CSE 421/521 - Operating Systems
Fall 2011 Recitations

RECITATION - |

UNIX C PROGRAMMING

PROF. TEVFIK KOSAR

Presented by Yuan(Alex) Zhang

University at Buffalo
September 2011

logon

ssh timberlake.cse.buffalo.edu -l username
- or:

ssh

passwd: change password
putty: a free telnet/ssh client
ls /bin (Is /usr/bin)

man ...
text editing: vi, emacs, pico

Vi Editor

e vi filename

- a: enter insert mode, after the cursor

- i: enter insert mode, before the cursor

- 0O: enter insert mode, above the cursor

- 0: enter insert mode, below the cursor

- r: replace one character under the cursor
- u: undo the last change to the file.

- x: delete character under the cursor

- yy: copy line

- dd: delete line

- Iw: write

- :q: quit

- :q!: quit without saving changes

- /keyword : search for the keyword in text
- :n: go to line number n

Vi tutorial: http://www.gnulamp.com/vi.html

Emacs Editor

Emacs filename
- CTRL-d : delete one character
- CTRL-k : delete one line
- CTRL-y : paste
- CTRL-x 2 : split window into 2 (horizontal)
- CTRL-x 3 : split window into 2 (vertical)
- CTRL-x o : switch window
- CTRL-x 1 : kill all other windows
- CTRL-x u : undo (also CTRL-_)
- CTRL-x CTRL-f: open file
- CTRL-x CTRL-b: open buffer (CTRL-x b: switch to buffer)
- CTRL-s : search
- CTRL-x CTRL-s: save file
- CTRL-x CTRL-c: quit
Emacs Tutorial: http://www.gnu.org/software/emacs/tour/
emacs_toc.html

Or...

» Use any editor you are familiar with.
(Notepad, Wordpad, etc.)

» After file is written, upload the file using SFTP software
such as FileZilla

Files and Directories

« directory operations
- Is: list
- cd: change directory
- pwd: print working directory
- mkdir: create directory
- rmdir: remove directory

- file operations
- cp: copy
- rm: delete
- mv: move (rename)
- cat, more, less: examine
« file permissions: rwx rwx rwx
user group others
- chmod 755 filename (or chmod u+r filename) (or chmodsu=rwx)

Processes

» ps: list currently active user processes

« ps aux: list all active processes in long format
o Kkill n: Kill process with id=n

e Kkill -9 n : force to kill

e CTRL-z : push to background
« fg: bring to foreground (also fg n: bring nth process)

» top: system utilization information
» time command : calculate time for a given command

7

Basic C Program: Print to stdout

#include <stdio.h>

main()
{
printf("Hello, CSC4304 Class!\n");
3
gcc progl.c ==> a.out

gcc progl.c -o prog1 ==> prog1
make prog1 ==> prog1

Header Files

@ The C compiler works in 3 phases:
©Q Pre-process source files
Q@ Compile source files into object files
© Link object files into an executable
o #include <stdio.h> means “include the contents of standard file
stdio.h here"
@ Standard files are usually located in directory /usr/include
@ /usr/include/stdio.h may contain #include statements itself...
@ You can use #include to include your own files into each other:
» #include "myfile.h" means: “include file myfile.h (from the current

directory) here"
» Included files usually have extension “.h" (header)

Basic Data Types

» Basic Types
- char : character - 1 byte
- short: short integer - 2 bytes
- int: integer - 4 bytes
- long: long integer - 4 bytes
- float: floating point - 4 bytes
- double - double precision floating point - 8 bytes

« Formatting Template
- %d: integers
- %f: floating point
- %c: characters
- %s: string
- %x: hexadecimal
- %u: unsigned int

@ =

Test Size of Data Types

#include <stdio.h>

main()

{
printf("sizeof (char): %d\n", sizeof(char));
printf("sizeof (short): %d\n", sizeof(short));
printf("sizeof (int): %d\n", sizeof(int));
printf("sizeof (long): %d\n", sizeof(long));
printf("sizeof (float): %d\n", sizeof(float));
printf("sizeof(double): %d\n", sizeof(double));

Formatting

#include <stdio.h>

main()

{
char var1;
float f;

printf(" Enter a character:");

scanf("%c", &var1);

printf("You have entered character:%c \n ASCII value=%d \n
Address=%x\n", var1, var1, &var1);

printf(" And its float value would be: %.2f\n", (float)var1); ’
1 2

Formatting (cont.)

#include <stdio.h>

int main(void) {

int val = 5;

char ¢ = ’a’;

char str[] = "world";

printf("Hello world\n"); Hello world
printf("Hello %d World\n", val); Hello 5 World
printf("%d %c World\n", val, c); 6 a World
printf("Hello ¥%s\n", str); Hello world

printf("Hello %d\n", str);
return 0;

** wrong! *x

-

Read argument and print

#include <stdio.h>

main(int argc, char* argv[])
{
if (argc < 2){
printf("Usage: %s <your name>\n", argv[0]);
3
else{
printf("Hello, %s!\n", argv[1]);

EYNN

Read from stdin and print
#include <stdio.h>

main()

{

char name[64];
printf("What’s your name?");
scanf("%s", name);
printf("Hello, %s!\n", name);

w@n -

Arrays

@ Defining an array is easy:

|im a[3]; /+ a is an array of 3 integers #/

@ Array indexes go from 0 to n-1:

al0] = 2; a[1] = 4; a[2] = a[0] + a[i];
int x = afa[0]]; /* what is the value of x7 */

» Beware: in this example a[3] does not exist, but your compiler will
not complain if you use it!

* But your program may have a very strange behavior. ..

@ You can create multidimensional arrays:

int matrix[3][2];
matrix[0] [1] = 42;

-

Strings

o A string is an array of characters:

char hello[15]="Hello, world!\n";

@ Unlike in Java, you must decide in advance how many characters can
be stored in a string.

» You cannot change the size of the array afterwards

o Beware: strings are always terminated by a NULL character: "\0’

» For example, "Hello" is string of 6 characters:
[B[ef1]2]o]N0]

-

Manipulating Arrays

@ You cannot copy an array into another directly
» You must copy each element one at a time

int a[3] = {12,24,36};
int b[3];

b = a; /* This will NOT work! */
b[0]=a[0];

b[1]=a[1];
b[2]=a[2]; /* This will work */

-

Manipulating Strings

@ There are standard function to manipulate strings:
» strcpy(destination, source) will copy string source into string
destination:

char a[15] = "Hello, world!\n";
char b[1i5];
strcpy(b,a);

s# Attention: strcpy does not check that destination is large enough to
accomodate source.

char c[10];
strcpy(c,a); /* This will get you in BIG trouble */

-

Manipulating Strings (cont.)

o Instead of strcpy it is always better to use strncpy:

» strncpy takes one more parameter to indicate the maximum number
of characters to copy:

char a[16] = "Hello, world!";
char c[10];
strocpy(c,a,9); /% Why 9 instead of 107 */

o N

Comparison Operators

o The following operators are defined for basic data types:

(a==Db) { ...
(al=Db) { ...
(a< b) {...
(a<=0b) { ...
(a> b) { ...
(a>0b) { ...
((a==b) && (c>d)) {...} /=* logical AND */
((a==b) || (c>d)) {...} /* logical OR */

ERRERREBERR
B

@ There is no boolean type in C. We use integers instead:
» 0 means FALSE
» Any other value means TRUE

int x;
ehy (69} <foooir /* Equivalent to: if (x!=0) {...} */
if (1x) {...} /* Equivalent to: if (x==0) {...} */

-

Example

#include <stdio.h>

main()
{
int x =5;
inty=3;
if (x=y){
printf("x is equal to y, x=%d, y=%d\n", X, y);
3
else{
printf("x is not equal to y, x-axes=%d, y=%d\n", X, y);
3
3

NN

Classical Bugs

@ Do not confuse '=" and '=="!

if (x=y) { ... } /* This is correct C but it means something different #/
if (x=3) { /* always executed */ }
if (x=0) { /* never executed */ }

@ Do not confuse '&" and '&&’!

if (xgy) { ... } /* This is correct C but it means something different #*/
it (eqhp) <L oo I

Exercise:

-(7&8) vs (78&8)
-(718) vs (7]8)

w N

Loops

while (x>0){

dof{
1 while (x>0);

for (x=0; X<3;x++) {...}

BN

Functions

o In C, functions can be defined in two ways:

int foo() { /* function foo returns an int */

return 123;
}

void bar(int pi, double p2) { /* function bar returns nothing */

}

@ Calling a function is easy:

int i = foo(); /* call function foo() */
bar(2, -4.321); /* call function bar() */

a N

Memory Manipulation in C

@ To a C program, memory is just a row of bytes
@ Each byte has some value, and an address in the memory

20 21 22 23 24 25 26 27 28 29 30 32 33 34

o N

Memory Manipulation in C

o When you define variables:

int count;
unsigned char c;

@ Memory is reserved to store the variables
@ And the compiler 'remembers their location’

c" starts at 28
"count" starts at 24

~N N

Memory Manipulation in C

o As a result, each variable has two properties:

©Q The 'value' stored in the variable
w |f you use the name of the variable, you refer to the variable's value

@ The 'address' of the memory used to store this value

* Similar to a reference in Java (but not exactly the same)
w# A variable that stores the address of another variable is called a pointer

@ Pointers can be declared using the * character

int *ptr; /* Pointer to an int */

unsigned char *ch; /* Pointer to an unsigned char */

struct ComplexNumber *c; /* Pointer to a struct Complexlumber */
int **pp; /* Pointer to a pointer to an int */
void *v; /* Pointer to anything (use with care!) */

© N

Defining Pointers

o To use pointers, you must give them a value first
» Like any other variable

o The '&’ operator gives you the memory address of any variable

int i = 8;
int *p; /* p is a pointer to an int */
p = &i; /* p contains the address of variable i #/

double *d = &i; /* ERROR, wrong pointer type */

O N

Using Pointers

@ Once you have a pointer, you can access the value of the variable
being pointed by using "*'

int i = 8;
int *p = &i;
int j = *p;
*p = 12;

w5 Attention, the "' sign is used for two different things:

» To declare a pointer variable:
» To dereference a pointer:

o w

Using Pointers

jofofofe] [[| [2]=fz]=] | [|

;20 21 22 23; 24 25 26 27 28 290 30 31 32 33 34

n ill E i " pll

Using Pointers

212223242526 2728293031 323334

" i" . . - p"

int*p=&i (==20)
&p ==28

intj = 'p (==8) 'p =12

N w

Parameter Passing in C

o In C, function parameters are passed by value
» Each parameter is copied
» The function can access the copy, not the original value

#include <stdio.h>

void swap(int x, int y) {
int temp = Xx;

X =Y

y = temp;

}

int main() {
int x = 9;
int y = 5;
swap(x, y);
printf("x=yd y=%d\n", x, y);
return 0;

w w

Parameter Passing in C

o In C, function parameters are passed by value
» Each parameter is copied
» The function can access the copy, not the original value

#include <stdio.h>

void swap(int x, int y) {
int temp = Xx;
x =Y
y = temp;

int main() {
int x = 9;
int y = 5;
swap(x, ¥);
printf("x=jd y=%d\n", x, y); /* This will print: x=9 y=5 */
return 0;

B w

Parameter Passing in C

o To pass parameters by reference, use pointers
» The pointer is copied
» But the copy still points to the same memory address

#include <stdio.h>

void swap(int *x, int *y) {
int temp = *x;
*x = ay;
*y = temp;

int main() {
int x = 9;
int y = 6;
swap (&x, &y);
printf("x=Y%d y=kd\n", x, y); /* This will print: x=5 y=9 */
return 0;

}

o w

Arrays and Pointers

@ You can use pointers instead of arrays as parameters

#include <stdio.h>
void funci(int p[], int size) { }
void func2(int *p, int size) { }

int main() {
int arrayl[6];
funci(array, 5);
func2(array, 5);
return 0;

}

o W

Arrays and Pointers

@ You can even use array-like indexing on pointers!

void clear(int *p, int size) {
int i;
for (i=0;i<size;i++) {
plil = 0;
}
}

int main() {
int array[5];
clear(array, 5);
return 0;

}

~ W

Arrays and Pointers

@ So a string is in fact just a pointer to a character array:

int main() {
char s1[32] = "Hello, world!\n";
char *s2;
char s3([32];

s2 = si; /* s1 and s2 point to the same character array */

strncpy(s3,s1,31); /* s3 contains a copy of sli */

o w

Pointer Arithmetic

o Pointers are just a special kind of variable

o You can do calculations on pointers
» You can use +, -, ++, -— on pointers
» This has no equivalent in Java

o Be careful, operators work with the size of variable types!

int i = 8;
int *p = &i;
p++; /* increases p with sizeof(int) */

char *c;
c++; /* increases c with sizeof (char) */

© w

Pointer Arithmetic

o This is obvious when using pointers as arrays:

int i;
int array(5];
int *p = array;

for (i=0;i<5;i++) {
*p = 0;
Pt

int array[5];

int *p = array;

o s

Pointer Arithmetic

int array[5];
int *p = array;

char arrayl5];

char *p = array;

-

Structures

@ You can build higher-level data types by creating structures:

struct Complex {
float real;
float imag;
I H
struct Complex number;
number.real = 3.2;
number.imag = -2;

struct Parameter {
struct Complex number;
char description[32];
3
struct Parameter p;
p.number.real = 42;
p.number.imag = 12.3;
strncpy(p.description, "My nice number", 31);

N A

Pointers to Structures

o We very often use statements like:

| (+pointer).field = value;

o There is another notation which means exactly the same:

| pointer->field = value;

o For example:

struct data {
int counter;
double value;

1

void add(struct data *d, double value) {
d->counter++;
d->value += value;

w s

Enumerations

@ enum is used to create a number of related constants

enum workdays {monday, tuesday, wednesday, thursday, friday };

enun workdays today;
today = tuesday;
today = friday;

enum weekend {saturday = 10, sunday = 20};

B

Variables

o C has two kinds of variables:

» Local (declared inside of a function)
> Global (declared outside of a function)

int global;

void function() {
int local;
¥

[LEN

Static Local Variables

@ Declaring a static variable means it will persist across multiple calls to
the function

void foo() {

static int i=0;

1445

printf ("i=¥%d\n",i); /# This prints the value of i on the screen #*/
}

int main() {

int i;

for (i=0;i<3;i++) foo();
}

This program will output this:

[
nonon
W N -

oA

Non-static Local Variables

 If iis not static, the same example program (from
prev. slide) will output:
- i=1
- i=1
- =1

~

Global Variables

Global variables have file scope:
int i=0;

void foo() {
i++;

printf("i=%d\n",i);

int main() {
for (i=0;i<3;i++) foo();

SN

Dynamic Memory Management

o Until now, all data have been static

» |t is clear by reading the program how much memory must be allocated
» Memory is reserved at compile time

o But sometimes you want to specify the amount of memory to allocate
at runtime!
» You need a string, but you don't know yet how long it will be
» You need an array but you don't know yet how many elements it
should contain
» Sizes depend on run-time results, user input, etc.

©»

Dynamic Memory Management

@ malloc() will allocate any amount of memory you want:

#include <stdlib.h>
void smalloc(size_t size);

» malloc takes a size (in bytes) as a parameter

* |If you want to store 3 integers there, then you must reserve
3xsizeof (int) bytes

» It returns a pointer to the newly allocated piece of memory

* |t is of type void *, which means “pointer to anything”
* Do not store it as a void *! You should “cast” it into a usable pointer:

#include <stdlib.h>
int *i = (int *) malloc(3#sizeof(int));

if0] = 12;
i[1] = 27;
i[2] = 42;

oo,

Dynamic Memory Management

o After you have used malloc, the memory will remain allocated until
you decide to destroy it

#include <stdlib.h>
void free(void #pointer);

o After you have finished using dynamic memory, you must release it!
» Otherwise it will remain allocated (and unused) until the end of the
program's execution

int main() {
int *i = (int #) malloc(3+sizeof(int));
/* Use 1 */
frea(i);
/* Do something else */
¥

-

Dynamic Memory Management

o Unlike arrays, dynamically allocated memory can be returned from a
function.

int *createIntArrayWrong() {

char tmp[32];

return tmp; /% WRONG! */
}

int *createIntArray(int size) {
return (int *) malloc(sizexsizeof (int)); /* CORRECT */
}

int main() {
int *array = createlntArray(10);
VY
free(array);
return 0;

N o

Memory Leaks

o You must always keep a pointer to allocated memory
» You need this to use it, and free it later
» If you don't, you've got a memory leak
» Memory leaks will slowly reserve all the machine memory, causing the
program (or the machine) to crash eventually!

int main() {
int #i = (int *) malloc(3*sizeof(int));
i=0; /* Wooops, I lost the pointer to my dynamic memory */
free(?7?); /* It is too late to free my dynamic memory */

o If you run out of memory, malloc will return NULL

#include <stdio.h>
#include <stdlib.h>

int main() {
int *array = (int *) malloc(i0*sizeof(int));

if (array == NULL) {
printf("Out of memory!\n");

return 1;
}
/* do something useful here */
return 0;
} 5
3
malloc Example
int main ()
{
int x = 11;
int *p, *q;
p = (int *) malloc(sizeof (int));
*p = 66;
q = p;
printf ("%d %d %d\n", x, *p, *q);
x = 77;
*qg = x + 11;
printf ("%d %d %d\n", x, *p, *q); $./malldc
p = (int *) malloc(sizeof (int));
G 11 66 66
printf ("%d %d $d\n", x, *p, *q); 77 88 88
} 77 99 88

Ny

free Example

int main ()

{
int x = 11;
int *p, *q;

p = (int *) malloc(sizeof (int));
*p = 66;
g = (int *) malloc(sizeof (int));
*q = *p - 11;
free(p);
printf ("%d %d %d\n", x, *p, *q);
x = 77;
p =@
g = (int *) malloc(sizeof (int));
*qg = x + 11;
printf ("%d %d %d\n", x, *p, *q); -/ free
p = &x; 11 2 55
p = (int *) malloc(sizeof (int));
R 77 55 88
printf ("$d %d %d\n", x, *p, *q); 77 99 88
q = p/

PR
free (q) ; LLECX
printf ("%d %d %d\n", x, *p, *q); 5

} 5

Acknowledgments

Advanced Programming in the Unix Environment by R.
Stevens

The C Programming Language by B. Kernighan and D.
Ritchie
Understanding Unix/Linux Programming by B. Molay

Lecture notes from B. Molay (Harvard), T. Kuo (UT-
Austin), G. Pierre (Vrije), M. Matthews (SC), and B.
Knicki (WPI).

o,

