
1

CSE 421/521 - Operating Systems
Fall 2011

Tevfik Koşar

University at Buffalo
October 27th, 2011

Lecture - XVI

Virtual Memory - II

Roadmap

• Virtual Memory
– Page Replacement Algorithms

– Optimal Algorithm
– Least Recently Used (LRU)
– LRU Approximations
– Counting Algorithms

– Allocation Policies
– Thrashing
– Working Set Model

3

FIFO

• FIFO is obvious, and simple to implement
– when you page in something, put it on the tail of a list
– evict page at the head of the list

• Why might this be good?
– maybe the one brought in longest ago is not being used

• Why might this be bad?
– then again, maybe it is being used
– have absolutely no information either way

• In fact, FIFO’s performance is typically lousy
• In addition, FIFO suffers from Belady’s Anomaly

– there are reference strings for which the fault rate increases
when the process is given more physical memory

Optimal Algorithm

• Replace page that will not be used for the longest time in future
• 4 frames example
 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

Optimal Algorithm

• Replace page that will not be used for longest period of time
• 4 frames example
 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

• How would you know this in advance?

1

2

3

4

6 page faults

4 5

6

Optimal (Belady’s) Algorithm

• Provably optimal: lowest fault rate (remember SJF?)
– evict the page that won’t be used for the longest time in future
– problem: impossible to predict the future

• Why is Belady’s Optimal algorithm useful?
– as a yardstick to compare other algorithms to optimal

• if Belady’s isn’t much better than yours, yours is pretty good
– how could you do this comparison?

• Is there a best practical algorithm?
– no; depends on workload

• Is there a worst algorithm?
– no, but random replacement does pretty badly

• there are some other situations where OS’s use near-random
algorithms quite effectively!

Least Recently Used (LRU)

• Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

–

Least Recently Used (LRU)

• Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

–

1

2

3

5

4

4 3

5

Least Recently Used (LRU)

• LRU uses reference information to make a more
informed replacement decision
– idea: past experience gives us a guess of future behavior
– on replacement, evict the page that hasn’t been used for the

longest amount of time
• LRU looks at the past, Belady’s wants to look at future
• How is LRU different from FIFO?

• Implementation
– to be perfect, must grab a timestamp on every memory

reference, put it in the PTE, order or search based on the
timestamps …

– way too costly in memory bandwidth, algorithm execution time,
etc.

– so, we need a cheap approximation …

LRU Implementations

• Stack implementation – keep a stack of page numbers in a double
link form:
– Page referenced:

• move it to the top
• requires 6 pointers to be changed

– No search for replacement

• Counter implementation (Needs hardware assistance)
– Every page entry has a counter; every time page is referenced

through this entry, copy the clock into the counter
– When a page needs to be changed, look at the counters to

determine which are to change

Use Of A Stack to Record The Most Recent Page References

LRU Approximation Algorithms

• Reference bit
– With each page associate a bit, initially = 0
– When page is referenced bit set to 1
– Replace the one which is 0 (if one exists). We

do not know the order, however.

• Additional Reference bits
– 1 byte for each page: eg. 00110011
– Shift right at each time interval

LRU Clock Algorithm

• AKA Not Recently Used (NRU) or Second Chance
– replace page that is “old enough”
– logically, arrange all physical page frames in a big circle

(clock)
• just a circular linked list

– a “clock hand” is used to select a good LRU candidate
• sweep through the pages in circular order like a clock
• if ref bit is off, it hasn’t been used recently, we have a victim

– so, what is minimum “age” if ref bit is off?
• if the ref bit is on, turn it off and go to next page

– arm moves quickly when pages are needed
– low overhead if have plenty of memory
– if memory is large, “accuracy” of information degrades

• add more hands to fix

Second-Chance (clock) Page-Replacement Algorithm

Counting Algorithms

• Keep a counter of the number of references
that have been made to each page

• LFU Algorithm: replaces page with smallest
count

• MFU Algorithm: based on the argument that
the page with the smallest count was
probably just brought in and has yet to be
used

Allocation of Frames

• Each process needs minimum number of pages

• Two major allocation schemes
– fixed allocation
– priority allocation

Fixed Allocation

• Equal allocation – For example, if there are 100
frames and 5 processes, give each process 20
frames.

• Proportional allocation – Allocate according to the
size of process

Priority Allocation

• Use a proportional allocation scheme using
priorities rather than size

• If process Pi generates a page fault,
– select for replacement one of its frames
– select for replacement a frame from a process with

lower priority number

Global vs. Local Allocation

• Global replacement – process selects a
replacement frame from the set of all
frames; one process can take a frame from
another

• Local replacement – each process selects
from only its own set of allocated frames

Thrashing

• If a process does not have “enough” frames, the
page-fault rate is very high. This leads to:
– Replacement of active pages which will be needed soon

again
! Thrashing ≡ a process is busy swapping pages in and

out

• Which will in turn cause:
– low CPU utilization
– operating system thinks that it needs to increase the

degree of multiprogramming
– another process added to the system

Thrashing (Cont.)

Locality in a Memory-Reference Pattern

Working-Set Model

• Δ ≡ working-set window ≡ a fixed number of page
references
Example: 10,000 instruction

• WSSi (working set of Process Pi) =
total number of pages referenced in the most
recent Δ (varies in time)
– if Δ too small will not encompass entire locality
– if Δ too large will encompass several localities
– if Δ = ∞ ⇒ will encompass entire program

• D = Σ WSSi ≡ total demand frames
• if D > m ⇒ Thrashing
• Policy if D > m, then suspend one of the processes

Working-set model

Summary

Hmm.
.

• Next Lecture: Project 2 & 3 Discussion

• Reading Assignment: Chapter 9 from Silberschatz.

• Virtual Memory
– Page Replacement Algorithms

– Optimal Algorithm
– Least Recently Used (LRU)
– LRU Approximations
– Counting Algorithms

– Allocation Policies
– Thrashing
– Working Set Model

Acknowledgements

• “Operating Systems Concepts” book and supplementary
material by A. Silberschatz, P. Galvin and G. Gagne

• “Operating Systems: Internals and Design Principles”
book and supplementary material by W. Stallings

• “Modern Operating Systems” book and supplementary
material by A. Tanenbaum

• R. Doursat and M. Yuksel from UNR
• Gribble, Lazowska, Levy, and Zahorjan from UW

