
1

CSE 421/521 - Operating Systems
Fall 2011

Tevfik Koşar

University at Buffalo
October 25th, 2011

Lecture - XV

Memory Management &
Virtual Memory

Roadmap

• Main Memory Management
– Segmentation

• Virtual Memory
– Demand Paging

– Page Faults
– Page Replacement

– Page Replacement Algorithms
– Performance of Demand Paging

User’s View of a Program

Segmentation

• Memory-management scheme that supports user
view of memory

• A program is a collection of segments. A segment
is a logical unit such as:

 main program,
 procedure,
 function,
 method,
 object,
 local variables, global variables,
 common block,
 stack,
 symbol table, arrays

Logical View of Segmentation

1

3

2

4

1

4

2

3

user space physical memory space

Segmentation Architecture

• Logical address consists of a two tuple:
 <segment-number, offset>,

• Segment table – maps two-dimensional
physical addresses; each table entry has:
– base – contains the starting physical address where

the segments reside in memory

– limit – specifies the length of the segment

• Segment-table base register (STBR) points to
the segment table’s location in memory

• Segment-table length register (STLR)
indicates the length (limit) of the segment

• segment addressing is d (offset) < STLR

Segmentation Architecture (Cont.)

• Protection. With each entry in segment
table associate:
– validation bit = 0 ⇒ illegal segment

– read/write/execute privileges

• Protection bits associated with segments;
code sharing occurs at segment level

• Since segments vary in length, memory
allocation is a dynamic storage-allocation
problem

• A segmentation example is shown in the
following diagram

Address Translation Architecture

Example of Segmentation

Exercise
• Consider the following segment table:

! ! Segment ! Base ! ! Length
! ! 0 ! ! 219 ! ! 600
! ! 1 ! ! 2300 ! ! 14
! ! 2 ! ! 90 ! ! 100
! ! 3 ! ! 1327 ! ! 580
! ! 4 ! ! 1952 ! ! 96

What are the physical addresses for the following logical addresses?

a. 1, 100

b. 2, 0

c. 3, 580

Solution
• Consider the following segment table:
! ! Segment ! Base ! ! Length
! ! 0 ! ! 219 ! ! 600
! ! 1 ! ! 2300 ! ! 14
! ! 2 ! ! 90 ! ! 100
! ! 3 ! ! 1327 ! ! 580
! ! 4 ! ! 1952 ! ! 96
What are the physical addresses for the following logical addresses?

a. 1, 100
illegal reference (2300+100 is not within segment limits)

b. 2, 0
physical address = 90 + 0 = 90

c. 3, 580
illegal reference (1327 + 580 is not within segment limits)

Sharing of Segments

Virtual Memory

Background

• Virtual memory – separation of user logical
memory from physical memory.
– Only part of the program needs to be in memory for

execution.
– Logical address space can therefore be much larger

than physical address space.
– Allows address spaces to be shared by several

processes.
– Allows for more efficient process creation.

• Virtual memory can be implemented via:
– Demand paging
– Demand segmentation

Demand Paging

• Bring a page into memory only when it is needed
– Less I/O needed

– Less memory needed
– Faster response

– More users

• Page is needed ⇒ reference to it
– invalid reference ⇒ abort

– not-in-memory ⇒ bring to memory

Valid-Invalid Bit
• With each page table entry a valid–invalid bit is associated

(1 ⇒ in-memory and legal, 0 ⇒ not-in-memory or invalid)

• Initially valid–invalid bit is set to 0 on all entries
• Example of a page table snapshot:

• During address translation, if valid–invalid bit in page table entry
is 0 ⇒ page fault

1
1
1
1
0

0
0



Frame # valid-invalid bit

page table

Page Table When Some Pages Are Not in Main Memory

Transfer of a Paged Memory to Contiguous Disk Space

Page Fault

• If there is ever a reference to a page not in memory, first
reference will trap to OS ⇒ page fault

• OS looks at another table (in PCB) to decide:
– Invalid reference ⇒ abort.
– Just not in memory. ==> page-in

• Get an empty frame.
• Swap (read) page into the new frame.
• Set validation bit = 1.
• Restart instruction

Steps in Handling a Page Fault

What happens if there is no free frame?

• Page replacement – find some page in
memory, but not really in use, swap it out
– Algorithms (FIFO, LRU ..)

– performance – want an algorithm which will result
in minimum number of page faults

• Same page may be brought into memory
several times

Page Replacement

• Prevent over-allocation of memory by modifying page-
fault service routine to include page replacement

• Use modify (dirty) bit to reduce overhead of page
transfers – only modified pages are written to disk

• Page replacement completes separation between
logical memory and physical memory – large virtual
memory can be provided on a smaller physical memory

Basic Page Replacement

1. Find the location of the desired page on disk

2. Find a free frame:
 - If there is a free frame, use it
 - If there is no free frame, use a page
replacement algorithm to select a victim frame

3. Read the desired page into the (newly) free
frame. Update the page and frame tables.

4. Restart the process

Page Replacement

Page Replacement Algorithms

• Want lowest page-fault rate
• Evaluate algorithm by running it on a

particular string of memory references
(reference string) and computing the
number of page faults on that string

• In all our examples, the reference string is
 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

Graph of Page Faults Versus The Number of Frames

First-In-First-Out (FIFO) Algorithm
• Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
• 3 frames (3 pages can be in memory at a time per

process)

–

First-In-First-Out (FIFO) Algorithm
• Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
• 3 frames (3 pages can be in memory at a time per

process)

–

1

2

3

4

1

2

5

3

4

9 page faults

First-In-First-Out (FIFO) Algorithm
• Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
• 3 frames (3 pages can be in memory at a time per

process)

• 4 frames

–

1

2

3

4

1

2

5

3

4

9 page faults

First-In-First-Out (FIFO) Algorithm
• Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
• 3 frames (3 pages can be in memory at a time per

process)

• 4 frames

• FIFO Replacement – Belady’s Anomaly
– more frames ⇒ more page faults

1

2

3

1

2

3

4

1

2

5

3

4

9 page faults

1

2

3

1

2

3

5

1

2

4

5 10 page faults

44 3

FIFO Illustrating Belady’s Anomaly

Performance of Demand Paging

• Page Fault Rate 0 ≤ p ≤ 1.0
– if p = 0 no page faults

– if p = 1, every reference is a fault

• Effective Access Time (EAT)

 EAT = (1 – p) x memory access

 + p x (page fault overhead
 + [swap page out]

 + swap page in
 + restart overhead)

Demand Paging Example

• Memory access time = 1 microsecond

• 50% of the time the page that is being replaced has been modified
and therefore needs to be swapped out

• Swap Page Time = 10 msec = 10,000 microsec

• EAT = ?

Demand Paging Example
• Memory access time = 1 microsecond

• 50% of the time the page that is being replaced has been modified
and therefore needs to be swapped out

• Swap Page Time = 10 msec = 10,000 microsec

• EAT = (1 – p) x 1 + p x (10,000 + 1/2 x 10,000)
 = 1 + 14,999 x p (in microsec)

• What if 1 out of 1000 memory accesses cause a page fault?

• What if we only want 30% performance degradation?

Summary

Hmm.
.

• Next Lecture: Virtual Memory - II

• Main Memory Management
– Segmentation

• Virtual Memory
– Demand Paging

– Page Faults
– Page Replacement

– Page Replacement Algorithms
– Performance of Demand Paging

• Reading Assignment: Chapter 9 from Silberschatz.

Acknowledgements

• “Operating Systems Concepts” book and supplementary
material by A. Silberschatz, P. Galvin and G. Gagne

• “Operating Systems: Internals and Design Principles”
book and supplementary material by W. Stallings

• “Modern Operating Systems” book and supplementary
material by A. Tanenbaum

• R. Doursat and M. Yuksel from UNR

