
9/7/11

1

1

CSE 421/521 - Operating Systems
Fall 2011 Recitations

Presented by Yuan(Alex) Zhang

University at Buffalo
September 2011

Recitation - I

UNIX C Programming
Prof. Tevfik Kosar

2

logon

•  ssh timberlake.cse.buffalo.edu -l username
–  or:

•  ssh username@timberlake.cse.buffalo.edu

•  passwd: change password

•  putty: a free telnet/ssh client

•  ls /bin (ls /usr/bin)
•  man ...
•  text editing: vi, emacs, pico

2

9/7/11

2

3

Vi Editor
•  vi filename

–  a: enter insert mode, after the cursor

–  i: enter insert mode, before the cursor
–  O: enter insert mode, above the cursor
–  o: enter insert mode, below the cursor
–  r: replace one character under the cursor
–  u: undo the last change to the file.
–  x: delete character under the cursor

–  yy: copy line
–  dd: delete line
–  :w: write
–  :q: quit

–  :q!: quit without saving changes
–  /keyword : search for the keyword in text
–  :n : go to line number n

•  Vi tutorial: http://www.gnulamp.com/vi.html 3

4

Emacs Editor
•  Emacs filename

–  CTRL-d : delete one character
–  CTRL-k : delete one line
–  CTRL-y : paste
–  CTRL-x 2 : split window into 2 (horizontal)
–  CTRL-x 3 : split window into 2 (vertical)
–  CTRL-x o : switch window
–  CTRL-x 1 : kill all other windows
–  CTRL-x u : undo (also CTRL-_)
–  CTRL-x CTRL-f: open file
–  CTRL-x CTRL-b: open buffer (CTRL-x b: switch to buffer)
–  CTRL-s : search
–  CTRL-x CTRL-s: save file
–  CTRL-x CTRL-c: quit

•  Emacs Tutorial: http://www.gnu.org/software/emacs/tour/
emacs_toc.html

9/7/11

3

5

Or...

•  Use any editor you are familiar with.
(Notepad, Wordpad, etc.)
•  After file is written, upload the file using SFTP software

such as FileZilla

6

Files and Directories
•  directory operations

–  ls: list
–  cd: change directory
–  pwd: print working directory
–  mkdir: create directory
–  rmdir: remove directory

•  file operations
–  cp: copy
–  rm: delete
–  mv: move (rename)
–  cat, more, less: examine

•  file permissions: rwx rwx rwx
 user group others

–  chmod 755 filename (or chmod u+r filename) (or chmod u=rwx)

9/7/11

4

7

Processes

•  ps : list currently active user processes
•  ps aux: list all active processes in long format
•  kill n : kill process with id=n
•  kill -9 n : force to kill

•  CTRL-z : push to background
•  fg : bring to foreground (also fg n: bring nth process)

•  top: system utilization information
•  time command : calculate time for a given command

7

8

Basic C Program: Print to stdout

#include <stdio.h>

main()
{

printf("Hello, CSC4304 Class!\n");

}

gcc prog1.c ==> a.out
gcc prog1.c -o prog1 ==> prog1
make prog1 ==> prog1

8

9/7/11

5

9

Header Files

1
0

Basic Data Types

•  Basic Types
–  char : character - 1 byte
–  short: short integer - 2 bytes
–  int: integer - 4 bytes
–  long: long integer - 4 bytes
–  float: floating point - 4 bytes
–  double - double precision floating point - 8 bytes

•  Formatting Template
–  %d: integers
–  %f: floating point
–  %c: characters
–  %s: string
–  %x: hexadecimal
–  %u: unsigned int

1
0

9/7/11

6

1
1

Test Size of Data Types

#include <stdio.h>

main()
{
 printf("sizeof(char): %d\n", sizeof(char));
 printf("sizeof(short): %d\n", sizeof(short));
 printf("sizeof(int): %d\n", sizeof(int));
 printf("sizeof(long): %d\n", sizeof(long));
 printf("sizeof(float): %d\n", sizeof(float));
 printf("sizeof(double): %d\n", sizeof(double));
}

1
1

1
2

Formatting
#include <stdio.h>

main()
{
 char var1;
 float f;

 printf(" Enter a character:");
 scanf("%c", &var1);
 printf("You have entered character:%c \n ASCII value=%d \n
 Address=%x\n", var1, var1, &var1);

 printf(" And its float value would be: %.2f\n", (float)var1);
}

1
2

9/7/11

7

1
3

Formatting (cont.)

1
4

Read argument and print

#include <stdio.h>

main(int argc, char* argv[])
{
 if (argc < 2){
 printf("Usage: %s <your name>\n", argv[0]);
 }
 else{
 printf("Hello, %s!\n", argv[1]);
 }
}

1
4

9/7/11

8

1
5

Read from stdin and print

#include <stdio.h>

main()
{
 char name[64];

printf("What’s your name?");
scanf("%s", name);
printf("Hello, %s!\n", name);

}

1
5

1
6

Arrays

9/7/11

9

1
7

Strings

1
8

Manipulating Arrays

9/7/11

10

1
9

Manipulating Strings

2
0

Manipulating Strings (cont.)

9/7/11

11

2
1

Comparison Operators

2
2

Example

#include <stdio.h>

main()
{

 int x = 5;

 int y = 3;

 if (x=y){
 printf("x is equal to y, x=%d, y=%d\n", x, y);

 }

 else{
 printf("x is not equal to y, x-axes=%d, y=%d\n", x, y);

 }

}

9/7/11

12

2
3

Classical Bugs

- (7 & 8) vs (7 && 8)
- (7 | 8) vs (7 || 8)

Exercise:

2
4

Loops

while (x>0){
...
}

do{
...
} while (x>0);

for (x=0; X<3;x++) {...}

2
4

9/7/11

13

2
5

Functions

2
6

Memory Manipulation in C

9/7/11

14

2
7

Memory Manipulation in C

2
8

Memory Manipulation in C

9/7/11

15

2
9

Defining Pointers

3
0

Using Pointers

9/7/11

16

3
1

Using Pointers

3
2

Using Pointers

9/7/11

17

3
3

Parameter Passing in C

3
4

Parameter Passing in C

9/7/11

18

3
5

Parameter Passing in C

3
6

Arrays and Pointers

9/7/11

19

3
7

Arrays and Pointers

3
8

Arrays and Pointers

9/7/11

20

3
9

Pointer Arithmetic

4
0

Pointer Arithmetic

9/7/11

21

4
1

Pointer Arithmetic

4
2

Structures

9/7/11

22

4
3

Pointers to Structures

4
4

Enumerations

9/7/11

23

4
5

Variables

4
6

Static Local Variables

9/7/11

24

4
7

Non-static Local Variables

•  If i is not static, the same example program (from
prev. slide) will output:
–  i=1
–  i=1
–  i=1

4
7

4
8

Global Variables
Global variables have file scope:

int i=0;

void foo() {
 i++;
 printf("i=%d\n",i);
}

int main() {
 for (i=0;i<3;i++) foo();
}

9/7/11

25

4
9

Dynamic Memory Management

5
0

Dynamic Memory Management

9/7/11

26

5
1

Dynamic Memory Management

5
2

Dynamic Memory Management

9/7/11

27

5
3

Memory Leaks

5
4

malloc Example
int main ()
{
 int x = 11;
 int *p, *q;

 p = (int *) malloc(sizeof (int));
 *p = 66;
 q = p;
 printf ("%d %d %d\n", x, *p, *q);
 x = 77;
 *q = x + 11;
 printf ("%d %d %d\n", x, *p, *q);
 p = (int *) malloc(sizeof (int));
 *p = 99;
 printf ("%d %d %d\n", x, *p, *q);
}

$./malloc
11 66 66
77 88 88
77 99 88

9/7/11

28

5
5

free Example
int main ()
{
 int x = 11;
 int *p, *q;
 p = (int *) malloc(sizeof (int));
 *p = 66;
 q = (int *) malloc(sizeof (int));
 *q = *p - 11;
 free(p);
 printf ("%d %d %d\n", x, *p, *q);
 x = 77;
 p = q;
 q = (int *) malloc(sizeof (int));
 *q = x + 11;
 printf ("%d %d %d\n", x, *p, *q);
 p = &x;
 p = (int *) malloc(sizeof (int));
 *p = 99;
 printf ("%d %d %d\n", x, *p, *q);
 q = p;
 free(q);
 printf ("%d %d %d\n", x, *p, *q);
}

./free
11 ? 55
77 55 88
77 99 88
77 ? ?

5
6

Acknowledgments

•  Advanced Programming in the Unix Environment by R.
Stevens

•  The C Programming Language by B. Kernighan and D.
Ritchie

•  Understanding Unix/Linux Programming by B. Molay
•  Lecture notes from B. Molay (Harvard), T. Kuo (UT-

Austin), G. Pierre (Vrije), M. Matthews (SC), and B.
Knicki (WPI).

