CSE 421/521 - Operating Systems
Fall 2011

LECTURE - XI

DEADLOCKS - |l

Tevfik Kosar

University at Buffalo
October 6th, 2011

Roadmap

o Deadlocks
- Resource Allocation Graphs
- Deadlock Prevention
- Deadlock Detection

Deadlock Characterization

Deadlock can arise if four conditions hold simultaneously.

1. Mutual exclusion: nonshared resources;
only one process at a time can use a specific
resource

2. Hold and wait: a process holding at least
one resource is waiting to acquire additional
resources held by other processes

3. No preemption: a resource can be released

only voluntarily by the process holding it,
after that process has completed its task

Deadlock Characterization (cont.)

Deadlock can arise if four conditions hold simultaneously.

4. Circular wait: there exists a set {P,, P,, ...,
P} of waiting processes such that P, is
waiting for a resource that is held by P,, P,
is waiting for a resource that is held by
P,, ..., P, is waiting for a resource that is

held by
P., and P, is waiting for a resource that is

held by P,

Resource-Allocation Graph
- Used to describe deadlocks

- Consists of a set of vertices V and a set of edges E.

« Vs partitioned into two types:
- P={P,, P,, ..., P}, the set consisting of all the processes
in the system.

- R={R,, R, ..., R}, the set consisting of all resource
types in the system.

« Prequests R - directed edge P, — R;
- Ris assigned to P - directed edge R; — P,

Resource-Allocation Graph (Cont.)

Process Q

Resource Type with 4 instances oo

P; requests instance of R; B

oo

NSy

oh
oo

P, is holding an instance of R,

D

Example of a Resource Allocation Graph

[] []
\ N
P, é
\ /
€]
[] []
&)
R, .
R,

Basic Facts
« If graph contains no cycles = no deadlock.

« If graph contains a cycle = there may be a
deadlock
- if only one instance per resource type, then deadlock.

- if several instances per resource type, possibility of
deadlock.

Resource Allocation Graph - Example 1

R,

R,

R,

W9

=>» No Cycle, no Deadlock

Resource Allocation Graph - Example 2

<
P
R, -
./
L
Ps
P
R,
N
e
o
P,

= Cycle, but no Deadlock

10

Resource Allocation Graph - example 3

R, R
Q [)
\ \
P, @ P,
\
[[]
O
R, .
R,

=>» Deadlock

Which Processes
deadlocked?

2> P1&P2&P3

11

Exercise

In the code below, three processes are competing for six resources labeled A to F.

a.

Using a resource allocation graph (Silberschatz pp.249-251)

deadlock in this implementation.

show the possiblity of a

void PO()

{

while

(true) {
get (A);
get (B);
get (C);

// critical region:

// use B, B,
release (A);
release (B);
release (C);

C

void P1()

{

while

(true) {

get (D) ;

get (E);

get (B) ;

// critical region:
// use D, E, B
release (D) ;

release (E);

release (B);

void P2 ()

{

while

(true) {
get(C);

get (F);

get (D) ;

// critical region:
// use C, F, D
release (C);

release (F);
release (D) ;

12

vold PO() vold P1() vold P2 ()
{ { {

while (true) { while (true) while (true) {
get (B) ; get (D) ; get (C);
get (B) ; get (E) ; get (F);
get (C); get (B); get (D) ;
// critical region: // critical region: // critical region:
// use A, B, C // use D, E, B // use C, F, D
release (RA); release (D) ; release (C);
release (B); release (E) ; release (F);
release (C); release (B) ; release (D) ;

13

Rule of Thumb

e Acycle in the resource allocation graph
- Is a necessary condition for a deadlock
- But not a sufficient condition

14

Methods for Handling Deadlocks

» Ensure that the system will never enter a
deadlock state.
=>deadlock prevention or avoidance

» Allow the system to enter a deadlock state and
then recover.
=>deadlock detection
 Ignore the problem and pretend that deadlocks
never occur in the system
=» Programmers should handle deadlocks (UNIX, Windows)

15

Deadlock Prevention

= Ensure one of the deadlock conditions cannot hold

=» Restrain the ways request can be made.

« Mutual Exclusion - not required for sharable resources; must hold
for nonsharable resources.

Eg. read-only files

» Hold and Wait - must guarantee that whenever a process requests
a resource, it does not hold any other resources.

1. Require process to request and be allocated all its resources before it
begins execution

2. or allow process to request resources only when the process has
none.

Example: Read from DVD to memory, then print.

1. holds printer unnecessarily for the entire execution
« Low resource utilization

2. may never get the printer later
« starvation possible

16

Deadlock Prevention (Cont.)

e No Preemption -
- If a process that is holding some resources requests
another resource that cannot be immediately allocated to
it, then all resources currently being held are released.
- Preempted resources are added to the list of resources for
which the process is waiting.

- Process will be restarted only when it can regain its old
resources, as well as the new ones that it is requesting.

« Circular Wait - impose a total ordering of all
resource types, and require that each process
requests resources in an increasing order of

enumeration.

17

Exercise

In the code below, three processes are competing for six resources labeled A to F.

a. Using a resource allocation graph (Silberschatz pp.249-251)

deadlock in this implementation.

show the possiblity of a

b. Modify the order of some of the get requests to prevent the possiblity of any deadlock.
You cannot move requests across procedures, only change the order inside each procedure.
Use a resource allocation graph to justify your answer.

void PO()
{
while (true)

get (A);
get (B);
get (C);
// critical region:
// use B, B, C
release (A);
release (B);
release (C);

void P1()

while (true) {
get (D) ;
get (E);
get (B) ;
// critical region:
// use D, E, B
release (D) ;
release (E);
release (B);

void P2 ()

{

while (true) {
)
)

get (D)

// critical region:
// use C, F, D
release (C);

release (F);
release (D) ;

18

void PO()
i
while (true)
get () ;
get (B);
get (C);

// critical region:

// use A, B, C
release (RA);

void PL{()

while (true)
get (D) ;
get (E);
get (B);

// critical region:

// use D, E, B
release (D) ;

vold P2 ()

{

while (
get (C
get (F
get (D) ;

true) {
)
)

;
;

// critical region:

// use C, F, D

release (C);
release (F);
release (D) ;

19

» Allow system to enter deadlock state

» Detection algorithm

» Recovery scheme

Deadlock Detection

20

Single Instance of Each Resource Type

» Maintain wait-for graph
- Nodes are processes.
- P, — P;if P; is waiting for P,.

Resource-Allocation Graph Corresponding wait-for graph
21

Single Instance of Each Resource Type

» Periodically invoke an algorithm that
searches for a cycle in the graph.

« An algorithm to detect a cycle in a graph
requires an order of n? operations, where n
is the number of vertices in the graph.

« Only good for single-instance resource
allocation systems.

22

Several Instances of a Resource Type

e Available: A vector of length m indicates the
number of available resources of each type.

e Allocation: An n x m matrix defines the number
of resources of each type currently allocated to
each process.

e Request: An n x m matrix indicates the current
request of each process. If Request [i;] = k, then

process P; is requesting k more instances of
resource type. R;.

23

Detection Algorithm

1. Let Work and Finish be vectors of length m and n,
respectively Initialize:
(a) Work = Available
(b) Fori=0,2, ..., n-1, if Allocation; = 0, then
Finish[i] = false;otherwise, Finish[i] = true.
2. Find an index i such that both:
(a) Finish[i] == false
(b) Request; < Work

If no such i exists, go to step 4.

24

Detection Algorithm (Cont.)

3. Work = Work + Allocation,
Finish[i] = true
go to step 2.

4. If Finish[i] == false, for some i, 0 <i < n-1, then the
system is in deadlock state. Moreover, if Finish[i] ==
false, then P; is deadlocked.

Algorithm requires an order of O(m x n? operations to detect whether the
system is in deadlocked state.

25

Example of Detection Algorithm

« Five processes P, through P,; three resource types
A (7 instances), B (2 instances), and C (6 instances).

« Snapshot at time T:

AllocationRequest Available
ABC ABC ABC
P, 010 000 000

P, 200 202
P, 303 000
P, 211 100
P, 002 002
« Sequence <P, P,, P;, P,, P,> will result in Finish[i] =
true for all i.

26

Example (Cont.)

« P, requests an additional instance of type C.

Request
ABC

P, 000
P, 201
P, 001
P, 100
P, 002

» State of system?
- Can reclaim resources held by process P,, but insufficient
resources to fulfill other processes; requests.
- Deadlock exists, consisting of processes P,, P,, P;, and P4.27

Summary
» Deadlocks
- Resource Allocation Graphs
- Deadlock Prevention B
- Deadlock Detection
E\

* Next Lecture: Deadlocks -1ll & Main Memory
o HW-2 due next Tuesday!

Acknowledgements

“Operating Systems Concepts” book and supplementary
material by A. Silberschatz, P. Galvin and G. Gagne

“Operating Systems: Internals and Design Principles”
book and supplementary material by W. Stallings

“Modern Operating Systems” book and supplementary
material by A. Tanenbaum

R. Doursat and M. Yuksel from UNR

29

