CSE 421/521 - Operating Systems
Fall 2011

LECTURE - XXIII

DISTRIBUTED SYSTEMS - |

Tevfik Kosar

University at Buffalo
November 22M, 2011

Motivation

« Distributed system is collection of loosely coupled processors that
- do not share memory
- interconnected by a communications network
o Reasons for distributed systems
- Resource sharing
« sharing and printing files at remote sites
« processing information in a distributed database
« using remote specialized hardware devices
- Computation speedup - load sharing

- Reliability - detect and recover from site failure, function transfer,
reintegrate failed site

- Communication - message passing

Distributed-Operating Systems

» Users not aware of multiplicity of machines

- Access to remote resources similar to access to local
resources

» Data Migration - transfer data by transferring
entire file, or transferring only those portions of
the file necessary for the immediate task

« Computation Migration - transfer the
computation, rather than the data, across the
system

Distributed-Operating Systems (Cont.)

» Process Migration - execute an entire process, or parts
of it, at different sites
- Load balancing - distribute processes across network to even
the workload
- Computation speedup - subprocesses can run concurrently on
different sites
- Hardware preference - process execution may require
specialized processor
Software preference - required software may be available at
only a particular site
- Data access - run process remotely, rather than transfer all
data locally

Network Topology
ﬁyy\@)

©® & @

partially connected network

B) (5 =

tree-structured network star network

ftHE
x@—@

ring network

Robustness in Distributed Systems

« Failure detection

« Reconfiguration

Failure Detection Failure Detection (cont)

« Detecting hardware failure is difficult

« To detect a link failure, a handshaking protocol can be + If Site A does not ultimately receive a reply from Site B,

used it concludes some type of failure has occurred
« Assume Site A and Site B have established a link)
- At fixed intervals, each site will exchange an /-am-up » Types of failures:
message indicating that they are up and running - Site B is down
« If Site A does not receive a message within the fixed - The direct link between A and B is down

interval, it assumes either (a) the other site is not up or (b)

the message was lost - The alternate link from A to B is down

« Site A can now send an Are-you-up? message to Site B - The message has been lost
« If Site A does not receive a reply, it can repeat the message
or try an alternate route to Site B » However, Site A cannot determine exactly why the

failure has occurred

Reconfiguration Distributed Coordination
» When Site A determines a failure has occurred, it must Ordering events and achieving synchronization in
reconfigure the system: centralized systems is easier.

- We can use common clock and memory
« What about distributed systems?
- No common clock or memory
- happened-before relationship provides partial ordering
- How to provide total ordering?

1. If the link from A to B has failed, this must be
broadcast to every site in the system

2. If a site has failed, every other site must also be
notified indicating that the services offered by the
failed site are no longer available

» When the link or the site becomes available again, this
information must again be broadcast to all other sites

Event Ordering Relative Time for Three Concurrent Processes
P Q R

« Happened-before relation (denoted by —)

- If Aand B are events in the same process (assuming sequential
processes), and A was executed before B, then A — B

If A is the event of sending a message by one process and B is
the event of receiving that message by another process,
then A — B

- IfA—=BandB — CthenA - C

If two events A and B are not related by the — relation, then
these events are executed concurrently.

Which events are concurrent and which ones are ordered?

Exercise

‘Which of the following event orderings are true?

(2) p0 -->p3
(b)pl-->q3
() q0 -->p3
(d) 10 --> p4
(e) p0 -->r4

Which of the following statements are true?

(a) p2 and q2 are concurrent processes.
(b) ql and rl are concurrent processes.
(c) p0 and q3 are concurrent processes.
(d) r0 and p0 are concurrent processi

(e) r0 and p4 are concurrent processes.

Implementation of —

» Associate a timestamp with each system event

Require that for every pair of events A and B, if A — B, then the timestamp
of Ais less than the timestamp of B

« Within each process Pi, define a logical clock

- The logical clock can be implemented as a simple counter that is
incremented between any two successive events executed within a process

« Logical clock is monotonically increasing
» Aprocess advances its logical clock when it receives a message whose
timestamp is greater than the current value of its logical clock
- Assume A sends a message to B, LC,(A)=200, LC,(B)=195 --> LC,(B)=201
« If the timestamps of two events A and B are the same, then the events
are concurrent

We may use the process identity numbers to break ties and to create a
total ordering

Distributed Mutual Exclusion (DME)

« Assumptions
- The system consists of n processes; each process P; resides at a
different processor
- Each process has a critical section that requires mutual
exclusion
» Requirement
- If P; is executing in its critical section, then no other process P;
is executing in its critical section
» We present two algorithms to ensure the mutual
exclusion execution of processes in their critical
sections

DME: Centralized Approach

« One of the processes in the system is chosen to coordinate the
entry to the critical section
« Aprocess that wants to enter its critical section sends a
request message to the coordinator
« The coordinator decides which process can enter the critical
section next, and its sends that process a reply message
« When the process receives a reply message from the
coordinator, it enters its critical section
« After exiting its critical section, the process sends a release
message to the coordinator and proceeds with its execution
« This scheme requires three messages per critical-section
entry:
- request
- reply
- release

DME: Fully Distributed Approach

« When process P; wants to enter its critical section, it
generates a new timestamp, TS, and sends the message
request (P;, TS) to all processes in the system

« When process P;receives a request message, it may
reply immediately or it may defer sending a reply back

« When process P;receives a reply message from all other
processes in the system, it can enter its critical section

» After exiting its critical section, the process sends reply
messages to all its deferred requests

DME: Fully Distributed Approach (Cont.)

« The decision whether process P; replies immediately to a
request(P;, TS) message or defers its reply is based on three
factors:

- If P;is in its critical section, then it defers its reply to P;
- If P; does not want to enter its critical section, then it sends a reply
immediately to P;
- f P; wants to enter its critical section but has not yet entered it, then
it compares its own request timestamp with the timestamp TS
« If its own request timestamp is greater than TS, then it
sends a reply immediately to P; (P; asked first)

« Otherwise, the reply is deferred

Example: P1 sends a request to P2 and P3 (timestamp=10)
P3 sends a request to P1 and P2 (timestamp=4)

Undesirable Consequences

» The processes need to know the identity of all other
processes in the system, which makes the dynamic
addition and removal of processes more complex

« If one of the processes fails, then the entire scheme
collapses
- This can be dealt with by continuously monitoring the state of

all the processes in the system, and notifying all processes if a
process fails

