CSE 421/521 - Operating Systems
Fall 2011

LECTURE - XVI

VIRTUAL MEMORY - Il

Tevfik Kosar

University at Buffalo
October 27th, 2011

FIFO

FIFO is obvious, and simple to implement

— when you page in something, put it on the tail of a list

— evict page at the head of the list

Why might this be good?

— maybe the one brought in longest ago is not being used
Why might this be bad?

— then again, maybe it is being used

— have absolutely no information either way

In fact, FIFO’s performance is typically lousy

In addition, FIFO suffers from Belady’s Anomaly

— there are reference strings for which the fault rate increases
when the process is given more physical memory

Roadmap

« Virtual Memory

- Page Replacement Algorithms
- Optimal Algorithm
- Least Recently Used (LRU)
- LRU Approximations
- Counting Algorithms

- Allocation Policies

- Thrashing

- Working Set Model

Optimal Algorithm

Replace page that will not be used for longest period of time
4 frames example
1,2,3,4,1,2,5,1,2,3,4,5

6 page faults

How would you know this in advance?

Optimal Algorithm

Replace page that will not be used for the longest time in future

« 4 frames example

1,2,3,41,2,51,2,3,4,5

Optimal (Belady’s) Algorithm

Provably optimal: lowest fault rate (remember SJF?)
— evict the page that won’t be used for the longest time in future
— problem: impossible to predict the future

Why is Belady’s Optimal algorithm useful?

— as a yardstick to compare other algorithms to optimal

« if Belady’s isn’t much better than yours, yours is pretty good
— how could you do this comparison?

Is there a best practical algorithm?

— no; depends on workload

Is there a worst algorithm?

— no, but random replacement does pretty badly

+ there are some other situations where OS’s use near-random
algorithms quite effectively!

Least Recently Used (LRU)

Reference string: 1,2,3,4,1,2,5,1,2,3,4,5

@

Least Recently Used (LRU)

o Reference string: 1,2,3,4,1,2,5,1,2,3,4,5

Least Recently Used (LRU)

» LRU uses reference information to make a more

informed replacement decision
— idea: past experience gives us a guess of future behavior
— on replacement, evict the page that hasn’t been used for the
longest amount of time
* LRU looks at the past, Belady’s wants to look at future
» How is LRU different from FIFO?

Implementation

— to be perfect, must grab a timestamp on every memory

reference, put it in the PTE, order or search based on the
timestamps ...

— way too costly in memory bandwidth, algorithm execution time,

etc.

— so, we need a cheap approximation ...

LRU Implementations

Counter implementation (Needs hardware assistance)

- Every page entry has a counter; every time page is referenced
through this entry, copy the clock into the counter

- When a page needs to be changed, look at the counters to

determine which are to change

« Stack implementation - keep a stack of page numbers in a double
link form:
- Page referenced:
» move it to the top
« requires 6 pointers to be changed
- No search for replacement

Use Of A Stack to Record The Most Recent Page References

reference string
4 7 0 7 1 0 1 2 1 2 7 1 2

stack
before

a

LRU Approximation Algorithms

« Reference bit
- With each page associate a bit, initially = 0
- When page is referenced bit set to 1
- Replace the one which is 0 (if one exists). We
do not know the order, however.

« Additional Reference bits
- 1 byte for each page: eg. 00110011
- Shift right at each time interval

LRU Clock Algorithm

» AKA Not Recently Used (NRU) or Second Chance
— replace page that is “old enough”
— logically, arrange all physical page frames in a big circle
(clock)
« just a circular linked list
— a“clock hand” is used to select a good LRU candidate
+ sweep through the pages in circular order like a clock
« if ref bit is off, it hasn’t been used recently, we have a victim
— so, what is minimum “age” if ref bit is off?
« if the ref bit is on, turn it off and go to next page
— arm moves quickly when pages are needed
— low overhead if have plenty of memory
if memory is large, “accuracy” of information degrades
+ add more hands to fix

Second-Chance (clock) Page-Replacement Algorithm

reference pages reference pages
bits. bits
(o] [o]
(o] [o]
joim ==p{1] [o]
(o]
(o] ==>{0]
8 W @
a [OQ/ " [é/
circular queue of pages. circular queue of pages
(a) (b)

Counting Algorithms

» Keep a counter of the number of references
that have been made to each page

» LFU Algorithm: replaces page with smallest
count

« MFU Algorithm: based on the argument that
the page with the smallest count was
probably just brought in and has yet to be
used

Allocation of Frames

» Each process needs minimum number of pages

» Two major allocation schemes
- fixed allocation
- priority allocation

Fixed Allocation

» Equal allocation - For example, if there are 100
frames and 5 processes, give each process 20
frames.

« Proportional allocation - Allocate according to the
size of process

s; = size of process p; m =64
S=T3s s =10

m = total number of frames sy =127
. 10
a, = allocation for p; =%xm 81 =157 %x04=5
a, - 127 64 - 59

137

Priority Allocation

« Use a proportional allocation scheme using
priorities rather than size

« If process P; generates a page fault,

- select for replacement one of its frames
- select for replacement a frame from a process with
lower priority number

Global vs. Local Allocation

» Global replacement - process selects a
replacement frame from the set of all
frames; one process can take a frame from
another

» Local replacement - each process selects
from only its own set of allocated frames

Thrashing

« If a process does not have “enough” frames, the
page-fault rate is very high. This leads to:
- Replacement of active pages which will be needed soon
again
=» Thrashing = a process is busy swapping pages in and

out

= Which will in turn cause:
- low CPU utilization

- operating system thinks that it needs to increase the
degree of multiprogramming

- another process added to the system

Thrashing (Cont.)

thrashing

CPU utilization

degree of multiprogrammin

Locality in a Memory-Reference Pattern

34 (i i t t T
S Wt E

32 i | o
I
i

LML 8 ey _
i o ey v
H\Hw- H\w“_m“ﬂ Wf L I
i
UK

=0 i o T
Mg

28 —

26 _ T

TEmory agaress

T i) i hm ‘j}

el gy e T T

L L
gl TR :1

"
L
24 1

20 2 il
"

g i g

[Dage numbers
o

tion. im:

Working-Set Model

A = working-set window = a fixed number of page
references
Example: 10,000 instruction
WSS, (working set of Process P;) =
total number of pages referenced in the most
recent A (varies in time)
- if A too small will not encompass entire locality
- if A too large will encompass several localities
- if A = o = will encompass entire program
D == WSS, = total demand frames
if D > m = Thrashing
Policy if D > m, then suspend one of the processes

Working-set model

page reference table

A A

t.
WS(t,) = (12567 WS(t,) = {3,4)

...26157777516234128344434344413234443444...

Summary

 Virtual Memory p

- Page Replacement Algorithms - H mm.
- Optimal Algorithm "
- Least Recently Used (LRU) ’ =)
- LRU Approximations
- Counting Algorithms E\

- Allocation Policies

- Thrashing

- Working Set Model

* Next Lecture: Project 2 & 3 Discussion
» Reading Assignment: Chapter 9 from Silberschatz.

Acknowledgements

“Operating Systems Concepts” book and supplementary
material by A. Silberschatz, P. Galvin and G. Gagne

“Operating Systems: Internals and Design Principles”
book and supplementary material by W. Stallings

“Modern Operating Systems” book and supplementary
material by A. Tanenbaum

R. Doursat and M. Yuksel from UNR
Gribble, Lazowska, Levy, and Zahorjan from UW

