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Roadmap

• Critical-Section Problem
– Solutions to Critical Section
– Different Implementations

• Semaphores
• Classic Problems of Synchronization

Mutual Exclusion
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! Implementation 1 — disabling hardware interrupts

critical region

B

1. thread A reaches the gate 
to the critical region (CR) 
before B

2. as soon as A enters CR, it 
disables all interrupts, 
thus B cannot be 
scheduled 

3. as soon as A exits CR, it 
enables interrupts; B can 
be scheduled again

4. thread B enters CR

B
A

B
A

A

B
A
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! Implementation 1 — disabling hardware interrupts  "
# it works, but not reasonable!
# what guarantees that the user 

process is going to ever exit the 
critical region?

# meanwhile, the CPU cannot 
interleave any other task, even 
unrelated to this race condition

# the critical region becomes one 
physically indivisible block, not 
logically

# also, this is not working in multi-
processors

            disable hardware interrupts
 

            enable hardware interrupts

void echo()
{
 char chin, chout;
   do {

    chin = getchar();
    chout = chin;
    putchar(chout);

  }
  while (...);
}

Mutual Exclusion
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! Implementation 2 — simple lock variable

critical region
1. thread A reaches CR and 

finds a lock at 0, which 
means that A can enter

2. thread A sets the lock to 1 
and enters CR, which 
prevents B from entering

3. thread A exits CR and 
resets lock to 0; thread B 
can now enter

4. thread B sets the lock to 1 
and enters CR

B
A

B
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B
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B
A
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            test lock,  then set lock
 

            reset lock

! Implementation 2 — simple lock variable
# the “lock” is a shared variable
# entering the critical region means 

testing and then setting the lock
# exiting means resetting the lock

bool lock = FALSE;

void echo()
{
 char chin, chout;
   do {

    chin = getchar();
    chout = chin;
    putchar(chout);

  }
  while (...);
}

while (lock);
 /* do nothing: loop */
lock = TRUE;

lock = FALSE;



Mutual Exclusion
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! Implementation 2 — simple lock variable  "
1. thread A reaches CR and 

finds a lock at 0, which 
means that A can enter

1.1 but before A can set the 
lock to 1, B reaches CR 
and finds the lock is 0, too

1.2 A sets the lock to 1 and 
enters CR but cannot 
prevent the fact that . . .

1.3 . . . B is going to set the 
lock to 1 and enter CR, too

critical regionB
A

B
A

B
A

B
A
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            test lock,  then set lock
 

            reset lock

! Implementation 2 — simple lock variable  "
# suffers from the very flaw we want 

to avoid: a race condition
# the problem comes from the small 

gap between testing that the lock 
is off and setting the lock

 while (lock);   lock = TRUE;

# it may happen that the other 
thread gets scheduled exactly in 
between these two actions (falls 
in the gap)

# so they both find the lock off and 
then they both set it and enter

bool lock = FALSE;

void echo()
{
 char chin, chout;
   do {

    chin = getchar();
    chout = chin;
    putchar(chout);

  }
  while (...);
}

Mutual Exclusion
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! Implementation 3 — “indivisible” lock variable  $
1. thread A reaches CR and 

finds the lock at 0 and sets 
it in one shot, then enters

1.1’ even if B comes right 
behind A, it will find that the 
lock is already at 1

2. thread A exits CR, then 
resets lock to 0

3. thread B finds the lock at 0 
and sets it to 1 in one shot, 
just before entering CR

critical regionB
A

B
A

B
A

B
A
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            test-and-set-lock
 

            set lock off

! Implementation 3 — “indivisible” lock variable  $
# the indivisibility of the “test-lock-

and-set-lock” operation can be 
implemented with the hardware 
instruction TSL

void echo()
{
 char chin, chout;
   do {

    chin = getchar();
    chout = chin;
    putchar(chout);

  }
  while (...);
}

TSL

Tanenbaum, A. S. (2001)
Modern Operating Systems (2nd Edition). 

Mutual Exclusion
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! Implementation 3 — “indivisible” lock ⇔ one key  $
1. thread A reaches CR and 

finds a key and takes it

1.1’ even if B comes right 
behind A, it will not find a 
key

2. thread A exits CR and puts 
the key back in place

3. thread B finds the key and 
takes it, just before 
entering CR

critical regionB
A

B
A

B
A

B
A
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! Implementation 4 — no-TSL toggle for two threads
1. thread A reaches CR, finds 

a lock at 0, and enters 
without changing the lock

2. however, the lock has an 
opposite meaning for B: 
“off” means do not enter

3. only when A exits CR does 
it change the lock to 1; 
thread B can now enter

4. thread B sets the lock to 1 
and enters CR: it will reset 
it to 0 for A after exiting

critical regionB
A

B
A

B
A

B
A



Mutual Exclusion
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            test toggle
 

            switch toggle

! Implementation 4 — no-TSL toggle for two threads
# the “toggle lock” is a shared 

variable used for strict alternation
# here, entering the critical region 

means only testing the toggle: it 
must be at 0 for A, and 1 for B

# exiting means switching the 
toggle: A sets it to 1, and B to 0

bool toggle = FALSE;

void echo()
{
 char chin, chout;
   do {

    chin = getchar();
    chout = chin;
    putchar(chout);

  }
  while (...);
}

toggle = TRUE; toggle = FALSE;

while (toggle);
 /* loop */

while (!toggle);
 /* loop */

A’s code B’s code

Mutual Exclusion
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! Implementation 4 — no-TSL toggle for two threads  "
5.  thread B exits CR and 

switches the lock back to 0 
to allow A to enter next

5.1 but scheduling happens to 
make B faster than A and 
come back to the gate first

5.2 as long as A is still busy or 
interrupted in its noncritical 
region, B is barred access 
to its CR

®  this violates item 2. of the 
chart of mutual exclusion

B
A

B
A

B
A

 => this implementation avoids TSL by     
   splitting test & set and putting them in  
   enter & exit; nice try... but flawed!

Mutual Exclusion
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! Implementation 5 — Peterson’s no-TSL, no-alternation
1. A and B each have their own 

lock; an extra toggle is also 
masking either lock

2. A arrives first, sets its lock, 
pushes the mask to the other 
lock and may enter

3. then, B also sets its lock & 
pushes the mask, but must 
wait until A’s lock is reset  

4. A exits the CR and resets its 
lock; B may now enter

critical regionB
A

B
A

B
A

B
A
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            set lock, push mask, and test
 

            reset lock

! Implementation 5 — Peterson’s no-TSL, no-alternation
# the mask & two locks are shared
# entering means: setting one’s 

lock, pushing the mask and 
tetsing the other’s combination

# exiting means resetting the lock

bool lock[2];
int mask;
int A = 0, B = 1;
void echo()
{
 char chin, chout;
   do {

    chin = getchar();
    chout = chin;
    putchar(chout);

  }
  while (...);
}

lock[A] = FALSE; lock[B] = FALSE;

lock[A] = TRUE;
mask = B;
while (lock[B] &&
       mask == B);
 /* loop */

lock[B] = TRUE;
mask = A;
while (lock[A] &&
       mask == A);
 /* loop */

A’s code B’s code

Mutual Exclusion
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! Implementation 5 — Peterson’s no-TSL, no-alternation$
1. A and B each have their 

own lock; an extra toggle 
is also masking either lock

2.1 A is interrupted between 
setting the lock & pushing 
the mask; B sets its lock

2.2 now, both A and B race to 
push the mask: whoever 
does it last will allow the 
other one inside CR

®  mutual exclusion holds!! 
(no bad race condition)

critical regionB
A

B
A

B
A

B
A

pushed last, allowing A

pushed last, allowing B

Mutual Exclusion
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! Summary of these implementations of mutual exclusion

this will be the
basis for “mutexes”

# Impl. 1 — disabling hardware interrupts
" NO: race condition avoided, but can crash the system!

# Impl. 2 — simple lock variable (unprotected)
" NO: still suffers from race condition

# Impl. 3 — indivisible lock variable (TSL)
$ YES: works, but requires hardware

# Impl. 4 — no-TSL toggle for two threads
" NO: race condition avoided inside, but lockup outside

# Impl. 5 — Peterson’s no-TSL, no-alternation
$ YES: works in software, but processing overhead



Mutual Exclusion
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! Problem?! Problem: all implementations (2-5) rely on busy waiting
# “busy waiting” means that the process/thread continuously 

executes a tight loop until some condition changes

# busy waiting is bad:
% waste of CPU time — the busy process is not doing 

anything useful, yet remains “Ready” instead of “Blocked”

% paradox of inversed priority — by looping indefinitely, a 
higher-priority process B may starve a lower-priority 
process A, thus preventing A from exiting CR and . . . 
liberating B! (B is working against its own interest)

--> we need for the waiting process to block, not keep idling!
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Synchronization Hardware

• Many systems provide hardware support for 
critical section code

• Uniprocessors – could disable interrupts
– Currently running code would execute without 

preemption
– Generally too inefficient on multiprocessor systems

• Operating systems using this not broadly scalable

• Modern machines provide special atomic 
hardware instructions

• Atomic = non-interruptable
– Either test memory word and set value
– Or swap contents of two memory words

21

Semaphores

• Semaphore S – integer variable
• Two standard operations modify wait() and signal()

– Originally called P() and V()

– wait (S) { 
           while S <= 0
            ; // no-op
              S--;
      }

– signal (S) { 
        S++;
     }

• Less complicated
• Can only be accessed via two indivisible (atomic) operations
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Semaphores as Synchronization Tool

• Counting semaphore – integer value can range over an 
unrestricted domain

• Binary semaphore – integer value can range only 
between 0 and 1; can be simpler to implement
– Also known as mutex locks

• Provides mutual exclusion
– Semaphore S;    //  initialized to 1
– wait (S);
            Critical Section
     signal (S);
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Deadlock and Starvation

• Deadlock – two or more processes are waiting indefinitely for an 
event that can be caused by only one of the waiting processes

• Let S and Q be two semaphores initialized to 1
  P0  P1

      wait (S);                                       wait (Q);
   .   .

        wait (Q);                                       wait (S);
   .   .
  .   .
          signal  (S);                                         signal (Q);
          signal (Q);                                         signal (S);
• Starvation  – indefinite blocking.  A process may never be removed 

from the semaphore queue in which it is suspended.
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Classical Problems of Synchronization

• Bounded-Buffer Problem
• Readers and Writers Problem
• Dining-Philosophers Problem
• Sleeping Barber Problem
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Bounded-Buffer Problem

• Shared buffer with N slots to store at most N 
items

• Producer processes data items and puts into the 
buffer

• Consumer gets the data items from the buffer
• Variable empty keeps number of empty slots in 

the butter
• Variable full keeps number of full items in the 

buffer
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Bounded Buffer – 1 Semaphore Soln

• The structure of the producer process
  int empty=N, full=0;
           do {

           //   produce an item
     wait (mutex);
   if (empty> 0){ 
                         //  add the item to the  buffer
       empty --; full++;  
   }
               signal (mutex);
             
   } while (true);
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Bounded Buffer – 1 Semaphore Soln

• The structure of the consumer process

           do {

        wait (mutex);
   if (full>0){ 
                           //  remove an item from  buffer
                 full--; empty++;  
      }
               signal (mutex);
 
        //  consume the removed item
                
           } while (true);

consume non-existing item!
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Bounded Buffer – 1 Semaphore Soln - II

• The structure of the producer process
  int empty=N, full=0;
           do {

           //   produce an item
     while (empty == 0){}  
     wait (mutex);
                     //  add the item to the  buffer
   empty --; full++;  
               signal (mutex);
             
   } while (true);
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Bounded Buffer – 1 Semaphore Soln - II

• The structure of the consumer process

           do {
       while (full == 0){}
        wait (mutex);
                       //  remove an item from  buffer
             full--; empty++;  
               signal (mutex);
 
        //  consume the removed item
        
           
           } while (true);

* Mutual Exclusion not preserved!
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Bounded Buffer – 2 Semaphore Soln

• The structure of the producer process

           do {

                     //   produce an item
               wait (empty);
                   //  add the item to the  buffer
     signal (full);

             } while (true);
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Bounded Buffer – 2 Semaphore Soln

• The structure of the consumer process

           do {
               wait (full);
                   //  remove an item from  buffer
     signal (empty);
             
                    //  consume the removed item

           } while (true);

* Mutual Exclusion not preserved!
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Bounded Buffer - 3 Semaphore Soln

• Semaphore mutex for access to the buffer, 
initialized to 1

• Semaphore full (number of full buffers) 
initialized to 0

• Semaphore empty (number of empty buffers) 
initialized to N
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Bounded Buffer - 3 Semaphore Soln

• The structure of the producer process

           do {

                     //   produce an item

               wait (empty);
               wait (mutex);

                   //  add the item to the  buffer

                signal (mutex);
                signal (full);
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Bounded Buffer - 3 Semaphore Soln

• The structure of the consumer process

           do {
               wait (full);
               wait (mutex);

                   //  remove an item from  buffer

                signal (mutex);
                signal (empty);
             
                    //  consume the removed item
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Summary

Hmm.
.

• HW-2 out next Tuesday!
• Next Lecture: Deadlocks - I

• Critical-Section Problem
– Solutions to Critical Section
– Different Implementations

• Semaphores
• Classic Problems of Synchronization
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