
1

CSE 421/521 - Operating Systems
Fall 2011

Tevfik Koşar

University at Buffalo
October 6th, 2011

Lecture - XI

Deadlocks - II

2

Roadmap

• Deadlocks
– Resource Allocation Graphs
– Deadlock Prevention
– Deadlock Detection

3

Deadlock Characterization

1. Mutual exclusion: nonshared resources;
only one process at a time can use a specific
resource

2. Hold and wait: a process holding at least
one resource is waiting to acquire additional
resources held by other processes

3. No preemption: a resource can be released
only voluntarily by the process holding it,
after that process has completed its task

Deadlock can arise if four conditions hold simultaneously.

4

Deadlock Characterization (cont.)

4. Circular wait: there exists a set {P0, P1, …,
Pn} of waiting processes such that P0 is
waiting for a resource that is held by P1, P1
is waiting for a resource that is held by

 P2, …, P
n–1 is waiting for a resource that is

held by
Pn, and Pn is waiting for a resource that is
held by P0.

Deadlock can arise if four conditions hold simultaneously.

5

Resource-Allocation Graph

• V is partitioned into two types:
– P = {P

1
, P

2
, …, P

n
}, the set consisting of all the processes

in the system.

– R = {R
1
, R

2
, …, R

m
}, the set consisting of all resource

types in the system.

• P requests R – directed edge P1 → R
j

• R is assigned to P – directed edge R
j
 → P

i

• Used to describe deadlocks
• Consists of a set of vertices V and a set of edges E.

6

Resource-Allocation Graph (Cont.)

• Process

• Resource Type with 4 instances

• P
i
 requests instance of R

j

• P
i
 is holding an instance of R

j
Pi

Pi

Rj

Rj

7

Example of a Resource Allocation Graph

8

Basic Facts

• If graph contains no cycles ⇒ no deadlock.

• If graph contains a cycle ⇒ there may be a
deadlock
– if only one instance per resource type, then deadlock.
– if several instances per resource type, possibility of

deadlock.

9

Resource Allocation Graph – Example 1

! No Cycle, no Deadlock

10

Resource Allocation Graph – Example 2

! Cycle, but no Deadlock

11

Resource Allocation Graph – example 3

! Deadlock

Which Processes
deadlocked?

! P1 & P2 & P3

(Silberschatz pp.249-251)
to

Exercise

12

(Silberschatz pp.249-251)
to

13

(Silberschatz pp.249-251)
to

14

Rule of Thumb

• A cycle in the resource allocation graph
– Is a necessary condition for a deadlock
– But not a sufficient condition

15

Methods for Handling Deadlocks

• Ensure that the system will never enter a
deadlock state.
!deadlock prevention or avoidance

• Allow the system to enter a deadlock state and
then recover.
!deadlock detection

• Ignore the problem and pretend that deadlocks
never occur in the system
! Programmers should handle deadlocks (UNIX, Windows)

16

Deadlock Prevention

• Mutual Exclusion – not required for sharable resources; must hold
for nonsharable resources.
– Eg. read-only files

• Hold and Wait – must guarantee that whenever a process requests
a resource, it does not hold any other resources.
1. Require process to request and be allocated all its resources before it

begins execution
2. or allow process to request resources only when the process has

none.
Example: Read from DVD to memory, then print.
 1. holds printer unnecessarily for the entire execution

• Low resource utilization

 2. may never get the printer later
• starvation possible

! Ensure one of the deadlock conditions cannot hold
!Restrain the ways request can be made.

17

Deadlock Prevention (Cont.)

• No Preemption –
– If a process that is holding some resources requests

another resource that cannot be immediately allocated to
it, then all resources currently being held are released.

– Preempted resources are added to the list of resources for
which the process is waiting.

– Process will be restarted only when it can regain its old
resources, as well as the new ones that it is requesting.

• Circular Wait – impose a total ordering of all
resource types, and require that each process
requests resources in an increasing order of
enumeration.

(Silberschatz pp.249-251)
to

Exercise

18

(Silberschatz pp.249-251)
to

19

(Silberschatz pp.249-251)
to

20

Deadlock Detection

• Allow system to enter deadlock state

• Detection algorithm

• Recovery scheme

21

Single Instance of Each Resource Type

• Maintain wait-for graph
– Nodes are processes.
– P

i
 → P

j
if P

i
 is waiting for P

j
.

Resource-Allocation Graph Corresponding wait-for graph

22

Single Instance of Each Resource Type

• Periodically invoke an algorithm that
searches for a cycle in the graph.

• An algorithm to detect a cycle in a graph
requires an order of n2 operations, where n
is the number of vertices in the graph.

• Only good for single-instance resource
allocation systems.

23

Several Instances of a Resource Type

• Available: A vector of length m indicates the
number of available resources of each type.

• Allocation: An n x m matrix defines the number
of resources of each type currently allocated to
each process.

• Request: An n x m matrix indicates the current
request of each process. If Request [i

j
] = k, then

process P
i
 is requesting k more instances of

resource type. R
j
.

24

Detection Algorithm

1. Let Work and Finish be vectors of length m and n,
respectively Initialize:
(a) Work = Available

(b) For i = 0,2, …, n-1, if Allocation
i
 ≠ 0, then

Finish[i] = false;otherwise, Finish[i] = true.

2. Find an index i such that both:
(a) Finish[i] == false

(b) Request
i
 ≤ Work

If no such i exists, go to step 4.

25

Detection Algorithm (Cont.)

3. Work = Work + Allocation
i

Finish[i] = true

go to step 2.

4. If Finish[i] == false, for some i, 0 ≤ i ≤ n-1, then the
system is in deadlock state. Moreover, if Finish[i] ==
false, then P

i
 is deadlocked.

Algorithm requires an order of O(m x n2) operations to detect whether the
system is in deadlocked state.

26

Example of Detection Algorithm

• Five processes P0 through P4; three resource types
A (7 instances), B (2 instances), and C (6 instances).

• Snapshot at time T0:

 Allocation Request Available

 A B C A B C A B C

 P0 0 1 0 0 0 0 0 0 0

 P1 2 0 0 2 0 2

 P2 3 0 3 0 0 0

 P3 2 1 1 1 0 0

 P4 0 0 2 0 0 2

• Sequence <P0, P2, P3, P1, P4> will result in Finish[i] =
true for all i.

27

Example (Cont.)

• P2 requests an additional instance of type C.

 Request

 A B C

 P0 0 0 0

 P1 2 0 1

 P2 0 0 1

 P3 1 0 0

 P4 0 0 2

• State of system?
– Can reclaim resources held by process P

0
, but insufficient

resources to fulfill other processes; requests.
– Deadlock exists, consisting of processes P

1
,

P

2
, P

3
, and P

4
.

28

Summary

Hmm.
.

• HW-2 due next Tuesday!
• Next Lecture: Deadlocks -III & Main Memory

• Deadlocks
– Resource Allocation Graphs
– Deadlock Prevention
– Deadlock Detection

29

Acknowledgements

• “Operating Systems Concepts” book and supplementary
material by A. Silberschatz, P. Galvin and G. Gagne

• “Operating Systems: Internals and Design Principles”
book and supplementary material by W. Stallings

• “Modern Operating Systems” book and supplementary
material by A. Tanenbaum

• R. Doursat and M. Yuksel from UNR

