CSE 421/521 - Operating Systems
Fall 2011

LECTURE - XIII

MAIN MEMORY MANAGEMENT - l]

Tevfik Kosar

University at Buffalo
October 13t, 2011

Roadmap

e Main Memory Management
« Fragmentation
« Address Binding
e HW Address Protection
» Paging




Dynamic Storage-Allocation Problem

How to satisfy a request of size n from a list of free holes

« First-fit: Allocate the first hole that is big
enough

« Best-fit: Allocate the smallest hole that is big
enough; must search entire list, unless ordered
by size. Produces the smallest leftover hole.

« Worst-fit: Allocate the largest hole; must also
search entire list. Produces the largest leftover
hole.

First-fit is faster.
Best-fit is better in terms of storage utilization.

Worst-fit may lead less fragmentation.

30

Fragmentation

« External Fragmentation - total memory space
exists to satisfy a request, but it is not
contiguous (in average ~50% lost)

e Internal Fragmentation - allocated memory may
be slightly larger than requested memory; this
size difference is memory internal to a partition,
but not being used

« Reduce external fragmentation by compaction

- Shuffle memory contents to place all free memory
together in one large block

- Compaction is possible only if relocation is dynamic,
and is done at execution time

32




Address Binding

Addresses in a source program are generally symbolic
- eg. int count;
A compiler binds these symbolic addresses to
relocatable addresses
- eg. 100 bytes from the beginning of this module
The linkage editor or loader will in turn bind the
relocatable addresses to absolute addresses
- eg. 74014
Each binding is mapping from one address space to
another

Logical Address Space

Each process has a 0
operating
separate memory space Eystom
Two registers provide 25600
address protection orocess
between processes:
. 30004 < 30004
Base register: smallest base
legal address space process
Limit register: size of 42094 « 12090
the legal range process limit
88000
102400




Memory-Management Unit (Mmu)

Hardware device that maps
logical to physical address

In MMU scheme, the value in the
relocation register (base register)
is added to every address
generated by a user process at
the time it is sent to memory

The user program deals with
logical addresses; it never sees
the real physical addresses

logical

address
CPU

relocation
register

"

physical
address

346

MMU

memo
14346 g

HW Address Protection

CPU hardware compares every address generated in user mode

with the registers

Any attempt to access other processes’ memory will be trapped

and cause a fatal error

base

Y

address yes
CPU >

no

Y

base + limit

no

Y

trap to operating system
monitor—addressing error

yes

memory

8




Paging - noncontiguous

Physical address space of a process can be
noncontiguous

Divide physical memory into fixed-sized blocks
called frames (size is power of 2, between 512
bytes and 16 megabytes)

Divide logical memory into blocks of same size
called pages.

Keep track of all free frames

To run a program of size n pages, need to find n
free frames and load program

Set up a page table to translate logical to physical
addresses

Internal fragmentation

37

Address Translation Scheme
« Address generated by CPU is divided into:

- Page number (p) - used as an index into a page
table which contains base address of each page in
physical memory

- Page offset (d) - combined with base address to
define the physical memory address that is sent
to the memory unit

38




Address Translation Architecture

logical physical
address address | f0000 ... 0000

cPU —'EI_LLI [T d]

197 ooo 1977

=

- physical
memory

page table

39

Paging Example

frame
number
page O 0
page 1 1| page O
page 2 2
page 3 page table 3| page 2
logical 4| page 1
memory
5
6
7| page 3
physical
memory

40




Paging Example

0| a

1| b

2 [Ne

3 |d

4 | e

5 [

6|9 0
7 | h 106
5 i 21
10/ k 3 2]
11] 1 page table
12| m

13| n

14| o

15| p

logical memory

physical memory

41

Free Frames

free-frame list
14
13
18
20
15

e\
.

page O
page 1
page 2
page 3

[|[new process

(a)

free-frame list
13 15
14
15 e
R
16 page O
page 1
17 page 2
page 3
18 new process
19
20
21 new-process page table

(b)

13

14

15

16

17

18

19

20

page 1

page O

page 2

page 3

42




Shared Pages

Shared code

- One copy of read-only (reentrant) code shared
among processes (i.e., text editors, compilers,
window systems).

- Shared code must appear in same location in the
logical address space of all processes

Private code and data

- Each process keeps a separate copy of the code
and data

- The pages for the private code and data can
appear anywhere in the logical address space

22

Shared Pages Example

ed 1 0
ed?2 1| data1
ed3 E 2| data3
il
data 1 page table 3 edi
for P ed 1
rocess P.
P 1 4| ed2
ed?2
5
ed3 n
6| ed3
data 2 page table
for P2 7| data?2
il process P,
o
ed?2
E 9
ed3
10
data 3 page table
for P,
process P,

23




User’s View of a Program

subroutine stack

symbol
table

Sqrt

main
program

logical address

24

Segmentation

« Memory-management scheme that supports user
view of memory

e Aprogram is a collection of segments. A segment
is a logical unit such as:

main program,

procedure,

function,

method,

object,

local variables, global variables,
common block,

stack,

symbol table, arrays
25




Logical View of Segmentation

3
user space physical memory space
26
Summary
e Main Memory Management
» Fragmentation
« Address Binding - K
o HW Address Protection
« Paging E

e Next Lecture: Midterm Review

20




Acknowledgements

“Operating Systems Concepts” book and supplementary
material by A. Silberschatz, P. Galvin and G. Gagne

“Operating Systems: Internals and Design Principles”
book and supplementary material by W. Stallings

“Modern Operating Systems” book and supplementary
material by A. Tanenbaum

R. Doursat and M. Yuksel from UNR

21




