CSE 421/521 - Operating Systems
Fall 2011

LECTURE - XXIV

DISTRIBUTED SYSTEMS - Il

Tevfik Kosar

University at Buffalo
November 29th, 2011

Event Ordering

« Happened-before relation (denoted by —)

If A and B are events in the same process (assuming sequential
processes), and A was executed before B, then A — B

If Ais the event of sending a message by one process and B is
the event of receiving that message by another process,
then A — B

IfA—BandB — CthenA — C

If two events A and B are not related by the — relation, then
these events are executed concurrently.




Relative Time for Three Concurrent Processes

P Q R

Which events are concurrent and which ones are ordered?

Distributed Mutual Exclusion (DME)

Assumptions
- The system consists of n processes; each process P; resides at a
different processor
- Each process has a critical section that requires mutual
exclusion
Requirement
- If P, is executing in its critical section, then no other process P;
is executing in its critical section
We present two algorithms to ensure the mutual
exclusion execution of processes in their critical
sections




DME: Centralized Approach

» One of the processes in the system is chosen to coordinate the
entry to the critical section

» A process that wants to enter its critical section sends a
request message to the coordinator

e The coordinator decides which process can enter the critical
section next, and its sends that process a reply message

» When the process receives a reply message from the
coordinator, it enters its critical section

» After exiting its critical section, the process sends a release
message to the coordinator and proceeds with its execution

» This scheme requires three messages per critical-section
entry:
- request
- reply
- release

DME: Fully Distributed Approach

When process P; wants to enter its critical section, it
generates a new timestamp, TS, and sends the message
request (P;, TS) to all processes in the system

When process P;receives a request message, it may
reply immediately or it may defer sending a reply back
When process P, receives a reply message from all other
processes in the system, it can enter its critical section

After exiting its critical section, the process sends reply
messages to all its deferred requests




DME: Fully Distributed Approach (Cont.)

« The decision whether process P, replies immediately to a
request(P;, TS) message or defers its reply is based on three
factors:

- If P;is in its critical section, then it defers its reply to P,
- If P; does not want to enter its critical section, then it sends a reply
immediately to P;
- If P, wants to enter its critical section but has not yet entered it, then
it compares its own request timestamp with the timestamp TS
« If its own request timestamp is greater than TS, then it
sends a reply immediately to P; (P; asked first)

» Otherwise, the reply is deferred

- Example: P1 sends a request to P2 and P3 (timestamp=10)
P3 sends a request to P1 and P2 (timestamp=4)

Token-Passing Approach

Circulate a token among processes in system

- Token is special type of message

- Possession of token entitles holder to enter critical section
Processes logically organized in a ring structure
Unidirectional ring guarantees freedom from starvation
Two types of failures

- Lost token - election must be called

- Failed processes - new logical ring established




Distributed Deadlock Handling

Resource-ordering deadlock-prevention

=>define a global ordering among the system resources
- Assign a unique number to all system resources

- A process may request a resource with unique number i only if
it is not holding a resource with a unique number grater than i

- Simple to implement; requires little overhead

Timestamp-ordering deadlock-prevention

=>unique Timestamp assigned when each process is
created

1. wait-die scheme -- non-reemptive
2. wound-wait scheme -- preemptive

Prevention: Wait-Die Scheme

non-preemptive approach
If P, requests a resource currently held by P;, P; is

allowed to wait only if it has a smaller timestamp
than does P; (P; is older than P))

- Otherwise, P; is rolled back (dies - releases resources)

Example: Suppose that processes P, P,, and P, have

timestamps 5, 10, and 15 respectively
- if P, request a resource held by P,, then P, will wait

- If Py requests a resource held by P,, then P; will be rolled
back

The older the process gets, the more waits




Prevention: Wound-Wait Scheme

Preemptive approach, counterpart to the wait-die
system

If P, requests a resource currently held by P;, P; is

allowed to wait only if it has a larger timestamp than
does P; (P; is younger than P;). Otherwise P; is rolled

back (P; is wounded by P;)

Example: Suppose that processes P,, P, and P; have

timestamps 5, 10, and 15 respectively
- If P, requests a resource held by P,, then the resource will be
preempted from P, and P, will be rolled back

- If Py requests a resource held by P,, then P; will wait

The rolled-back process eventually gets the smallest
timestamp.

Comparison

Both avoid starvation, provided that when a process is
rolled back, it is not assigned a new timestamp

In wait-die, older process must wait for the younger
one to release its resources. In wound-wait, an older
process never waits for a younger process.

There are fewer roll-backs in wound-wait.
- Pi->Pj; Pi dies, requests the same resources; Pi dies again...
- Pj->Pi; Pi wounded. requests the same resources; Pi waits..

12




Deadlock Detection

site S,

site S,

Two Local Wait-For Graphs

G

lobal Wait-For Graph




Deadlock Detection - Centralized Approach

Each site keeps a local wait-for graph

- The nodes of the graph correspond to all the processes that are
currently either holding or requesting any of the resources local to
that site

A global wait-for graph is maintained in a single coordination
process; this graph is the union of all local wait-for graphs
There are three different options (points in time) when the
wait-for graph may be constructed:

1. Whenever a new edge is inserted or removed in one of the local wait-for
graphs

2. Periodically, when a number of changes have occurred in a wait-for graph

3. Whenever the coordinator needs to invoke the cycle-detection algorithm

Option1: unnecessary rollbacks may occur as a result of false
cycles

Local and Global Wait-For Graphs

site S, site S, coordinator




Detection Algorithm Based on Option 3

« Append unique identifiers (timestamps) to requests
form different sites

« When process P;, at site A, requests a resource from
process P;, at site B, a request message with timestamp
TS is sent

« The edge P, — P; with the label TS is inserted in the

local wait-for of A. The edge is inserted in the local
wait-for graph of B only if B has received the request
message and cannot immediately grant the requested
resource

Algorithm: Option 3

1. The controller sends an initiating message to each site in the
system

2. On receiving this message, a site sends its local wait-for graph to
the coordinator

3. When the controller has received a reply from each site, it
constructs a graph as follows:

(a) The constructed graph contains a vertex for every process in the
system

(b) The graph has an edge Pi — Pj if and only if
- there is an edge Pi — Pj in one of the wait-for graphs, or
If the constructed graph contains a cycle = deadlock

*To avoid report of false deadlocks, requests from different sites
appended with unique ids (timestamps)




Fully Distributed Approach

All controllers share equally the responsibility for detecting
deadlock

Every site constructs a wait-for graph that represents a part of the
total graph
We add one additional node P, to each local wait-for graph
P, ->P,, exists if P; is waiting for a data item at another site being held
by any process
If a local wait-for graph contains a cycle that does not involve
node P,,, then the system is in a deadlock state

ex’

A cycle involving P, implies the possibility of a deadlock

- To ascertain whether a deadlock does exist, a distributed deadlock-
detection algorithm must be invoked

Augmented Local Wait-For Graphs

@ @‘@

site S, site S,




Augmented Local Wait-For Graph in Site 52

site S,

Distributed File Systems

Distributed file system (DFS) - a distributed
implementation of the classical time-sharing model of a
file system, where multiple users share files and storage
resources over a network

A DFS manages set of dispersed storage devices

Overall storage space managed by a DFS is composed of
different, remotely located, smaller storage spaces

There is usually a correspondence between constituent
storage spaces and sets of files




DFS Structure

Service - software entity running on one or more machines
and providing a particular type of function to a priori
unknown clients

Server - service software running on a particular machine

Client - process that can invoke a service using a set of
operations that forms its client interface

A client interface for a file service is formed by a set of
primitive file operations (create, delete, read, write)

Client interface of a DFS should be transparent, i.e., not
distinguish between local and remote files

Naming and Transparency

Naming - mapping between logical and physical objects

Multilevel mapping - abstraction of a file that hides the
details of how and where on the disk the file is actually
stored

A transparent DFS hides the location where in the network
the file is stored

For a file being replicated in several sites, the mapping
returns a set of the locations of this file’s replicas; both
the existence of multiple copies and their location are
hidden




Naming Structures

Location transparency - file name does not reveal the
file’s physical storage location

- File name still denotes a specific, although hidden, set of
physical disk blocks

- Convenient way to share data

- Can expose correspondence between component units and
machines

Location independence - file name does not need to be
changed when the file’s physical storage location changes

- Better file abstraction
- Promotes sharing the storage space itself

- Separates the naming hierarchy form the storage-devices
hierarchy




