CSE 421/521 - Operating Systems Roadmap

Fall 2011
LECTURE - XV * Main Memory Management
- Segmentation
MEMORY MANAGEMENT & « Virtual Memory

Demand Paging
- Page Faults
- Page Replacement
- Page Replacement Algorithms
- Performance of Demand Paging

VIRTUAL MEMORY

Tevfik Kosar

University at Buffalo
October 25, 2011

User’s View of a Program Segmentation

« Memory-management scheme that supports user
view of memory

« Aprogram is a collection of segments. A segment

subroutine | | stack is a logical unit such as:

main program,
symbol procedure,
function,

sart method,
rogram object,
local variables, global variables,

common block,
stack,
symbol table, arrays

logical address

Logical View of Segmentation Segmentation Architecture
1 » Logical address consists of a two tuple:
4 <segment-number, offset>,

« Segment table - maps two-dimensional
physical addresses; each table entry has:

- base - contains the starting physical address where
the segments reside in memory

2 - limit - specifies the length of the segment
3 » Segment-table base register (STBR) points to
the segment table’s location in memory
« Segment-table length register (STLR)
! indicates the length (limit) of the segment
user space physical memory space

» segment addressing is d (offset) < STLR

Segmentation Architecture (Cont.)

» Protection. With each entry in segment
table associate:
- validation bit = 0 = illegal segment
- read/write/execute privileges
» Protection bits associated with segments;
code sharing occurs at segment level
« Since segments vary in length, memory
allocation is a dynamic storage-allocation
problem
- Asegmentation example is shown in the
following diagram

Example of Segmentation

subroutine stack
1400
segment 3 segment 0
2400
symbol
segment 0 table
limit_| base
Sqrt segment 4 0 1000 | 1400
1| 400 | 6300 a
main 2| 400 | 4300
program 3| 1100 | 3200 segment 4
4{1000 | 4700
" T segment table 4
segment 1 segment 2 Segment 2
4700
logical address space lsegment 4|
5700
6300
'segment 1
6700
physical memory;

Address Translation Architecture

— limit_|base

segment
table

no

trap: addressing error physical memory

Exercise

* Consider the following segment table:

Segment Base Length

0 219 600
1 2300 14
2 90 100
3 1327 580
4 1952 96

‘What are the physical addresses for the following logical addresses?

a. 1,100

b.2,0

c.3,580

Solution
« Consider the following segment table:

Segment Base Length

0 219 600

1 2300 14

2 90 100

3 1327 580

4 1952 96

‘What are the physical addresses for the following logical addresses?

a. 1,100

illegal reference (2300+100 is not within segment limits)

b.2,0

physical address = 90 + 0 = 90

c.3,580

illegal reference (1327 + 580 is not within segment limits)

Sharing of Segments

editor

segment 0
43062

limit | base
0[25286 | 42062 ’
1 | 4425 | 68348 ey

segment table

data 1

segment 1

process P,

logical memory ! 68248 data 1
process P, 72773
90003

editor data2
98553

segment 0

limit | base
Cob 0[25286 | 43062 physical memory
1| “8850 | 90003

segment table
process P,

segment 1

logical memory
process P,

Virtual Memory

Background

« Virtual memory - separation of user logical
memory from physical memory.
- Only part of the program needs to be in memory for
execution.

- Logical address space can therefore be much larger
than physical address space.

Allows address spaces to be shared by several
processes.

- Allows for more efficient process creation.

« Virtual memory can be implemented via:
- Demand paging
- Demand segmentation

Demand Paging

 Bring a page into memory only when it is needed
- Less I/0 needed
- Less memory needed
- Faster response
- More users

« Page is needed = reference to it
- invalid reference = abort
- not-in-memory = bring to memory

Valid-Invalid Bit

« With each page table entry a valid-invalid bit is associated
(1 = in-memory and legal, 0 = not-in-memory or invalid)

« Initially valid-invalid bit is set to 0 on all entries
« Example of a page table snapshot:

Frame # valid-invalid bit
1
1
1
| 1
0
0
(0]
page table

« During address translation, if valid-invalid bit in page table entry
is 0 = page fault

Page Table When Some Pages Are Not in Main Memory

0
1
A 2
B 3 T
oi——
p| © n
5 s Uog
4| E 6| ¢C] [[E]
a F 7
S \ [e] [B] [E]
v of F FE OO
=] " 000
i
-
12
13
14
15

physical memory

Transfer of a Paged Memory to Contiguous Disk Space

= eE—]
| g
swap out o 1020 300
dstebirth
8] o101
12181401501
rogam N swep n 161718 Clrel]
2021 [Je2[123[]
— -

rogram

main
memory

Page Fault

If there is ever a reference to a page not in memory, first
reference will trap to OS = page fault

0S looks at another table (in PCB) to decide:
- Invalid reference = abort.
- Just not in memory. ==> page-in

Get an empty frame.

Swap (read) page into the new frame.

Set validation bit = 1.

Restart instruction

Steps in Handling a Page Fault

@) paeion
backing store I

operating
system

reference

®

load M

®
restart
instruction|

page table

free frame .

, ——
® @

reset page bring in
table missing page

physical
memon

What happens if there is no free frame?

» Page replacement - find some page in
memory, but not really in use, swap it out
- Algorithms (FIFO, LRU ..)
- performance - want an algorithm which will result
in minimum number of page faults

» Same page may be brought into memory
several times

Page Replacement

» Prevent over-allocation of memory by modifying page-
fault service routine to include page replacement

» Use modify (dirty) bit to reduce overhead of page
transfers - only modified pages are written to disk

- Page replacement completes separation between
logical memory and physical memory - large virtual
memory can be provided on a smaller physical memory

Basic Page Replacement

1. Find the location of the desired page on disk

2. Find a free frame:
- If there is a free frame, use it
- If there is no free frame, use a page
replacement algorithm to select a victim frame

3. Read the desired page into the (newly) free
frame. Update the page and frame tables.

4. Restart the process

Page Replacement

rame valid—invalid bit
- -
swap out
change victim
o i to invalid @page ,D
Ly /
@ f| victim
reset page
table for

page table new page ©swap \E‘
desired

page in

physical
memory

Page Replacement Algorithms

« Want lowest page-fault rate
« Evaluate algorithm by running it on a
particular string of memory references
(reference string) and computing the
number of page faults on that string
« In all our examples, the reference string is
1,2,3,4,1,2,5/1,2,3,4,5

Graph of Page Faults Versus The Number of Frames

number of page faults

number of frame:

First-In-First-Out (FIFO) Algorithm

o Reference string: 1, 2,3,4,1,2,5,1,2,3,4,5
« 3 frames (3 pages can be in memory at a time per
process)

First-In-First-Out (FIFO) Algorithm

o Reference string: 1, 2,3,4,1,2,5,1,2,3,4,5
« 3 frames (3 pages can be in memory at a time per

process)

4 5

9
2

1 3 9 page faults

First-In-First-Out (FIFO) Algorithm

o Reference string: 1, 2,3,4,1,2,5,1,2,3,4,5
« 3 frames (3 pages can be in memory at a time per
process)

114 5
21 1 3 9page faults
312 4

= 4 frames

First-In-First-Out (FIFO) Algorithm

o Reference string: 1, 2,3,4,1,2,5,1,2,3,4,5
« 3 frames (3 pages can be in memory at a time per
process)

111] 4 5
2121 3 9page faults
31832 4

e 4 frames 1115 4
2121 5 10 page faults
313| 2
4143

» FIFO Replacement - Belady’s Anomaly
- more frames = more page faults

FIFO Illustrating Belady’s Anomaly

number of page faults

1 2 3 4 5 6
number of frames

Demand Paging Example

* Memory access time = 1 microsecond

« 50% of the time the page that is being replaced has been modified
and therefore needs to be swapped out

« Swap Page Time = 10 msec = 10,000 microsec

Performance of Demand Paging

o Page Fault Rate0<p<1.0
- if p = 0 no page faults
- if p =1, every reference is a fault

» Effective Access Time (EAT)
EAT = (1 - p) x memory access
+ p x (page fault overhead
+ [swap page out]
+ swap page in
+ restart overhead)

o EAT=?
Summary
« Main Memory Management < Hmm.
- Segmentation 4
« Virtual Memory "]
- Demand Paging 1
- Page Faults E\

- Page Replacement
- Page Replacement Algorithms
- Performance of Demand Paging

* Next Lecture: Virtual Memory - ||
» Reading Assignment: Chapter 9 from Silberschatz.

Demand Paging Example

* Memory access time = 1 microsecond

« 50% of the time the page that is being replaced has been modified

and therefore needs to be swapped out

« Swap Page Time = 10 msec = 10,000 microsec

« EAT=(1-p)x1+px (10,000 + 1/2 x 10,000)

=1+14,999 xp (in microsec)

« What if 1 out of 1000 memory accesses cause a page fault?

« What if we only want 30% performance degradation?

Acknowledgements

» “Operating Systems Concepts” book and supplementary
material by A. Silberschatz, P. Galvin and G. Gagne

« “Operating Systems: Internals and Design Principles”
book and supplementary material by W. Stallings

» “Modern Operating Systems” book and supplementary
material by A. Tanenbaum

o R. Doursat and M. Yuksel from UNR

