

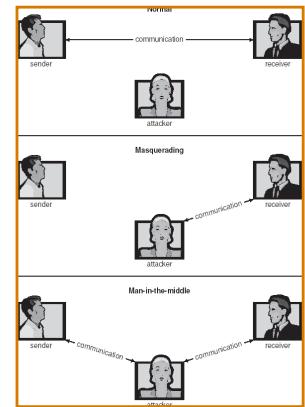
LECTURE - XXVI

PROTECTION & SECURITY

Tevfik Koşar

University at Buffalo
December 6th, 2011

The Security Problem


- Protecting your system resources, your files, identity, confidentiality, or privacy
- **Intruders** (crackers) attempt to breach security
- **Threat** is potential security violation
- **Attack** is attempt to breach security
- Attack can be accidental or malicious
- Easier to protect against accidental than malicious misuse

Security Violations

- Categories
 - **Breach of confidentiality**
 - information theft, identity theft
 - **Breach of integrity**
 - unauthorized modification of data
 - **Breach of availability**
 - unauthorized destruction of data
 - **Theft of service**
 - unauthorized use of resources
 - **Denial of service**
 - crashing web servers

Security Violation Methods

- **Masquerading** (breach authentication)
 - Pretending to be somebody else
- **Replay attack** (message modification)
 - Repeating a valid data transmission (eg. Money transfer)
 - May include message modification
- **Session hijacking**
 - The act of intercepting an active communication session
- **Man-in-the-middle attack**
 - Masquerading both sender and receiver by intercepting messages

Program Threats

- **Trojan Horse**
 - Code segment that misuses its environment
 - Exploits mechanisms for allowing programs written by users to be executed by other users
 - Spyware, pop-up browser windows, covert channels
- **Trap Door**
 - A hole in the security of a system deliberately left in place by designers or maintainers
 - Specific user identifier or password that circumvents normal security procedures
- **Logic Bomb**
 - Program that initiates a security incident under certain circumstances
- **Stack and Buffer Overflow**
 - Exploits a bug in a program (overflow either the stack or memory buffers)

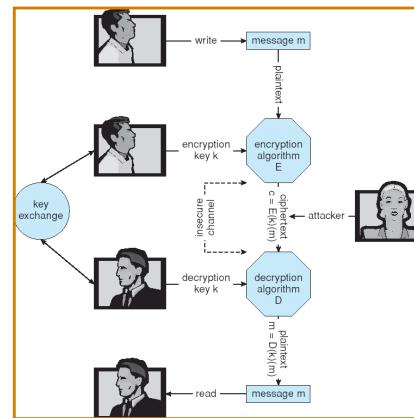
Program Threats (Cont.)

- **Viruses**
 - Code fragment embedded in legitimate program
 - Very specific to CPU architecture, operating system, applications
 - Usually borne via email or as a macro
- **Visual Basic Macro to reformat hard drive**

```
Sub AutoOpen()
Dim oFS
Set oFS = CreateObject("Scripting.FileSystemObject")
vs = Shell("c:command.com /k format c:,,vbHide")
End Sub
```

Program Threats (Cont.)

- **Virus dropper** inserts virus onto the system
- Many categories of viruses, literally many thousands of viruses:
 - **File** (appends itself to a file, changes start pointer, returns to original code)
 - **Boot** (writes to the boot sector, gets exec before OS)
 - **Macro** (runs as soon as document containing macro is opened)
 - **Source code** (modifies existing source codes to spread)
 - **Polymorphic** (changes each time to prevent detection)
 - **Encrypted** (first decrypts, then executes)
 - **Stealth** (modify parts of the system to prevent detection, eg read system call)
 - **Tunneling** (installs itself as interrupt handler or device driver)
 - **Multipartite** (can infect multiple parts of the system, eg. Memory, bootsector, files)
 - **Armed** (hidden and compressed virus files)


System and Network Threats

- **Worms** - use **spawn** mechanism; standalone program
- **Internet worm** (*Robert Morris, 1988, Cornell*)
 - Exploited UNIX networking features (remote access) and bugs in *finger* and *sendmail* programs
 - Grappling hook program uploaded main worm program
- **Port scanning**
 - Automated attempt to connect to a range of ports on one or a range of IP addresses
- **Denial of Service**
 - Overload the targeted computer preventing it from doing any useful work
 - Distributed denial-of-service (**DDOS**) come from multiple sites at once

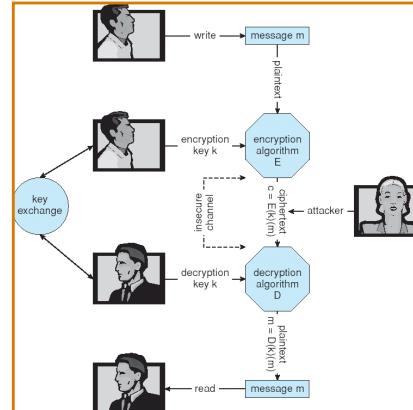
Cryptography as a Security Tool

- Broadest security tool available
 - Source and destination of messages cannot be trusted without cryptography
 - Means to constrain potential senders (*sources*) and / or receivers (*destinations*) of *messages*
- Based on secrets (**keys**)

Secure Communication over Insecure Medium

Encryption

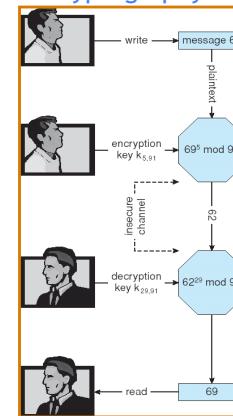
- Encryption algorithm consists of
 - Set of K keys
 - Set of M Messages
 - Set of C ciphertexts (encrypted messages)
 - A function $E : K \rightarrow (M \rightarrow C)$. That is, for each $k \in K$, $E(k)$ is a function for generating ciphertexts from messages.
 - A function $D : K \rightarrow (C \rightarrow M)$. That is, for each $k \in K$, $D(k)$ is a function for generating messages from ciphertexts.


Encryption

- An encryption algorithm must provide this essential property: Given a ciphertext $c \in C$, a computer can compute m such that $E(k)(m) = c$ only if it possesses $D(k)$.
 - Thus, a computer holding $D(k)$ can decrypt ciphertexts to the plaintexts used to produce them, but a computer not holding $D(k)$ cannot decrypt ciphertexts.
 - Since ciphertexts are generally exposed (for example, sent on the network), it is important that it be infeasible to derive $D(k)$ from the ciphertexts

Symmetric Encryption

- Same key used to encrypt and decrypt
 - $E(k)$ can be derived from $D(k)$, and vice versa
- DES** is most commonly used symmetric block-encryption algorithm (created by US Govt)
 - Encrypts a block of data at a time (64 bit messages, with 56 bit key)
- Triple-DES** considered more secure (repeat DES three times with three different keys)
- Advanced Encryption Standard (**AES**) replaces DES
 - Key length upto 256 bits, working on 128 bit blocks
- RC4** is most common symmetric stream cipher (works on bits, not blocks), but known to have vulnerabilities
 - Encrypts/decrypts a stream of bytes (i.e wireless transmission, web browsers)
 - Key is a input to psuedo-random-bit generator
 - Generates an infinite **keystream**


Secure Communication over Insecure Medium

Asymmetric Encryption

- Encryption and decryption keys are different
- Public-key encryption based on each user having two keys:
 - public key - published key used to encrypt data
 - private key - key known only to individual user used to decrypt data
- Must be an encryption scheme that can be made public without making it easy to figure out the decryption scheme
 - Most common is RSA (*Rivest, Shamir, Adleman*) block cipher

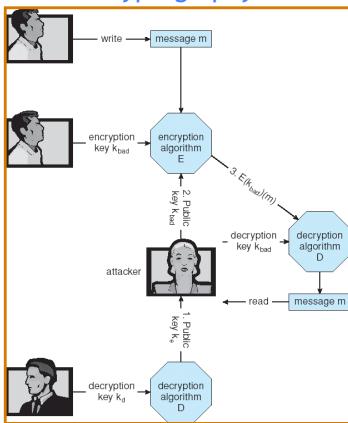
Encryption and Decryption using RSA Asymmetric Cryptography

Asymmetric Encryption (Cont.)

- Formally, it is computationally infeasible to derive $D(k_d, N)$ from $E(k_e, N)$, and so $E(k_e, N)$ need not be kept secret and can be widely disseminated
 - $E(k_e, N)$ (or just k_e) is the **public key**
 - $D(k_d, N)$ (or just k_d) is the **private key**
- N is the product of two large, randomly chosen prime numbers p and q (for example, p and q are 512 bits each)
- Select k_e and k_d , where k_e satisfies $k_e k_d \bmod (p-1)(q-1) = 1$
- Encryption algorithm is $E(k_e, N)(m) = m^{k_e} \bmod N$,
- Decryption algorithm is then $D(k_d, N)(c) = c^{k_d} \bmod N$

Asymmetric Encryption Example

- For example. choose $p = 7$ and $q = 13$
- We then calculate $N = pq = 7*13 = 91$ and $(p-1)(q-1) = 72$
- We next select k_e relatively prime to 72 and < 72 , yielding 5
- Finally, we calculate k_d such that $k_e k_d \bmod 72 = 1$, yielding 29
- We now have our keys
 - Public key, $k_e, N = 5, 91$
 - Private key, $k_d, N = 29, 91$
- Encrypting the message 69 with the public key results in the ciphertext 62 ($E=69^5 \bmod 91$)
- Ciphertext can be decoded with the private key
 - Public key can be distributed in cleartext to anyone who wants to communicate with holder of public key


Cryptography (Cont.)

- Note symmetric cryptography based on transformations, asymmetric based on mathematical functions
 - Asymmetric much more compute intensive
 - Typically not used for bulk data encryption
 - Used for authentication, confidentiality, key distribution

Key Distribution

- Delivery of symmetric key is huge challenge
 - Sometimes done **out-of-band**, via paper documents or conversation
- Asymmetric keys can proliferate - stored on **key ring**
 - Even asymmetric key distribution needs care - man-in-the-middle attack

Man-in-the-middle Attack on Asymmetric Cryptography

Digital Certificates

- Proof of who or what owns a public key
- Public key digitally signed a trusted party
- Trusted party receives proof of identification from entity and certifies that public key belongs to entity
- Certificate authority are trusted party - their public keys included with web browser distributions
 - They vouch for other authorities via digitally signing their keys, and so on
 - i.e. VeriSign, Comodo etc.

Encryption Example - SSL

- Insertion of cryptography at one layer of the ISO network model (the transport layer)
- SSL - Secure Socket Layer (also called TLS)
- Cryptographic protocol that limits two computers to only exchange messages with each other
 - Very complicated, with many variations
- Used between web servers and browsers for secure communication (credit card numbers)
- The server is verified with a **certificate** assuring client is talking to correct server
- Asymmetric cryptography used to establish a secure **session key** (symmetric encryption) for bulk of communication during session
- Communication between each computer then uses symmetric key cryptography

Any Questions?

Acknowledgements

- “Operating Systems Concepts” book and supplementary material by A. Silberschatz, P. Galvin and G. Gagne
- “Operating Systems: Internals and Design Principles” book and supplementary material by W. Stallings
- “Modern Operating Systems” book and supplementary material by A. Tanenbaum
- R. Doursat and M. Yuksel from UNR