add the item to the buffer
empty --; full++;
}

signal (mutex);

1 while (true);

26

Bounded Buffer - 1 Semaphore Soln - Il

« The structure of the consumer process

do {
while (full == 0){3
wait (mutex);
// remove an item from buffer
full--; empty++;
signal (mutex);

// consume the removed item

1 while (true);

* Mutual Exclusion not preserved!
29

Bounded Buffer - 1 Semaphore Soln - Il

« The structure of the producer process
int empty=N, full=0;
do {
// produce an item
while (empty == 0){}
wait (mutex);
// add the item to the buffer
empty --; full++;
signal (mutex);

} while (true);

28

Bounded Buffer - 2 Semaphore Soln
« The structure of the producer process
do {
// produce an item
wait (empty);
// add the item to the buffer

signal (full);

} while (true);

30

Bounded Buffer - 2 Semaphore Soln

« The structure of the consumer process
do {
wait (full);
// remove an item from buffer
signal (empty);

// consume the removed item

1 while (true);

* Mutual Exclusion not preserved!
31

Bounded Buffer - 3 Semaphore Soln

« The structure of the producer process

do {

// produce an item

wait (empty);
wait (mutex);

// add the item to the buffer

signal (mutex);

Bounded Buffer - 3 Semaphore Soln

» Semaphore mutex for access to the buffer,
initialized to 1

» Semaphore full (number of full buffers)
initialized to 0

» Semaphore empty (number of empty buffers)
initialized to N

32

signal (full);
33
Summary

« Critical-Section Problem

- Solutions to Critical Section

- Different Implementations - %}
« Semaphores
« Classic Problems of Synchronization E\

* Next Lecture: Deadlocks - |
o HW-2 out next Tuesday!

Bounded Buffer - 3 Semaphore Soln
« The structure of the consumer process
do {
wait (full);
wait (mutex);

// remove an item from buffer

signal (mutex);
signal (empty);

// consume the removed item

34

Acknowledgements

“Operating Systems Concepts” book and supplementary
material by A. Silberschatz, P. Galvin and G. Gagne

“Operating Systems: Internals and Design Principles”
book and supplementary material by W. Stallings

“Modern Operating Systems” book and supplementary
material by A. Tanenbaum

R. Doursat and M. Yuksel from UNR

36

