
1

CSE 421/521 - Operating Systems
Fall 2011

Tevfik Koşar

University at Buffalo
November 29th, 2011

Lecture - XXIV

Distributed Systems - II

Event Ordering

• Happened-before relation (denoted by →)
– If A and B are events in the same process (assuming sequential

processes), and A was executed before B, then A → B
– If A is the event of sending a message by one process and B is

the event of receiving that message by another process,
then A → B

– If A → B and B → C then A → C

– If two events A and B are not related by the → relation, then
these events are executed concurrently.

Relative Time for Three Concurrent Processes

Which events are concurrent and which ones are ordered?

Distributed Mutual Exclusion (DME)

• Assumptions
– The system consists of n processes; each process P

i
 resides at a

different processor
– Each process has a critical section that requires mutual

exclusion

• Requirement
– If P

i
 is executing in its critical section, then no other process P

j

is executing in its critical section

• We present two algorithms to ensure the mutual
exclusion execution of processes in their critical
sections

DME: Centralized Approach

• One of the processes in the system is chosen to coordinate the
entry to the critical section

• A process that wants to enter its critical section sends a
request message to the coordinator

• The coordinator decides which process can enter the critical
section next, and its sends that process a reply message

• When the process receives a reply message from the
coordinator, it enters its critical section

• After exiting its critical section, the process sends a release
message to the coordinator and proceeds with its execution

• This scheme requires three messages per critical-section
entry:
– request
– reply
– release

DME: Fully Distributed Approach

• When process P
i
 wants to enter its critical section, it

generates a new timestamp, TS, and sends the message
request (P

i
, TS) to all processes in the system

• When process P
j receives a request message, it may

reply immediately or it may defer sending a reply back

• When process P
i
receives a reply message from all other

processes in the system, it can enter its critical section
• After exiting its critical section, the process sends reply

messages to all its deferred requests

DME: Fully Distributed Approach (Cont.)

• The decision whether process P
j
 replies immediately to a

request(P
i
, TS) message or defers its reply is based on three

factors:
– If P

j
 is in its critical section, then it defers its reply to P

i

– If P
j
 does not want to enter its critical section, then it sends a reply

immediately to P
i

– If P
j
 wants to enter its critical section but has not yet entered it, then

it compares its own request timestamp with the timestamp TS

• If its own request timestamp is greater than TS, then it
sends a reply immediately to P

i
 (P

i
 asked first)

• Otherwise, the reply is deferred

– Example: P1 sends a request to P2 and P3 (timestamp=10)
 P3 sends a request to P1 and P2 (timestamp=4)

Token-Passing Approach

• Circulate a token among processes in system
– Token is special type of message
– Possession of token entitles holder to enter critical section

• Processes logically organized in a ring structure

• Unidirectional ring guarantees freedom from starvation
• Two types of failures

– Lost token – election must be called
– Failed processes – new logical ring established

Distributed Deadlock Handling

• Resource-ordering deadlock-prevention
=>define a global ordering among the system resources

– Assign a unique number to all system resources
– A process may request a resource with unique number i only if

it is not holding a resource with a unique number grater than i

– Simple to implement; requires little overhead

• Timestamp-ordering deadlock-prevention
=>unique Timestamp assigned when each process is
created

1. wait-die scheme -- non-reemptive
2. wound-wait scheme -- preemptive

Prevention: Wait-Die Scheme

• non-preemptive approach
• If P

i
 requests a resource currently held by P

j
, P

i
 is

allowed to wait only if it has a smaller timestamp
than does P

j
 (P

i
 is older than P

j
)

– Otherwise, P
i
 is rolled back (dies - releases resources)

• Example: Suppose that processes P1, P2, and P3 have
timestamps 5, 10, and 15 respectively
– if P1 request a resource held by P2, then P1 will wait

– If P3 requests a resource held by P2, then P3 will be rolled
back

• The older the process gets, the more waits

Prevention: Wound-Wait Scheme
• Preemptive approach, counterpart to the wait-die

system

• If P
i
 requests a resource currently held by P

j
, P

i
 is

allowed to wait only if it has a larger timestamp than
does P

j
 (P

i
 is younger than P

j
). Otherwise P

j
 is rolled

back (P
j
 is wounded by P

i
)

• Example: Suppose that processes P1, P2, and P3 have
timestamps 5, 10, and 15 respectively
– If P1 requests a resource held by P2, then the resource will be

preempted from P2 and P2 will be rolled back

– If P3 requests a resource held by P2, then P3 will wait

• The rolled-back process eventually gets the smallest
timestamp.

Comparison

• Both avoid starvation, provided that when a process is
rolled back, it is not assigned a new timestamp

• In wait-die, older process must wait for the younger
one to release its resources. In wound-wait, an older
process never waits for a younger process.

• There are fewer roll-backs in wound-wait.
– Pi->Pj; Pi dies, requests the same resources; Pi dies again...
– Pj->Pi; Pi wounded. requests the same resources; Pi waits..

12

Deadlock Detection

Two Local Wait-For Graphs

Global Wait-For Graph

Deadlock Detection – Centralized Approach

• Each site keeps a local wait-for graph
– The nodes of the graph correspond to all the processes that are

currently either holding or requesting any of the resources local to
that site

• A global wait-for graph is maintained in a single coordination
process; this graph is the union of all local wait-for graphs

• There are three different options (points in time) when the
wait-for graph may be constructed:
1. Whenever a new edge is inserted or removed in one of the local wait-for

graphs
2. Periodically, when a number of changes have occurred in a wait-for graph
3. Whenever the coordinator needs to invoke the cycle-detection algorithm

• Option1: unnecessary rollbacks may occur as a result of false
cycles

Local and Global Wait-For Graphs

Detection Algorithm Based on Option 3

• Append unique identifiers (timestamps) to requests
form different sites

• When process P
i
, at site A, requests a resource from

process P
j
, at site B, a request message with timestamp

TS is sent

• The edge P
i
 → P

j
 with the label TS is inserted in the

local wait-for of A. The edge is inserted in the local
wait-for graph of B only if B has received the request
message and cannot immediately grant the requested
resource

Algorithm: Option 3

1. The controller sends an initiating message to each site in the
system

2. On receiving this message, a site sends its local wait-for graph to
the coordinator

3. When the controller has received a reply from each site, it
constructs a graph as follows:
(a) The constructed graph contains a vertex for every process in the

system
(b) The graph has an edge Pi → Pj if and only if

- there is an edge Pi → Pj in one of the wait-for graphs, or
If the constructed graph contains a cycle ⇒ deadlock

*To avoid report of false deadlocks, requests from different sites
appended with unique ids (timestamps)

Fully Distributed Approach

• All controllers share equally the responsibility for detecting
deadlock

• Every site constructs a wait-for graph that represents a part of the
total graph

• We add one additional node P
ex

 to each local wait-for graph

– Pi ->P
ex

exists if Pi is waiting for a data item at another site being held
by any process

• If a local wait-for graph contains a cycle that does not involve
node P

ex
, then the system is in a deadlock state

• A cycle involving P
ex

 implies the possibility of a deadlock
– To ascertain whether a deadlock does exist, a distributed deadlock-

detection algorithm must be invoked

Augmented Local Wait-For Graphs

Augmented Local Wait-For Graph in Site S2

Distributed File Systems
• Distributed file system (DFS) – a distributed

implementation of the classical time-sharing model of a
file system, where multiple users share files and storage
resources over a network

• A DFS manages set of dispersed storage devices

• Overall storage space managed by a DFS is composed of
different, remotely located, smaller storage spaces

• There is usually a correspondence between constituent
storage spaces and sets of files

DFS Structure
• Service – software entity running on one or more machines

and providing a particular type of function to a priori
unknown clients

• Server – service software running on a particular machine

• Client – process that can invoke a service using a set of
operations that forms its client interface

• A client interface for a file service is formed by a set of
primitive file operations (create, delete, read, write)

• Client interface of a DFS should be transparent, i.e., not
distinguish between local and remote files

Naming and Transparency
• Naming – mapping between logical and physical objects

• Multilevel mapping – abstraction of a file that hides the
details of how and where on the disk the file is actually
stored

• A transparent DFS hides the location where in the network
the file is stored

• For a file being replicated in several sites, the mapping
returns a set of the locations of this file’s replicas; both
the existence of multiple copies and their location are
hidden

Naming Structures
• Location transparency – file name does not reveal the

file’s physical storage location
– File name still denotes a specific, although hidden, set of

physical disk blocks
– Convenient way to share data
– Can expose correspondence between component units and

machines

• Location independence – file name does not need to be
changed when the file’s physical storage location changes
– Better file abstraction
– Promotes sharing the storage space itself
– Separates the naming hierarchy form the storage-devices

hierarchy

