CSE 421/521 - Operating Systems
Fall 2011

LECTURE - XVIII

FILE SYSTEMS

Tevfik Kosar

University at Buffalo
November 31, 2011

File Systems

» Provides organized and efficient access to data on
secondary storage:

1. Organizing data into files and directories and supporting
primitives to manipulate them (create, delete, read, write etc)

2. Improve 1/0 efficiency between disk and memory (perform 1/0
in units of blocks rather than bytes)

3. Ensure confidentiality and integrity of data

- Contains file structure via a File Control Block (FCB)
- Ownership, permissions, location..

A Typical File Control Block

file permissions

file dates (create, access, write)

file owner, group, ACL

file size

file data blocks or pointers to file data blocks

Directories

> Directories are special files that keep track of other files
v' the collection of files is systematically organized

v' first, disks are split into partitions that create logical volumes
(can be thought of as “virtual disks”)

v' second, each partition contains information about the files within

v' this information is kept in entries in a device directory (or
volume table of contents)

v the directory is a symbol table that translates file names into their
entries in the directory

= it has a logical structure
= it has an implementation structure (linked list, table, etc.)

Directories

> Single-level directory structure
v" simplest form of logical organization: one global or root
directory containing all the files
v' problems
= global namespace: unpractical in multiuser systems

= no systematic organization, no groups or logical categories
of files that belong together

directory | cat bo a | test data | mail | cont | hex | records|
/l\ l l\ ‘/1 /l /1 ,l /l /1\
fles {J W U @ o @ @

Single-level directory

Directories

» Two-level directory structure
v" in multiuser systems, the next step is to give each user their
own private directory
v" avoids filename confusion

v" however, still no grouping: not satisfactory for users with many
files

master
file | user 1 | user2 | user 3 | user 4 |

dwecm/ \
user file
directory | cat bo a test data|{ !tes[data! a |)

Vo WY WY D / /\ /\ Ie Y Vs Y Y ~
QOO0 O« DI DI

Two-level dlrectory

Directories
> Tree-structured directory structure

root 7 bin | programs

o [| [[| e o] [[

|
/{‘ \ \‘}\ ‘}\ ‘,t\ 4‘ /*/ \ }\

a

i [[o o] [[[o
>0 4 43 1 1
& R B
Q Q
it | oty [o] [t [t |
I '
@ 09 O 99

Tree-structured directory

Directories
» Tree-structured directory structure

v" natural extension of the two-level scheme

v" provides a general hierarchy, in which files can be grouped in
natural ways

v" good match with human cognitive organization: tendency to
categorize objects in embedded sets and subsets
v" navigation through the tree relies on pathnames

= absolute pathnames start from the root, example: /jsmith/
academic/teaching/cs446/assignmentéd/grades

= relative pathnames start at from a current working
directory, example: assignment4/grades

= the current and parent directory are referred to as . and ..

8

Directory Implementation

Master Directory

Directory
"User_C"

Directory "Word"

Tnit_A — ABC —}

File Pathname User_B/Draw/ABC
EE

Directory Implementation

 Linear list of file names with pointer to the data
blocks.
- simple to program
- time-consuming to execute

« Hash Table - linear list with hash data structure.
- decreases directory search time
- collisions - situations where two file names hash to the same
location
- fixed size

UNIX Directories

» Directory is a special file that contains list of names of

files and their inode numbers

« to see contents of a directory:
$1s -lia .
9535554 .
9535489 ..
9535574 .bash_history
9535555 bin
9535584 .emacs.d
9535560 grading
9535803 hwl
9535571 test
9535801 .viminfo

Example inode listing

$ ls -iaR demodir/y

865 . 193 .. 277 a 520c 491y
demodir/aly:

277 . 865 .. 402 x

demodir/c:

520 . 865 .. 651 d1 247 d2
demodir/c/d1:

651 . 520 .. 402 xlink

demodir/c/d2:

247 . 520 .. 680 xcopy

Directories - System View

user view vs system view of directory tree

- representation with “dirlists (directory files)”
The real meaning of “A file is in a directory”

- directory has a link to the inode of the file
The real meaning of “A directory contains a
subdirectory”

- directory has a link to the inode of the subdirectory
The real meaning of “A directory has a parent
directory”

- “..” entry of the directory has a link to the inode of the parent

directory

Link Counts

The kernel records the number of links to any file/
directory.

The link count is stored in the inode.

The link count is a member of struct stat returned by
the stat system call.

User View vs System View

Consider the following directory structure (user view):

Assume mydir (10), a (20), and b (30) are directories and x (40), y (50), and z (60) are
files with inode numbers given in parenthesis. The inode number for mydir’s parent
directory is 1.

1) Please show the system representation (system view) of this directory tree.

Implementing “pwd”

. s 247

chdir ..

. 247 is called “d2”

“.”is 520
chdir ..

. 520 is called “c”

“.”is 865
chdir ..

. 865 is called “demodir”

“.”is 193
chdir ..

Change Links

» What will be the resulting changes in directory tree?
$ cp mydir/x mydir/b
$ 1n mydir/a/z mydir/b/t

$ mv mydir/x mydir/a

Allocation Methods

« An allocation method refers to how disk blocks are
allocated for files:

« Contiguous allocation
« Linked allocation

» Indexed allocation

Contiguous Allocation

the disk

« + Simple - only starting location (block #) and

Each file occupies a set of contiguous blocks on

length (number of blocks) are required

problem - fragmentation)

» - Files cannot grow

- Wasteful of space (dynamic storage-allocation

« Each file is a linked list of disk blocks: blocks may be scattered

Linked Allocation

anywhere on the disk.

block = pointer

+ Simple - need only starting address

+ Free-space management system - no waste of space

+ Defragmentation not necessary

- No random access

- Extra space required for pointers

- Reliability: what if a pointer gets corrupted?

Contiguous Allocation of Disk Space

directory
count file start length
o1 10 2] 3[1 count 0 2
f tr 14 3
4L sL1'6L1 7L] mail 19 6
8] o[1101111 list 28 4
tr f 6 2
12013014151
16[117[J18[J19]
mail
20[J21[J22[023[]
242526271
list
28[J29[130[131[]

File-Allocation Table

Linked Allocation

| directory
el file start end
jeep 9 25
o] 1] 21 3[]
4 5161 703
8[] pliio2]11[]

1213114/ 115
[17[118 119]
20[J21[Je2[J23[]
242526 127[]

28[J29[130[31[]
[~

16

directory entry

test | eee [217

name start block o
217
339
618

618

339

FAT

Indexed Allocation

« Brings all pointers together into the index block, to allow random
access to file blocks.

o Logical view. — 5[]
SN
[|
—

|

index table

+ Supports direct access
+ Prevents external fragmentation
- High pointer overhead --> wasted space

Example of Indexed Allocation

directory
P fle index block
od 1|:L\2D 3 o= e
4[] 5[] 7]
8o

20[J21[J22[A23[]
242526 127[]
28[J29[130[131[]

Free Space Management

 Disk space limited

« Need to re-use the space from deleted files

» To keep track of free disk space, the system maintains
a free-space list

- Records all free disk blocks

Implemented using

- Bit vectors

- Linked lists

Free-Space Management (Cont.)

« Bit vector (n blocks)
- Each block is represented by 1 bit
- 1: free, 0: allocated

I 1 = block[]] free
bit[]] = 1

0 => block[/] occupied

B e.g. 0000111110001000100010000

Free-Space Management (Cont.)

o Linked List Approach

free-list head

> L L
"""]
o] Tr:(?l:(:)l‘:|
a5 61
s [Ig)!] 1] A]D
v]
W])
zd:l\Jz'ﬂ:I\szD 23]

—

Free-Space Management (Cont.)

« Bit map requires extra space
- Example:
block size = 2'2 bytes
disk size = 230 bytes (1 gigabyte)
n =230/212 = 218 pits (or 32K bytes)
« Easy to get contiguous files
o Linked list (free list)
- Cannot get contiguous space easily
- requires substantial 1/0
« Grouping
- Modification of free-list
- Store addresses of n free blocks in the first free block
« Counting
- Rather than keeping list of n free addresses:
« Keep the address of the first free block
« And the number n of free contiguous blocks that follow it

Free-Space Management (Cont.)

o Linked List

free-list head

==

¥ 7\\ g
o100 20 s |:|> grouping (#=3)
! %LE,LD,_LE 1]
8 o[1 1 1]
B = 78922 |
1 @14@@ L
W T]] 1 1516
T N, §
200 1 2] 24] 2] 1]

bit map: 011100011100101111100000
counting: (1,3), (7, 3), (12, 1), (14, 5)

Exercise
directory
~_ _
count file start length
o] 1 21 s count 0 2
y tr 14 3
4L 501 601 7L mail 19 6
8] o[1101111 list 28 4
tr f 6 2
12113114150
1617118119
mail
20210220231
242526271
list
28[J29[130[131[]

Acknowledgements

“Operating Systems Concepts” book and supplementary
material by A. Silberschatz, P. Galvin and G. Gagne

“Operating Systems: Internals and Design Principles”
book and supplementary material by W. Stallings

“Modern Operating Systems” book and supplementary
material by A. Tanenbaum

R. Doursat and M. Yuksel from UNR

32

