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FIFO

FIFO is obvious, and simple to implement

— when you page in something, put it on the tail of a list

— evict page at the head of the list

Why might this be good?

— maybe the one brought in longest ago is not being used
Why might this be bad?

— then again, maybe it is being used

— have absolutely no information either way

In fact, FIFO’s performance is typically lousy

In addition, FIFO suffers from Belady’s Anomaly

— there are reference strings for which the fault rate increases
when the process is given more physical memory

Roadmap

« Virtual Memory

- Page Replacement Algorithms
- Optimal Algorithm
- Least Recently Used (LRU)
- LRU Approximations
- Counting Algorithms

- Allocation Policies

- Thrashing

- Working Set Model

Optimal Algorithm

Replace page that will not be used for longest period of time
4 frames example
1,2,3,4,1,2,5,1,2,3,4,5

6 page faults

How would you know this in advance?

Optimal Algorithm

Replace page that will not be used for the longest time in future

« 4 frames example

1,2,3,41,2,51,2,3,4,5

Optimal (Belady’s) Algorithm

Provably optimal: lowest fault rate (remember SJF?)
— evict the page that won’t be used for the longest time in future
— problem: impossible to predict the future

Why is Belady’s Optimal algorithm useful?

— as a yardstick to compare other algorithms to optimal

« if Belady’s isn’t much better than yours, yours is pretty good
— how could you do this comparison?

Is there a best practical algorithm?

— no; depends on workload

Is there a worst algorithm?

— no, but random replacement does pretty badly

+ there are some other situations where OS’s use near-random
algorithms quite effectively!




Least Recently Used (LRU)

Reference string: 1,2,3,4,1,2,5,1,2,3,4,5

@

Least Recently Used (LRU)

o Reference string: 1,2,3,4,1,2,5,1,2,3,4,5

Least Recently Used (LRU)

» LRU uses reference information to make a more

informed replacement decision
— idea: past experience gives us a guess of future behavior
— on replacement, evict the page that hasn’t been used for the
longest amount of time
* LRU looks at the past, Belady’s wants to look at future
» How is LRU different from FIFO?

Implementation

— to be perfect, must grab a timestamp on every memory

reference, put it in the PTE, order or search based on the
timestamps ...

— way too costly in memory bandwidth, algorithm execution time,

etc.

— so, we need a cheap approximation ...

LRU Implementations

Counter implementation (Needs hardware assistance)

- Every page entry has a counter; every time page is referenced
through this entry, copy the clock into the counter

- When a page needs to be changed, look at the counters to

determine which are to change

« Stack implementation - keep a stack of page numbers in a double
link form:
- Page referenced:
» move it to the top
« requires 6 pointers to be changed
- No search for replacement

Use Of A Stack to Record The Most Recent Page References

reference string
4 7 0 7 1 0 1 2 1 2 7 1 2

stack
before

a

LRU Approximation Algorithms

« Reference bit
- With each page associate a bit, initially = 0
- When page is referenced bit set to 1
- Replace the one which is 0 (if one exists). We
do not know the order, however.

« Additional Reference bits
- 1 byte for each page: eg. 00110011
- Shift right at each time interval




LRU Clock Algorithm

» AKA Not Recently Used (NRU) or Second Chance
— replace page that is “old enough”
— logically, arrange all physical page frames in a big circle
(clock)
« just a circular linked list
— a“clock hand” is used to select a good LRU candidate
+ sweep through the pages in circular order like a clock
« if ref bit is off, it hasn’t been used recently, we have a victim
— so, what is minimum “age” if ref bit is off?
« if the ref bit is on, turn it off and go to next page
— arm moves quickly when pages are needed
— low overhead if have plenty of memory
if memory is large, “accuracy” of information degrades
+ add more hands to fix

Second-Chance (clock) Page-Replacement Algorithm
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Counting Algorithms

» Keep a counter of the number of references
that have been made to each page

» LFU Algorithm: replaces page with smallest
count

« MFU Algorithm: based on the argument that
the page with the smallest count was
probably just brought in and has yet to be
used

Allocation of Frames

» Each process needs minimum number of pages

» Two major allocation schemes
- fixed allocation
- priority allocation

Fixed Allocation

» Equal allocation - For example, if there are 100
frames and 5 processes, give each process 20
frames.

« Proportional allocation - Allocate according to the
size of process

s; = size of process p; m =64
S=T3s s =10

m = total number of frames sy =127
. 10
a, = allocation for p; =%xm 81 =157 %x04=5
a, - 127 64 - 59

137

Priority Allocation

« Use a proportional allocation scheme using
priorities rather than size

« If process P; generates a page fault,

- select for replacement one of its frames
- select for replacement a frame from a process with
lower priority number




Global vs. Local Allocation

» Global replacement - process selects a
replacement frame from the set of all
frames; one process can take a frame from
another

» Local replacement - each process selects
from only its own set of allocated frames

Thrashing

« If a process does not have “enough” frames, the
page-fault rate is very high. This leads to:
- Replacement of active pages which will be needed soon
again
=» Thrashing = a process is busy swapping pages in and

out

= Which will in turn cause:
- low CPU utilization

- operating system thinks that it needs to increase the
degree of multiprogramming

- another process added to the system

Thrashing (Cont.)

thrashing

CPU utilization

degree of multiprogrammin

Locality in a Memory-Reference Pattern
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Working-Set Model

A = working-set window = a fixed number of page
references
Example: 10,000 instruction
WSS, (working set of Process P;) =
total number of pages referenced in the most
recent A (varies in time)
- if A too small will not encompass entire locality
- if A too large will encompass several localities
- if A = o = will encompass entire program
D == WSS, = total demand frames
if D > m = Thrashing
Policy if D > m, then suspend one of the processes

Working-set model

page reference table

A A

t.
WS(t,) = (12567 WS(t,) = {3,4)

...26157777516234128344434344413234443444...




Summary

 Virtual Memory p

- Page Replacement Algorithms - H mm.
- Optimal Algorithm "
- Least Recently Used (LRU) ’ =)
- LRU Approximations
- Counting Algorithms E\

- Allocation Policies

- Thrashing

- Working Set Model

* Next Lecture: Project 2 & 3 Discussion
» Reading Assignment: Chapter 9 from Silberschatz.
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