CSE 421/521 - Operating Systems
Fall 2011

LECTURE - XV

MEMORY MANAGEMENT &
VIRTUAL MEMORY

Tevfik Kosar

University at Buffalo
October 25, 2011

Roadmap

e Main Memory Management
- Segmentation

 Virtual Memory
- Demand Paging
- Page Faults
- Page Replacement
- Page Replacement Algorithms
- Performance of Demand Paging

User’s View of a Program

subroutine stack

symbol
table

Sqrt

main
program

logical address

Segmentation

« Memory-management scheme that supports user
view of memory

e Aprogram is a collection of segments. A segment
is a logical unit such as:

main program,

procedure,

function,

method,

object,

local variables, global variables,
common block,

stack,

symbol table, arrays

Logical View of Segmentation

user space physical memory space

Segmentation Architecture

Logical address consists of a two tuple:
<segment-number, offset>,

Segment table - maps two-dimensional
physical addresses; each table entry has:

- base - contains the starting physical address where
the segments reside in memory

- limit - specifies the length of the segment

Segment-table base register (STBR) points to
the segment table’s location in memory

Segment-table length register (STLR)
indicates the length (limit) of the segment

segment addressing is d (offset) < STLR

Segmentation Architecture (Cont.)

Protection. With each entry in segment
table associate:

- validation bit = 0 = illegal segment

- read/write/execute privileges

Protection bits associated with segments;
code sharing occurs at segment level
Since segments vary in length, memory
allocation is a dynamic storage-allocation
problem
A segmentation example is shown in the
following diagram

Address Translation Architecture

— limit |base +—

segment
table

cPU s [d]

no

A
trap: addressing error physical memory

Example of Segmentation

subroutine stack
segment 3
symbol
segment 0 table
limit | base
Sqrt segment 4 0| 1000 | 1400
1| 400 | 6300
main 2| 400 | 4300
program 3| 1100 | 3200
411000 | 4700

segment 1 segment 2

logical address space

segment table

1400

segment 0|

2400

3200

segment 3

4300

segment 2
4700

segment 4

5700

6300

segment 1

6700
physical memory

Exercise

* Consider the following segment table:

Segment Base Length
0 219 600
1 2300 14
2 90 100
3 1327 580
4 1952 96

What are the physical addresses for the following logical addresses?

a. 1,100

b.2,0

c.3,580

Solution

* Consider the following segment table:
Segment Base Length

0 219 600
1 2300 14
2 90 100
3 1327 580
4 1952 96

What are the physical addresses for the following logical addresses?

a. 1,100
illegal reference (2300+100 is not within segment limits)

b.2,0
physical address =90 + 0 =90

c.3,580
illegal reference (1327 + 580 is not within segment limits)

Sharing of Segments

editor
segment 0
43062
data 1 limit | base
0| 25286 | 43062 di
segment 1 1| 4425 | 68348 editor
segment table
- process P.
logical memory ! 68348 p—
process P, 79773
90003
editor data 2
98553
segment 0
limit | base .
0| 25286 | 43062 physical memory
segment 1 1 8850 | 90003
segment table
. process P,
logical memory
process P,

Virtual Memory

Background

« Virtual memory - separation of user logical
memory from physical memory.

Only part of the program needs to be in memory for
execution.

- Logical address space can therefore be much larger
than physical address space.

- Allows address spaces to be shared by several
processes.

- Allows for more efficient process creation.

e Virtual memory can be implemented via:
- Demand paging
- Demand segmentation

Demand Paging

» Bring a page into memory only when it is needed
Less I/0 needed

Less memory needed

Faster response

More users

« Page is needed = reference to it
- invalid reference = abort
- not-in-memory = bring to memory

Valid-Invalid Bit

» With each page table entry a valid-invalid bit is associated
(1 = in-memory and legal, 0 = not-in-memory or invalid)

 Initially valid-invalid bit is set to 0 on all entries
» Example of a page table snapshot:

Frame # valid-invalid bit
1
1
1
1
0
0
0
page table

» During address translation, if valid-invalid bit in page table entry
is 0 = page fault

Page Table When Some Pages Are Not in Main Memory

0
1
J Y 2
d = 3 PN
_/
bl C 4 A
B ; LD L
kil E] . [] [a] [B]
3 7
51 G 8 B B B
7 (] o [W (][]
ey 0 (] [0 [
11
__/
12
13
14
15

physical memory

Transfer of a Paged Memory to Contiguous Disk Space

—— /_\
~ _/
swap out O/ 1 23 |

program 4
A 40 st o0 701
J 8] o101
3 123450
progam rw_ swapin 1617 [J18[J10[]
J 2021 [22[123[]
m— _/

main
memory

Page Fault

If there is ever a reference to a page not in memory, first
reference will trap to OS = page fault

OS looks at another table (in PCB) to decide:
- Invalid reference = abort.
- Just not in memory. ==> page-in

Get an empty frame.

Swap (read) page into the new frame.

Set validation bit = 1.

Restart instruction

Steps in Handling a Page Fault

page is on
backing store /(_ﬁ\
operating
system @
reference
@ trap
load M [
restart page table
instruction
free frame
reset page bring in
table missing page
physical
memory.

What happens if there is no free frame?

» Page replacement - find some page in
memory, but not really in use, swap it out
- Algorithms (FIFO, LRU ..)

- performance - want an algorithm which will result
in minimum number of page faults

e Same page may be brought into memory
several times

Page Replacement

« Prevent over-allocation of memory by modifying page-
fault service routine to include page replacement

« Use modify (dirty) bit to reduce overhead of page
transfers - only modified pages are written to disk

- Page replacement completes separation between
logical memory and physical memory - large virtual
memory can be provided on a smaller physical memory

Basic Page Replacement

1. Find the location of the desired page on disk

2. Find a free frame:
- If there is a free frame, use it

- If there is no free frame, use a page

replacement algorithm to select a victim frame

3. Read the desired page into the (newly) free
frame. Update the page and frame tables.

4. Restart the process

Page Replacement

rame valid—invalid bit

N Y

change
o0 |i to invalid

®

reset page
table for
new page

page table

—

swap out
victim

yﬂ

G
victim

O

swap
desired
page in

sl N
N

]

physical
memory

Page Replacement Algorithms

« Want lowest page-fault rate

« Evaluate algorithm by running it on a
particular string of memory references
(reference string) and computing the
number of page faults on that string

e In all our examples, the reference string is
1,2,3,4,1,2,5,1,2,3,4,5

Graph of Page Faults Versus The Number of Frames

—_ —_ -
o N M
T T T

number of page faults

N A~ OO @©
T

I 1 1 1 1 1
1 2 3 4 5 6
number of frames

First-In-First-Out (FIFO) Algorithm

» Reference string: 1, 2, 3,4,1,2,5,1,2,3,4,5
« 3 frames (3 pages can be in memory at a time per
process)

First-In-First-Out (FIFO) Algorithm

» Reference string: 1, 2, 3,4,1,2,5,1,2,3,4,5
« 3 frames (3 pages can be in memory at a time per
process)

21 1 3 9page faults

First-In-First-Out (FIFO) Algorithm

Reference string: 1, 2, 3,4,1,2,5,1,2,3,4,5
3 frames (3 pages can be in memory at a time per
process)

21 1 3 9page faults

4 frames

First-In-First-Out (FIFO) Algorithm

Reference string: 1, 2, 3,4,1,2,5,1, 2, 3,4,5
3 frames (3 pages can be in memory at a time per
process)

11114 5
22| 1 3 9page faults
3132 4

4 frames 111 5 4
2|12 1 5 10 page faults
3|13| 2
4143

FIFO Replacement - Belady’s Anomaly
- more frames = more page faults

FIFO Illustrating Belady’s Anomaly

10 <

number of page faults

1 2 3 4 5 6
number of frames

Performance of Demand Paging

o Page Fault Rate 0 =<p <1.0
- if p = 0 no page faults
- if p =1, every reference is a fault

» Effective Access Time (EAT)
EAT = (1 - p) x memory access
+ p X (page fault overhead
+ [swap page out]
+ swap page in
+ restart overhead)

Demand Paging Example

Memory access time = 1 microsecond
50% of the time the page that is being replaced has been modified

and therefore needs to be swapped out
Swap Page Time = 10 msec = 10,000 microsec

EAT =7

Demand Paging Example

Memory access time = 1 microsecond
50% of the time the page that is being replaced has been modified

and therefore needs to be swapped out
Swap Page Time = 10 msec = 10,000 microsec

EAT=(1-p)x1+px (10,000 +1/2 x 10,000)
=1+14,999 xp (in microsec)

What if 1 out of 1000 memory accesses cause a page fault?

What if we only want 30% performance degradation?

Summary

 Virtual Memory

- Demand Paging

- Page Faults

- Page Replacement

- Page Replacement Algorithms

- Performance of Demand Paging

e Main Memory Management
- Segmentation
[] O
<2
E\

* Next Lecture: Virtual Memory - Il

« Reading Assignment: Chapter 9 from Silberschatz.

Acknowledgements

“Operating Systems Concepts” book and supplementary
material by A. Silberschatz, P. Galvin and G. Gagne

“Operating Systems: Internals and Design Principles”
book and supplementary material by W. Stallings

“Modern Operating Systems” book and supplementary
material by A. Tanenbaum

R. Doursat and M. Yuksel from UNR

