CSE 421/521 - Operating Systems
Fall 2011

LECTURE - IX
PROCESS SYNCHRONIZATION - Il

Tevfik Kosar

University at Buffalo
September 26, 2011

Roadmap

e Critical-Section Problem
- Solutions to Critical Section
- Different Implementations

» Semaphores
 Classic Problems of Synchronization

Mutual Exclusion

> Implementation 1 — disabling hardware interrupts

1.

thread A reaches the gate A
to the critical region (CR)
before B

as soonasAenters CR, it A
disables all interrupts,

thus B cannot be

scheduled

B

. i critical region

as soon as A exits CR, it g .

enables interrupts; Bean =R

be scheduled again

thread B enters CR 5 .

> Implementation 1 — disabling

v

v

Mutual Exclusion

ardwarao |
CAI U Al

(D
S
-
(D
-5
in
-]
-
w
o

LA

it works, but not reasonable!

what guarantees that the user
process is going to ever exit the
critical region?

meanwhile, the CPU cannot
interleave any other task, even
unrelated to this race condition

the critical region becomes one
physically indivisible block, not
logically

also, this is not working in multi-
processors

void echo()

{

char chin, chout;

chin = getchar() ;
chout = chin;
putchar (chout) ;

Mutual Exclusion
> Implementation 2 — simple lock variable

1. thread Areaches CRand A
finds a lock at 0, which
means that A can enter

2. thread Asetsthelockto1 A
and enters CR, which B
prevents B from entering

3. thread A exits CR and
resets lock to 0; thread B
can now enter

4. thread B sets the lock to 1
and enters CR

B

.Y

£

. i critical region i

Mutual Exclusion

> Implementation 2 — simple lock variable

v the “lock” is a shared variable

v entering the critical region means
testing and then setting the lock

v exiting means resetting the lock

while (lock);
/* do nothing: loop */
lock = TRUE;

,‘m
-
-
-
’
’

’

’

’

/
/
/
/
’
’
,
/
/
e
/
/
’

bool lock = FALSE;

void echo()

{

char chin, chout;
do {

chout = chin;
putchar (chout) ;

while (...);
}

Mutual Exclusion

mnla
11INI\S

> Implementation 2 — si

1. thread A reaches CR and
finds a lock at 0, which
means that A can enter

A
B

1.1 but before Acansetthe A
lockto 1, BreachesCR g
and finds the lock is 0, too

1.2 A sets the lock to 1 and A
enters CR but cannot B

prevent the fact that . . .

1.3 ... Bis going to set the A
lock to 1 and enter CR, too 5

lock variable
K-ﬁ?
. critical region
/\/\/\/R < :
9

Mutual Exclusion

> Implementation 2 — si

mnla Inrk variahla &
| YAAV R AYAYIAN AL TUN T\

v

v suffers from the very flaw we want
to avoid: a race condition

v the problem comes from the small
gap between testing that the lock
is off and setting the lock

v it may happen that the other
thread gets scheduled exactly in
between these two actions (falls
in the gap)

v s0 they both find the lock off and
then they both set it and enter

’
’
,
4 7
.
.
’
/

bool lock = FALSE;

void echo()

{

char chin, chout;
do {

chout = chin;
putchar (chout) ;

while (...);
}

Mutual Exclusion
> Implementation 3 — “indivisible” lock variable &

1. thread Areaches CRand A ﬂ% y e
finds the lock at 0 and sets B/\N\,Kl ; critical region
it in one shot, then enters

1.1"even if B comes right A
behind A, it will find that the g :
lock is already at 1
2. thread A exits CR, then A @ R
resets lock to 0 B :
5. thread B finds the lock at0 o
and sets it to 1 in one shot, i

just before entering CR

9
Mutual Exclusion
> Implementation 3 — “indivisible” lock variable &
v the indivisibility of the “test-lock-
gnd-set-lock operatlon can be void echo()
implemented with the hardware {
instruction TSL char chin, chout;
___ . do {
ent"}rst%(l)zr‘éISTER,LOCK | copy lock to registeset lock to 1 ,W
CMP REGISTER #0 | was lock zero? / ; ’
JNE enter_region | if it was non zero, lock was set, so loop / chout = chin;
RET | return to caller; critical region entered /' putchar (chout) ;

__

S while (...);

""" leave_region: T}
MOVE LOCK#0 |store a 0in lock !
| return to caller

__

10

Mutual Exclusion

> Implementation 3 — “indivisible” lock < one key &

1. thread Areaches CRand A K‘f
finds a key and takes it B,\N\,Kx

1.1 even if B comes right A Y
behind A, it will notfinda g :
key

critical region i

2. thread Aexits CRandputs » ¥ K
the key back in place B vaqun;

3. thread B finds the key and
takes it, just before
entering CR

11

Mutual Exclusion
> Implementation 4 — no-TSL toggle for two threads

.@
1. thread Areaches CR, finds A R
alock at 0, and enters BNWKK

without changing the lock

2. however, thelock hasan A %ika
opposite meaning for B: B :
“off” means do not enter

critical region i

3. only when A exits CR does 5@2 K
it change the lock to 1; B
thread B can now enter o

4. thread B sets the lock to 1 % P
and enters CR: it will reset . k
it to O for A after exiting ~R :

12

Mutual Exclusion

> Implementation 4 — no-TSL toggle for two threads

v the “toggle lock” is a shared
variable used for strict alternation

v here, entering the critical region
means only testing the toggle: it
must be at 0 for A, and 1 for B

v exiting means switching the

toggle: Asetsitto 1,andBto 0

A's code B’s code

while (toggle); E while (!toggle) ;
/* loop */ ; /* loop */

__

I

1

1

N 4
el
.

i putchar (chout) ;

bool toggle = FALSE;

void echo()

{

char chin, chout;
do {

chout = chin;

while (...);
}

13

Mutual Exclusion

> Implementation 4 — no-TSL toggle for tw

5. thread B exits CR and
switches the lock backto 0 B
to allow A to enter next

9.1 but scheduling happens to
make B faster than A and
come back to the gate first

5.2 aslong as Ais still busy or o
interrupted in its noncritical
region, B is barred access
toits CR

® this violates item 2. of the
chart of mutual exclusion

=> this implementation avoids TSL by
splitting test & set and putting them in

enter & exit; nice try... but flaweqd!
14

Mutual Exclusion

A\

Implementation 5§ — Peterson’s no-TSL, no-alternation

1. Aand B each have theirown A
lock; an extra toggle is also BNWKK
masking either lock

.| ;
R@ critical region

2. Aarrives first, sets its lock, A K\
pushes the mask to the other BW
lock and may enter 5
3. then, B also sets its lock & A R
pushes the mask, but must BW
wait until A's lock is reset

| .
4. Aexits the CR and resets its y

lock; B may now enter 'SNVW\N"W R

Mutual Exclusion

> Implementation 5 — Peterson’s no-TSL. no-alternation

v the mask & two locks are shared | Pool lock[2];
int mask;

v entering means: setting one’s int A =0, B =1;
lock, pushing the mask and ‘{’°1d echo ()
tetsing the other’s combination char chin, chout;
v exiting means resetting the lock do {
Rl Rl ety ekl ; chout = chin;
;::t [2] Bi TRUE; ' ;Z:t[]z] A? TRUE ! putchar (chout) ;
while (lock[B] && i while (lock[A] && I
mask == B) ;! mask == A); / ,’I .
/* loop */ E /* loop */ ’1’) I,’ Whlle (. . .) ;
__________________________ S I/I K }
lock[A] = FALSE; | lock[B] = FALSE;

Mutual Exclusion

> Implementation 5 — Peterson’s no-TSL., no-alternation®

1. Aand B each have their A
own lock; an extra toggle BMNKI
is also masking either lock

oY :
R@ critical region

2.1 Ais interrupted between A
setting the lock & pushing g K%&
the mask; B sets its lock 5
2.2 now, both Aand B race to A l k
push the mask: whoever wa
does it last will allow the pushed last, allowing A
M one inside CR pushed last, allowing B o]
® mutual exclusion holds!! Wﬁigﬁ .

~R

17

(no bad race condition)

Mutual Exclusion

» Summary of these implementations of mutual exclusion

v" Impl. 1 — disabling hardware interrupts
¢ NO: race condition avoided, but can crash the system!

v Impl. 2 — simple lock variable (unprotected)
¢ NO: still suffers from race condition
v Impl. 3 — indivisible lock variable (TSL) this will be the
& YES: works, but requires hardware ~ basis for ‘mutexes”
v Impl. 4 — no-TSL toggle for two threads
¢ NO: race condition avoided inside, but lockup outside
v Impl. 5 — Peterson’s no-TSL, no-alternation
& YES: works in software, but processing overhead

18

Mutual Exclusion

» Problem: all implementations (2-5) rely on busy waiting

v “busy waiting” means that the process/thread continuously
executes a tight loop until some condition changes

v" busy waiting is bad:

= waste of CPU time — the busy process is not doing
anything useful, yet remains “Ready” instead of “Blocked”

= paradox of inversed priority — by looping indefinitely, a
higher-priority process B may starve a lower-priority
process A, thus preventing A from exiting CR and . . .
liberating B! (B is working against its own interest)

--> we need for the waiting process to block, not keep idling!

19

Synchronization Hardware

« Many systems provide hardware support for
critical section code

« Uniprocessors - could disable interrupts

- Currently running code would execute without
preemption

- Generally too inefficient on multiprocessor systems
» Operating systems using this not broadly scalable
e Modern machines provide special atomic
hardware instructions
o Atomic = non-interruptable
- Either test memory word and set value
- Or swap contents of two memory words

20

Semaphores

« Semaphore S - integer variable
« Two standard operations modify wait() and signal()
- Originally called P() and V()

- wait (5) {
while S <=0
; // no-op
S--;
}
- signal (5) {
S++;
}

e Less complicated
« Can only be accessed via two indivisible (atomic) operations

21

Semaphores as Synchronization Tool

Counting semaphore - integer value can range over an
unrestricted domain

Binary semaphore - integer value can range only
between 0 and 1; can be simpler to implement

- Also known as mutex locks

Provides mutual exclusion
- Semaphore S; // initialized to 1
- wait (5);
Critical Section
signal (S);

22

Deadlock and Starvation

Deadlock - two or more processes are waiting indefinitely for an
event that can be caused by only one of the waiting processes

Let S and Q be two semaphores initialized to 1

Py P,
wait (S); wait (Q);
wait (Q); wait (5);
signal (S); signal (Q);
signal (Q); signal (S);

Starvation - indefinite blocking. A process may never be removed
from the semaphore queue in which it is suspended.

23

Classical Problems of Synchronization

Bounded-Buffer Problem
Readers and Writers Problem
Dining-Philosophers Problem
Sleeping Barber Problem

24

Bounded-Buffer Problem

Shared buffer with N slots to store at most N
items

Producer processes data items and puts into the
buffer

Consumer gets the data items from the buffer

Variable empty keeps number of empty slots in
the butter

Variable full keeps number of full items in the
buffer

25

Bounded Buffer - 1 Semaphore Soln

« The structure of the producer process
int empty=N, full=0;
do {
/1 produce an item
wait (mutex);
if (empty> 0){
// add the item to the buffer
empty --; full++;

}

signal (mutex);

} while (true);

26

Bounded Buffer - 1 Semaphore Soln

« The structure of the consumer process
do {

wait (mutex);
if (full>0){
// remove an item from buffer
full--; empty++;
}

signal (mutex);
// consume the removed item
} while (true);

consume non-existing item!
27

Bounded Buffer - 1 Semaphore Soln - Il

« The structure of the producer process
int empty=N, full=0;

do {
/1 produce an item

while (empty == 0){}
wait (mutex);
// add the item to the buffer
empty --; full++;
signal (mutex);

} while (true);

28

Bounded Buffer - 1 Semaphore Soln - Il

« The structure of the consumer process

do {
while (full == 0){3
wait (mutex);
// remove an item from buffer
full--; empty++;
signal (mutex);

// consume the removed item

} while (true);

* Mutual Exclusion not preserved!
29

Bounded Buffer - 2 Semaphore Soln

« The structure of the producer process

do {
// produce an item
wait (empty);

// add the item to the buffer
signal (full);

} while (true);

30

Bounded Buffer - 2 Semaphore Soln

« The structure of the consumer process

do {
wait (full);
// remove an item from buffer
signal (empty);

// consume the removed item

} while (true);

* Mutual Exclusion not preserved!
31

Bounded Buffer - 3 Semaphore Soln

« Semaphore mutex for access to the buffer,
initialized to 1

« Semaphore full (number of full buffers)
initialized to 0

« Semaphore empty (number of empty buffers)
initialized to N

32

Bounded Buffer - 3 Semaphore Soln

« The structure of the producer process

do {

// produce an item

wait (empty);
wait (mutex);

// add the item to the buffer

signal (mutex);
signal (full);

33

Bounded Buffer - 3 Semaphore Soln

« The structure of the consumer process
do {
wait (full);
wait (mutex);

// remove an item from buffer

signal (mutex);
signal (empty);

// consume the removed item

34

Summary

e Critical-Section Problem
- Solutions to Critical Section
O
<L
E\

- Different Implementations
e Semaphores
» Classic Problems of Synchronization

e Next Lecture: Deadlocks - |
o HW-2 out next Tuesday!

Acknowledgements

» “Operating Systems Concepts” book and supplementary
material by A. Silberschatz, P. Galvin and G. Gagne

» “Operating Systems: Internals and Design Principles”
book and supplementary material by W. Stallings

o “Modern Operating Systems” book and supplementary
material by A. Tanenbaum

R. Doursat and M. Yuksel from UNR

36

