
1

CSE 421/521 - Operating Systems
Fall 2011

Tevfik Koşar

University at Buffalo
September 26th, 2011

Lecture - IX

Process Synchronization - II

2

Roadmap

• Critical-Section Problem
– Solutions to Critical Section
– Different Implementations

• Semaphores
• Classic Problems of Synchronization

Mutual Exclusion

3

! Implementation 1 — disabling hardware interrupts

critical region

B

1. thread A reaches the gate
to the critical region (CR)
before B

2. as soon as A enters CR, it
disables all interrupts,
thus B cannot be
scheduled

3. as soon as A exits CR, it
enables interrupts; B can
be scheduled again

4. thread B enters CR

B
A

B
A

A

B
A

Mutual Exclusion

4

! Implementation 1 — disabling hardware interrupts "
it works, but not reasonable!
what guarantees that the user

process is going to ever exit the
critical region?

meanwhile, the CPU cannot
interleave any other task, even
unrelated to this race condition

the critical region becomes one
physically indivisible block, not
logically

also, this is not working in multi-
processors

 disable hardware interrupts

 enable hardware interrupts

void echo()
{
 char chin, chout;
 do {

 chin = getchar();
 chout = chin;
 putchar(chout);

 }
 while (...);
}

Mutual Exclusion

5

! Implementation 2 — simple lock variable

critical region
1. thread A reaches CR and

finds a lock at 0, which
means that A can enter

2. thread A sets the lock to 1
and enters CR, which
prevents B from entering

3. thread A exits CR and
resets lock to 0; thread B
can now enter

4. thread B sets the lock to 1
and enters CR

B
A

B
A

B
A

B
A

Mutual Exclusion

6

 test lock, then set lock

 reset lock

! Implementation 2 — simple lock variable
the “lock” is a shared variable
entering the critical region means

testing and then setting the lock
exiting means resetting the lock

bool lock = FALSE;

void echo()
{
 char chin, chout;
 do {

 chin = getchar();
 chout = chin;
 putchar(chout);

 }
 while (...);
}

while (lock);
 /* do nothing: loop */
lock = TRUE;

lock = FALSE;

Mutual Exclusion

7

! Implementation 2 — simple lock variable "
1. thread A reaches CR and

finds a lock at 0, which
means that A can enter

1.1 but before A can set the
lock to 1, B reaches CR
and finds the lock is 0, too

1.2 A sets the lock to 1 and
enters CR but cannot
prevent the fact that . . .

1.3 . . . B is going to set the
lock to 1 and enter CR, too

critical regionB
A

B
A

B
A

B
A

Mutual Exclusion

8

 test lock, then set lock

 reset lock

! Implementation 2 — simple lock variable "
suffers from the very flaw we want

to avoid: a race condition
the problem comes from the small

gap between testing that the lock
is off and setting the lock

 while (lock); lock = TRUE;

it may happen that the other
thread gets scheduled exactly in
between these two actions (falls
in the gap)

so they both find the lock off and
then they both set it and enter

bool lock = FALSE;

void echo()
{
 char chin, chout;
 do {

 chin = getchar();
 chout = chin;
 putchar(chout);

 }
 while (...);
}

Mutual Exclusion

9

! Implementation 3 — “indivisible” lock variable $
1. thread A reaches CR and

finds the lock at 0 and sets
it in one shot, then enters

1.1’ even if B comes right
behind A, it will find that the
lock is already at 1

2. thread A exits CR, then
resets lock to 0

3. thread B finds the lock at 0
and sets it to 1 in one shot,
just before entering CR

critical regionB
A

B
A

B
A

B
A

Mutual Exclusion

10

 test-and-set-lock

 set lock off

! Implementation 3 — “indivisible” lock variable $
the indivisibility of the “test-lock-

and-set-lock” operation can be
implemented with the hardware
instruction TSL

void echo()
{
 char chin, chout;
 do {

 chin = getchar();
 chout = chin;
 putchar(chout);

 }
 while (...);
}

TSL

Tanenbaum, A. S. (2001)
Modern Operating Systems (2nd Edition).

Mutual Exclusion

11

! Implementation 3 — “indivisible” lock ⇔ one key $
1. thread A reaches CR and

finds a key and takes it

1.1’ even if B comes right
behind A, it will not find a
key

2. thread A exits CR and puts
the key back in place

3. thread B finds the key and
takes it, just before
entering CR

critical regionB
A

B
A

B
A

B
A

Mutual Exclusion

12

! Implementation 4 — no-TSL toggle for two threads
1. thread A reaches CR, finds

a lock at 0, and enters
without changing the lock

2. however, the lock has an
opposite meaning for B:
“off” means do not enter

3. only when A exits CR does
it change the lock to 1;
thread B can now enter

4. thread B sets the lock to 1
and enters CR: it will reset
it to 0 for A after exiting

critical regionB
A

B
A

B
A

B
A

Mutual Exclusion

13

 test toggle

 switch toggle

! Implementation 4 — no-TSL toggle for two threads
the “toggle lock” is a shared

variable used for strict alternation
here, entering the critical region

means only testing the toggle: it
must be at 0 for A, and 1 for B

exiting means switching the
toggle: A sets it to 1, and B to 0

bool toggle = FALSE;

void echo()
{
 char chin, chout;
 do {

 chin = getchar();
 chout = chin;
 putchar(chout);

 }
 while (...);
}

toggle = TRUE; toggle = FALSE;

while (toggle);
 /* loop */

while (!toggle);
 /* loop */

A’s code B’s code

Mutual Exclusion

14

! Implementation 4 — no-TSL toggle for two threads "
5. thread B exits CR and

switches the lock back to 0
to allow A to enter next

5.1 but scheduling happens to
make B faster than A and
come back to the gate first

5.2 as long as A is still busy or
interrupted in its noncritical
region, B is barred access
to its CR

® this violates item 2. of the
chart of mutual exclusion

B
A

B
A

B
A

 => this implementation avoids TSL by
 splitting test & set and putting them in
 enter & exit; nice try... but flawed!

Mutual Exclusion

15

! Implementation 5 — Peterson’s no-TSL, no-alternation
1. A and B each have their own

lock; an extra toggle is also
masking either lock

2. A arrives first, sets its lock,
pushes the mask to the other
lock and may enter

3. then, B also sets its lock &
pushes the mask, but must
wait until A’s lock is reset

4. A exits the CR and resets its
lock; B may now enter

critical regionB
A

B
A

B
A

B
A

Mutual Exclusion

16

 set lock, push mask, and test

 reset lock

! Implementation 5 — Peterson’s no-TSL, no-alternation
the mask & two locks are shared
entering means: setting one’s

lock, pushing the mask and
tetsing the other’s combination

exiting means resetting the lock

bool lock[2];
int mask;
int A = 0, B = 1;
void echo()
{
 char chin, chout;
 do {

 chin = getchar();
 chout = chin;
 putchar(chout);

 }
 while (...);
}

lock[A] = FALSE; lock[B] = FALSE;

lock[A] = TRUE;
mask = B;
while (lock[B] &&
 mask == B);
 /* loop */

lock[B] = TRUE;
mask = A;
while (lock[A] &&
 mask == A);
 /* loop */

A’s code B’s code

Mutual Exclusion

17

! Implementation 5 — Peterson’s no-TSL, no-alternation$
1. A and B each have their

own lock; an extra toggle
is also masking either lock

2.1 A is interrupted between
setting the lock & pushing
the mask; B sets its lock

2.2 now, both A and B race to
push the mask: whoever
does it last will allow the
other one inside CR

® mutual exclusion holds!!
(no bad race condition)

critical regionB
A

B
A

B
A

B
A

pushed last, allowing A

pushed last, allowing B

Mutual Exclusion

18

! Summary of these implementations of mutual exclusion

this will be the
basis for “mutexes”

Impl. 1 — disabling hardware interrupts
" NO: race condition avoided, but can crash the system!

Impl. 2 — simple lock variable (unprotected)
" NO: still suffers from race condition

Impl. 3 — indivisible lock variable (TSL)
$ YES: works, but requires hardware

Impl. 4 — no-TSL toggle for two threads
" NO: race condition avoided inside, but lockup outside

Impl. 5 — Peterson’s no-TSL, no-alternation
$ YES: works in software, but processing overhead

Mutual Exclusion

19

! Problem?! Problem: all implementations (2-5) rely on busy waiting
“busy waiting” means that the process/thread continuously

executes a tight loop until some condition changes

busy waiting is bad:
% waste of CPU time — the busy process is not doing

anything useful, yet remains “Ready” instead of “Blocked”

% paradox of inversed priority — by looping indefinitely, a
higher-priority process B may starve a lower-priority
process A, thus preventing A from exiting CR and . . .
liberating B! (B is working against its own interest)

--> we need for the waiting process to block, not keep idling!

20

Synchronization Hardware

• Many systems provide hardware support for
critical section code

• Uniprocessors – could disable interrupts
– Currently running code would execute without

preemption
– Generally too inefficient on multiprocessor systems

• Operating systems using this not broadly scalable

• Modern machines provide special atomic
hardware instructions

• Atomic = non-interruptable
– Either test memory word and set value
– Or swap contents of two memory words

21

Semaphores

• Semaphore S – integer variable
• Two standard operations modify wait() and signal()

– Originally called P() and V()

– wait (S) {
 while S <= 0
 ; // no-op
 S--;
 }

– signal (S) {
 S++;
 }

• Less complicated
• Can only be accessed via two indivisible (atomic) operations

22

Semaphores as Synchronization Tool

• Counting semaphore – integer value can range over an
unrestricted domain

• Binary semaphore – integer value can range only
between 0 and 1; can be simpler to implement
– Also known as mutex locks

• Provides mutual exclusion
– Semaphore S; // initialized to 1
– wait (S);
 Critical Section
 signal (S);

23

Deadlock and Starvation

• Deadlock – two or more processes are waiting indefinitely for an
event that can be caused by only one of the waiting processes

• Let S and Q be two semaphores initialized to 1
 P0 P1

 wait (S); wait (Q);
 . .

 wait (Q); wait (S);
 . .
 . .
 signal (S); signal (Q);
 signal (Q); signal (S);
• Starvation – indefinite blocking. A process may never be removed

from the semaphore queue in which it is suspended.

24

Classical Problems of Synchronization

• Bounded-Buffer Problem
• Readers and Writers Problem
• Dining-Philosophers Problem
• Sleeping Barber Problem

25

Bounded-Buffer Problem

• Shared buffer with N slots to store at most N
items

• Producer processes data items and puts into the
buffer

• Consumer gets the data items from the buffer
• Variable empty keeps number of empty slots in

the butter
• Variable full keeps number of full items in the

buffer

26

Bounded Buffer – 1 Semaphore Soln

• The structure of the producer process
 int empty=N, full=0;
 do {

 // produce an item
 wait (mutex);
 if (empty> 0){
 // add the item to the buffer
 empty --; full++;
 }
 signal (mutex);

 } while (true);

27

Bounded Buffer – 1 Semaphore Soln

• The structure of the consumer process

 do {

 wait (mutex);
 if (full>0){
 // remove an item from buffer
 full--; empty++;
 }
 signal (mutex);

 // consume the removed item

 } while (true);

consume non-existing item!
28

Bounded Buffer – 1 Semaphore Soln - II

• The structure of the producer process
 int empty=N, full=0;
 do {

 // produce an item
 while (empty == 0){}
 wait (mutex);
 // add the item to the buffer
 empty --; full++;
 signal (mutex);

 } while (true);

29

Bounded Buffer – 1 Semaphore Soln - II

• The structure of the consumer process

 do {
 while (full == 0){}
 wait (mutex);
 // remove an item from buffer
 full--; empty++;
 signal (mutex);

 // consume the removed item

 } while (true);

* Mutual Exclusion not preserved!
30

Bounded Buffer – 2 Semaphore Soln

• The structure of the producer process

 do {

 // produce an item
 wait (empty);
 // add the item to the buffer
 signal (full);

 } while (true);

31

Bounded Buffer – 2 Semaphore Soln

• The structure of the consumer process

 do {
 wait (full);
 // remove an item from buffer
 signal (empty);

 // consume the removed item

 } while (true);

* Mutual Exclusion not preserved!
32

Bounded Buffer - 3 Semaphore Soln

• Semaphore mutex for access to the buffer,
initialized to 1

• Semaphore full (number of full buffers)
initialized to 0

• Semaphore empty (number of empty buffers)
initialized to N

33

Bounded Buffer - 3 Semaphore Soln

• The structure of the producer process

 do {

 // produce an item

 wait (empty);
 wait (mutex);

 // add the item to the buffer

 signal (mutex);
 signal (full);

34

Bounded Buffer - 3 Semaphore Soln

• The structure of the consumer process

 do {
 wait (full);
 wait (mutex);

 // remove an item from buffer

 signal (mutex);
 signal (empty);

 // consume the removed item

35

Summary

Hmm.
.

• HW-2 out next Tuesday!
• Next Lecture: Deadlocks - I

• Critical-Section Problem
– Solutions to Critical Section
– Different Implementations

• Semaphores
• Classic Problems of Synchronization

36

Acknowledgements

• “Operating Systems Concepts” book and supplementary
material by A. Silberschatz, P. Galvin and G. Gagne

• “Operating Systems: Internals and Design Principles”
book and supplementary material by W. Stallings

• “Modern Operating Systems” book and supplementary
material by A. Tanenbaum

• R. Doursat and M. Yuksel from UNR

