CSE 421/521 - Operating Systems
Fall 2011

LECTURE - XVIII

FILE SYSTEMS

Tevfik Kosar

University at Buffalo
November 3, 2011

File Systems

» Provides organized and efficient access to data on
secondary storage:

1. Organizing data into files and directories and supporting
primitives to manipulate them (create, delete, read, write etc)

2. Improve 1/0 efficiency between disk and memory (perform 1/0
in units of blocks rather than bytes)

3. Ensure confidentiality and integrity of data

- Contains file structure via a File Control Block (FCB)
- Ownership, permissions, location..

A Typical File Control Block

file permissions

file dates (create, access, write)

file owner, group, ACL

file size

file data blocks or pointers to file data blocks

Directories

» Directories are special files that keep track of other files

v
v

v

the collection of files is systematically organized

first, disks are split into partitions that create logical volumes
(can be thought of as “virtual disks”)

second, each partition contains information about the files within

this information is kept in entries in a device directory (or
volume table of contents)

the directory is a symbol table that translates file names into their
entries in the directory

= it has a logical structure
= it has an implementation structure (linked list, table, etc.)

Directories

» Single-level directory structure

v" simplest form of logical organization: one global or root
directory containing all the files

v' problems
= global namespace: unpractical in multiuser systems

= no systematic organization, no groups or logical categories
of files that belong together

directory cat bo test data mail cont records

RSN EaRay

Single-level directory

Directories

» Two-level directory structure

v in multiuser systems, the next step is to give each user their
own private directory

V" avoids filename confusion
v"however, still no grouping: not satisfactory for users with many

files
master
file user 1 | user2 | user3 | user4
cirectory \ —
user file t b(>tt dt (>tt dt< >
: s, X ata(| a
directory | ¢a 0 a |)tes ata \ a |te [2
. N /l\ L s 1Y ,/[\
\l) W @ C))) O

Two-level dlrectory

Directories
> Tree-structured directory structure

root| spell | bin

programs |

stat

| mail |

dist

| find count

hex

reorder

Lo]

| mail

¢

\

v

.

> & &

prog

copy

prt

exp

I

\J

xj

reorder

list

count ‘

Tree-structured directory

Directories

» Tree-structured directory structure
v" natural extension of the two-level scheme

v" provides a general hierarchy, in which files can be grouped in
natural ways

good match with human cognitive organization: tendency to
categorize objects in embedded sets and subsets

v

navigation through the tree relies on pathnames

= absolute pathnames start from the root, example: /jsmith/
academic/teaching/cs446/assignment4/grades

= relative pathnames start at from a current working
directory, example: assignmentd/grades

= the current and parent directory are referred to as . and ..

8

Directory Implementation

Master Directory
System
User_A
User_B
User_C

Directory Directory
"User_C" Directory "User_B" "User_A"

Draw —j

17 — Word

Directory "Word" - Directory "Draw”

Unit_A ——l ABC

Directory "Unit_A"

A
= aBC File
. "ABC"

File Pathname: /User_B/Draw/ABC
"ABC"

[Pathname: /User_B/Word/Unit_A/ABC

Directory Implementation

« Linear list of file names with pointer to the data

blocks.
- simple to program
- time-consuming to execute

Hash Table - linear list with hash data structure.
- decreases directory search time

- collisions - situations where two file names hash to the same
location

- fixed size

UNIX Directories

» Directory is a special file that contains list of nhames of
files and their inode numbers

» to see contents of a directory:
$ls -lia .
9535554 .
9535489 ..
9535574 .bash history
9535555 bin
9535584 .emacs.d
9535560 grading
9535803 hwl
9535571 test
9535801 .viminfo

11

Example inode listing

S ls -iaR demodir/y
865 . 193 .. 277 a 520 c 491y

demodir/aly:

277 . 865 .. 402 x
demodir/c:
520 . 865 .. 651 d1 247 d2

demodir/c/d1:
651 . 520 .. 402 xlink

demodir/c/d2:
247 . 520 .. 680 xcopy

12

Directories - System View

e user view vs system view of directory tree
- representation with “dirlists (directory files)”
» The real meaning of “Afile is in a directory”
- directory has a link to the inode of the file
« The real meaning of “A directory contains a
subdirectory”
- directory has a link to the inode of the subdirectory
» The real meaning of “A directory has a parent
directory”

- “..” entry of the directory has a link to the inode of the parent
directory

13

User View vs System View

Consider the following directory structure (user view):

Assume mydir (10), a (20), and b (30) are directories and x (40), y (50), and z (60) are
files with inode numbers given in parenthesis. The inode number for mydir’s parent
directory is 1.

1) Please show the system representation (system view) of this directory tree.

14

Link Counts

» The kernel records the number of links to any file/
directory.

e The link count is stored in the inode.

o The link count is a member of struct stat returned by
the stat system call.

15

Change Links

» What will be the resulting changes in directory tree?
$ cp mydir/x mydir/b
$ 1In mydir/a/z mydir/b/t

$ mv mydir/x mydir/a

16

Implementing “pwd”

. 47 is 247

chdir ..

. 247 is called “d2”

“.” is 520
chdir ..

. 520 is called “c”

“.” is 865
chdir ..

. 865 is called “demodir”

“.” 45193
chdir ..
17

Allocation Methods

An allocation method refers to how disk blocks are
allocated for files:

Contiguous allocation
Linked allocation

Indexed allocation

Contiguous Allocation

Each file occupies a set of contiguous blocks on

the disk

+ Simple - only starting location (block #) and
length (number of blocks) are required

- Wasteful of space (dynamic storage-allocation
problem - fragmentation)

- Files cannot grow

Contiguous Allocation of Disk Space

E 4

| R directory
it file start length
nEN o | 3] count 0 2
f tr 14 3
4l 5[] [E mail 19 6
8] o[1101111 list 28 4
1211311411501
16[J17[118[119[]
mail
sl zill20ze 0]
24[J25[J26[127[]
list
28[129130 131[]

Linked Allocation

anywhere on the disk.

block

Each file is a linked list of disk blocks: blocks may be scattered

pointer

+ Simple - need only starting address
+ Free-space management system - no waste of space
+ Defragmentation not necessary

- No random access

- Extra space required for pointers
- Reliability: what if a pointer gets corrupted?

Linked Allocation
| T directory
v file start end

jeep 9 25

8[]
12[J13[114f/ 1151
1617118119
20[J21[Je2[]23[]

[1[10[2]11[]

24]25[1j26[]27[]
28[]29[[30[31[]

E 2 4

File-Allocation Table

directory entry

test | eee [217
name start block 0
217 618
339 <
618 339 [¢

FAT

Indexed Allocation

Brings all pointers together into the index block, to allow random
access to file blocks.

Logical view. —]
]

—>|:|

]

(]

index table

+ Supports direct access
+ Prevents external fragmentation
- High pointer overhead --> wasted space

Example of Indexed Allocation

directory
file index block
jeep 19

24[J25[26127]

28[]29[130[131[]
. @

Free Space Management

Disk space limited
Need to re-use the space from deleted files
To keep track of free disk space, the system maintains

a free-space list

- Records all free disk blocks
Implemented using

- Bit vectors

- Linked lists

Free-Space Management (Cont.)

« Bit vector (n blocks)
- Each block is represented by 1 bit
- 1: free, 0: allocated

o1 2 n-1

1 = block[/] free
bit[/] =
0 = block[i] occupied

M e.g. 0000111110001000100010000

Free-Space Management (Cont.)

» Linked List Approach

free-list head

?

TR
o[] 1l:|/?l:| 3]
4?@
8 o[] 1] 1 |
16l I“1 18] o]

zd:]\iﬂ:l\jﬂ:] 23]

Free-Space Management (Cont.)

Bit map requires extra space
- Example:
block size = 212 bytes
disk size = 230 bytes (1 gigabyte)
n = 230/212 = 218 hits (or 32K bytes)
Easy to get contiguous files
Linked list (free list)
- Cannot get contiguous space easily
- requires substantial 1/0
Grouping
- Modification of free-list
- Store addresses of n free blocks in the first free block
Counting
- Rather than keeping list of n free addresses:
» Keep the address of the first free block
» And the number n of free contiguous blocks that follow it

Free-Space Management (Cont.)

e Linked List

free-list head
-

—

\\A T <A
o110 20037 grouping (#=3)
4 D 5 |:| 6 D _7_—:' 123,77

sCT 51 1]]
1]]
16[:1‘?@/1:@ 12 [14,15,16

St

718912

16|17,18,-1

bit map: 011100011100101111100000

counting: (1,3),(7,3),(12,1),(14,5)

Exercise

R s N directory
e .
count file start length
Oimisimi o[| 3[] count O 2
f tr 14 3
401 sL1 L1 701 mail 19 6
8] o[T10[1110J lst 28 4
tr f 6 2
121131141151
16117118 119[]
mail
20[_J21[J22[]23[]
24[J25[J26[]27[]
list
28/l 2omles s
E _
Acknowledgements

“Operating Systems Concepts” book and supplementary
material by A. Silberschatz, P. Galvin and G. Gagne

“Operating Systems: Internals and Design Principles”
book and supplementary material by W. Stallings

“Modern Operating Systems” book and supplementary
material by A. Tanenbaum

R. Doursat and M. Yuksel from UNR

32

