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User’s View of a Program Segmentation

« Memory-management scheme that supports user
view of memory

« Aprogram is a collection of segments. A segment

subroutine | | stack is a logical unit such as:

main program,
symbol procedure,
function,

sart method,
rogram object,
local variables, global variables,

common block,
stack,
symbol table, arrays

logical address

Logical View of Segmentation Segmentation Architecture
1 » Logical address consists of a two tuple:
4 <segment-number, offset>,

« Segment table - maps two-dimensional
physical addresses; each table entry has:

- base - contains the starting physical address where
the segments reside in memory

2 - limit - specifies the length of the segment
3 » Segment-table base register (STBR) points to
the segment table’s location in memory
« Segment-table length register (STLR)
! indicates the length (limit) of the segment
user space physical memory space

» segment addressing is d (offset) < STLR




Segmentation Architecture (Cont.)

» Protection. With each entry in segment
table associate:
- validation bit = 0 = illegal segment
- read/write/execute privileges
» Protection bits associated with segments;
code sharing occurs at segment level
« Since segments vary in length, memory
allocation is a dynamic storage-allocation
problem
- Asegmentation example is shown in the
following diagram

Example of Segmentation
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Address Translation Architecture
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Exercise

* Consider the following segment table:

Segment Base Length

0 219 600
1 2300 14
2 90 100
3 1327 580
4 1952 96

‘What are the physical addresses for the following logical addresses?

a. 1,100

b.2,0

c.3,580

Solution
« Consider the following segment table:

Segment Base Length

0 219 600

1 2300 14

2 90 100

3 1327 580

4 1952 96

‘What are the physical addresses for the following logical addresses?

a. 1,100

illegal reference (2300+100 is not within segment limits)

b.2,0

physical address = 90 + 0 = 90

c.3,580

illegal reference (1327 + 580 is not within segment limits)

Sharing of Segments
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Virtual Memory

Background

« Virtual memory - separation of user logical
memory from physical memory.
- Only part of the program needs to be in memory for
execution.

- Logical address space can therefore be much larger
than physical address space.

Allows address spaces to be shared by several
processes.

- Allows for more efficient process creation.

« Virtual memory can be implemented via:
- Demand paging
- Demand segmentation

Demand Paging

 Bring a page into memory only when it is needed
- Less I/0 needed
- Less memory needed
- Faster response
- More users

« Page is needed = reference to it
- invalid reference = abort
- not-in-memory = bring to memory

Valid-Invalid Bit

« With each page table entry a valid-invalid bit is associated
(1 = in-memory and legal, 0 = not-in-memory or invalid)

« Initially valid-invalid bit is set to 0 on all entries
« Example of a page table snapshot:

Frame # valid-invalid bit
1
1
1
| 1
0
0
(0]
page table

« During address translation, if valid-invalid bit in page table entry
is 0 = page fault

Page Table When Some Pages Are Not in Main Memory
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Transfer of a Paged Memory to Contiguous Disk Space
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Page Fault

If there is ever a reference to a page not in memory, first
reference will trap to OS = page fault

0S looks at another table (in PCB) to decide:
- Invalid reference = abort.
- Just not in memory. ==> page-in

Get an empty frame.

Swap (read) page into the new frame.

Set validation bit = 1.

Restart instruction

Steps in Handling a Page Fault
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What happens if there is no free frame?

» Page replacement - find some page in
memory, but not really in use, swap it out
- Algorithms (FIFO, LRU ..)
- performance - want an algorithm which will result
in minimum number of page faults

» Same page may be brought into memory
several times

Page Replacement

» Prevent over-allocation of memory by modifying page-
fault service routine to include page replacement

» Use modify (dirty) bit to reduce overhead of page
transfers - only modified pages are written to disk

- Page replacement completes separation between
logical memory and physical memory - large virtual
memory can be provided on a smaller physical memory

Basic Page Replacement

1. Find the location of the desired page on disk

2. Find a free frame:
- If there is a free frame, use it
- If there is no free frame, use a page
replacement algorithm to select a victim frame

3. Read the desired page into the (newly) free
frame. Update the page and frame tables.

4. Restart the process

Page Replacement
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Page Replacement Algorithms

« Want lowest page-fault rate
« Evaluate algorithm by running it on a
particular string of memory references
(reference string) and computing the
number of page faults on that string
« In all our examples, the reference string is
1,2,3,4,1,2,5/1,2,3,4,5

Graph of Page Faults Versus The Number of Frames

number of page faults

number of frame:

First-In-First-Out (FIFO) Algorithm

o Reference string: 1, 2,3,4,1,2,5,1,2,3,4,5
« 3 frames (3 pages can be in memory at a time per
process)

First-In-First-Out (FIFO) Algorithm

o Reference string: 1, 2,3,4,1,2,5,1,2,3,4,5
« 3 frames (3 pages can be in memory at a time per

process)
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First-In-First-Out (FIFO) Algorithm

o Reference string: 1, 2,3,4,1,2,5,1,2,3,4,5
« 3 frames (3 pages can be in memory at a time per
process)
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First-In-First-Out (FIFO) Algorithm

o Reference string: 1, 2,3,4,1,2,5,1,2,3,4,5
« 3 frames (3 pages can be in memory at a time per
process)
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» FIFO Replacement - Belady’s Anomaly
- more frames = more page faults




FIFO Illustrating Belady’s Anomaly
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Demand Paging Example

* Memory access time = 1 microsecond

« 50% of the time the page that is being replaced has been modified
and therefore needs to be swapped out

« Swap Page Time = 10 msec = 10,000 microsec

Performance of Demand Paging

o Page Fault Rate0<p<1.0
- if p = 0 no page faults
- if p =1, every reference is a fault

» Effective Access Time (EAT)
EAT = (1 - p) x memory access
+ p x (page fault overhead
+ [swap page out]
+ swap page in
+ restart overhead)

o EAT=?
Summary
« Main Memory Management < Hmm.
- Segmentation 4
« Virtual Memory "]
- Demand Paging 1
- Page Faults E\

- Page Replacement
- Page Replacement Algorithms
- Performance of Demand Paging

* Next Lecture: Virtual Memory - ||
» Reading Assignment: Chapter 9 from Silberschatz.

Demand Paging Example

* Memory access time = 1 microsecond

« 50% of the time the page that is being replaced has been modified

and therefore needs to be swapped out

« Swap Page Time = 10 msec = 10,000 microsec

« EAT=(1-p)x1+px (10,000 + 1/2 x 10,000)

=1+14,999 xp  (in microsec)

« What if 1 out of 1000 memory accesses cause a page fault?

« What if we only want 30% performance degradation?
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