CSE 421/521 - Operating Systems
Fall 2011 Recitations

RECITATION - II

UNIX PROCESSES

PROF. TEVFIK KOSAR

Presented by Yuan(Alex) Zhang

University at Buffalo
September, 2011

In Today’s Class

e Unix Process Environment
- Creation & Termination of Processes
- Exec() & Fork()
- ps -- get process info
- Shell & its implementation
- Environment Variables
- Process Control
- Pipes

$ ps

PID TTY TIME CMD
18684 pts/4 00:00:00 bash
18705 pts/4 00:00:00 ps
$ ps a

PID TTY STAT TIME COMMAND

6702 tty7 Ss+ 15:10 /usr/X11R6/bin/X :0 -audit 0
7024 ttyl Ss+ 0:00 /sbin/mingetty --noclear ttyl
7025 tty2 Ss+ 0:00 /sbin/mingetty tty2
7026 tty3 Ss+ 0:00 /sbin/mingetty tty3
7027 tty4d Ss+ 0:00 /sbin/mingetty tty4
7028 tty5 Ss+ 0:00 /sbin/mingetty tty5
7029 ttyé6 Ss+ 0:00 /sbin/mingetty tty6
17166 pts/6 Ss 0:00 -bash
17191 pts/6 S+ 0:00 pico program3.cc
17484 pts/5 Ss+ 0:00 -bash
17555 pts/7 Ss+ 0:00 -bash
17646 pts/8 Ss 0:00 -bash
17809 pts/10 Ss 0:00 -bash
17962 pts/8 S+ 0:00 pico prog2.java
17977 pts/1 Ss 0:00 -bash
18014 pts/9 Ss+ 0:00 -bash
18259 pts/10 T 0:00 a.out
18443 pts/2 Ss 0:00 -bash
18511 pts/1 S+ 0:00 pico program3.cc
18684 pts/4 Ss 0:00 -bash

$ ps la

F UID PID PPID PRI NI VSZ RSS WCHAN STAT TTY TIME COMMAND
4 0 6702 6701 15 0 25416 7204 - Ss+ tty7 15:10 /usr/X11R6/bin/X :0 -
audit 0 -auth /var/lib/g
4 0 7024 1 17 0 3008 4 - Ss+ ttyl 0:00 /sbin/mingetty --noclear
ttyl
4 0 7025 1 16 0 3008 4 - Ss+ tty2 0:00 /sbin/mingetty tty2
4 0 7026 1 16 0 3012 4 - Ss+ tty3 0:00 /sbin/mingetty tty3
4 0 7027 1 17 0 3008 4 - Ss+ ttyd 0:00 /sbin/mingetty tty4
4 0 7028 1 17 0 3008 4 - Ss+ tty5S 0:00 /sbin/mingetty tty5
4 0 7029 1 17 0 3008 4 - Ss+ ttyé6 0:00 /sbin/mingetty ttyé6
0 2317 17166 17165 15 0 9916 2300 wait Ss pts/6 0:00 -bash
0 2317 17191 17166 16 0 8688 1264 - S+ pts/6 0:00 pico program3.cc
0 2238 17484 17483 16 0 9916 2300 - Ss+ pts/5 0:00 -bash
0 2611 17555 17554 15 0 9912 2292 - Ss+ pts/7 0:00 -bash
0 2631 17646 17644 16 0 9912 2300 wait Ss pts/8 0:00 -bash
0 2211 17809 17808 15 0 9916 2324 wait Ss pts/10 0:00 -bash
0 2631 17962 17646 16 0 8688 1340 - S+ pts/8 0:00 pico prog2.java
0 2320 17977 17976 16 0 9912 2304 wait Ss pts/1 0:00 -bash
5
$ ps -ax
PID TTY STAT TIME COMMAND
12 S 0:02 init [5]
22 S 0:00 [migration/0]
32 SN 0:00 [ksoftirgd/0]
4 2 S 0:00 [migration/1]
57 SN 0:01 [ksoftirqgd/1]
6 2 S 0:00 [migration/2]
72 SN 0:16 [ksoftirgd/2]
8 ? S 0:00 [migration/3]
9 2 SN 0:16 [ksoftirgd/3]
10 2 S< 0:00 [events/0]
11 2 S< 0:00 [events/1]
12 2 S< 0:00 [events/2]
13 2 S< 0:00 [events/3]
14 2 S< 0:00 [khelper]
15 2 S< 0:00 [kthread]
653 ? S< 0:00 [kacpid]
994 2 S< 0:00 [kblockd/O0]
995 2 S< 0:00 [kblockd/1]
996 2 S< 0:01 [kblockd/2]
997 2 S< 0:00 [kblockd/3]
1062 ? S 0:24 6

[kswapd0]

r 1

Process Creation

{
fprintf (stdout,
pid2 = waitpid(pid, &status,

"Parent pid:
0);

}

return 0;

{
if ((éiﬁw;iéggﬁl)) == 0) // create a process
{ N ’
fprintf (stdout, "Child pid: %i\n", getpid());
err = execvp (command, arguments); // execute child
// process
fprintf (stderr, "Child error: %i\n", errno);
exit (err);
}
else if (pid > 0) // we are in the

//

parent process

$i\n", getpid());
// wait for child

//

process

7
Shell
» A tool for process and program control
e Three main functions
- Shells run programs
- Shells manage 1/0
- Shells can be programmed
» Main Loop of a Shell
while (!end of input) {
get command
execute command
wait for command to finish
} 8

How does a Program run another Program?

« Program calls execvp

int execvp (const char *file, char *const argvl[]):;

« Kernel loads program from disk into the process
» Kernel copies arglist into the process
» Kernel calls main(argc,argv)

Exec Family

int execl (const char *path, const char *arg, ...);

int execlp(const char *file, const char *arg, ...);

int execle(const char *path, const char *arg , ...,

char * const envpl[]);

int execv(const char *path, char *const argvl[]);

int execvp (const char *file, char *const argvl[]);

-

execvp is like a Brain Transplant

» execvp loads the new program into the current process,
replacing the code and data of that process!

Running “ls -1”

#include <unistd.h>
#include <stdio.h>

main ()
{
char *arglist[3];

arglist[0] = "1ls";

arglist[l] = "-1";

arglist([2] = 0 ;

printf ("* * * About to exec ls -1\n");

execvp("1ls" , arglist);
printf("* * * 1s is done. bye\n");

-

Writing a Shell v1.0

int main()

{

char *arglist [MAXARGS+1]; /* an array of ptrs */
int numargs; /* index into array */

char argbuf [ARGLEN] ; /* read stuff here */
char *makestring(); /* malloc etc */
numargs = 0;

while (numargs < MAXARGS)
{

printf ("Arg[%d]? ", numargs);
if (fgets(argbuf, ARGLEN, stdin) && *argbuf != '\n')
arglist[numargs++] = makestring(argbuf) ;
else #include <stdio.h>
{ #include <signal.h>
. #include <string.h>
if (numargs > 0){ /* any args? */
arglist[numargs]=NULL; /* close list */ #define MAXARGS 20
execute (arglist); /* do it */ #define ARGLEN 100
numargs = 0; /* and reset */ 1
} 3
Writing a Shell v1.0 (cont.)
int execute(char *arglist[])
{
execvp (arglist[0], arglist); /* do it */
perror ("execvp failed");
exit (1)
}
char * makestring(char *buf)
{
char *cp, *malloc();
buf[strlen(buf)-1] = '\0'; /* trim newline */
cp = malloc(strlen(buf)+l); /* get memory */
if (cp == NULL) { /* or die */
fprintf (stderr, "no memory\n");
exit (1) ;
}
strcpy (cp, buf); /* copy chars */
return cp; /* return ptr */
}
1

Writing a Shell v2.0

execute(char *arglist[])

{
int pid,exitstatus; /* of child*/

pid = fork(); /* make new process */
switch(pid) {
case -1:
perror ("fork failed");
exit (1) ;
case 0:
execvp (arglist[0], arglist); /* do it */
perror ("execvp failed");
exit (1) ;
default:

while(wait (&exitstatus) != pid)

-

’

Environment Variables

S env
HOSTNAME=classes
TERM=xterm-color
USER=cs4304 kos
HOSTTYPE=x86 64

PATH=/usr/local/bin:/usr/bin:/opt/gnome/bin:/usr/lib/mit/
sbin:./

CPU=x86 64
PWD=/classes/cs4304/cs4304 kos
LANG=en US.UTF-8
SHELL=/bin/bash
HOME=/classes/cs4304/cs4304 kos
MACHTYPE=x86 64-suse-linux
LOGNAME=cs4304 kos

> =

Updating the Environment

For sh, ksh or bash:
(use echo $SHELL to check which shell)

$ course=csc4304
$ export course
S env | grep course

course=csc4304
or
Sexport course="systems programming"

S env | grep course

course=systems programming

~ -

Updating the Environment

For csh or tcsh:
(use echo $SHELL to check which shell)

$ setenv course=cse42l
$ env | grep course

course=cse4?2l1

a® —

How is Environment Implemented?

= Environment Variables

= int main(int agrc, char **argv, char **envp);

environment environment
extern char **environ: list strings

\:I—» ———— HOME=/home/stevens\0
——+—— PATH=:/bin:/ust/bin\0
———— SHELL=/bin/sh\0
——1—— USER=stevens\0
———— LOGNAME-=stevens\0

= getenv/putenv NULL

N

Example 1

#include <stdio.h>

#include <malloc.h>

extern char **environ;

main ()
{
char ** ptr;
for (ptr=environ; *ptr != 0; ptr++)
printf ("$s\n", *ptr);
}

Example 2

#include <stdio.h>
#include <malloc.h>

main (int argc, char *argv[], char *env[])
{

char ** ptr;

for (ptr=env; *ptr != 0; ptr++)
printf ("$s\n", *ptr);

system function

int system(const char *command) ;

» used to execute command strings
« e.g. system(“date > file”);

« implemented using fork(), exec(), and waitpid()

NN

Example 3

#include <stdio.h>

#include <unistd.h>

extern char **environ;

main ()

{

char *newenv([5];
printf ("The current environment is..\n");

system("env") ;

printf ("***** Now Replacing Environment...\n"); getchar();
newenv[0] = "HOME=/on/the/range";

newenv([1l] = "LOGNAME=nobody";

newenv([2] = "PATH=.:/bin:/usr/bin";

newenv[3] = "DAY=Wednesday";

newenv[4] = 0 ;

environ = newenv;

execlp ("env", "env", NULL);

Updating the Environment

For sh, ksh or bash:
(use echo $SHELL to check which shell)

$ course=csc4304
$ export course
S env | grep course

course=csc4304
or
Sexport course="systems programming"

S env | grep course

course=systems programming

AN

Getting Environment Vars

char * getenv(const char *name);

#include <stdio.h>
#include <stdlib.h>

main ()
{
printf ("SHELL = %s\n", getenv ("SHELL"));
printf ("HOST = %s\n", getenv ("HOST"));
}
2
5
Setting Environment Vars
int putenv(const char *name); //name=value

int setenv(const char *name, const char *value, int rw);

void unsetenv (condt char *name) ;

#include <stdio.h>#include <stdlib.h>main ()
{ setenv ("HOST", "new host name", 1);

printf ("HOST = %s\n", getenv ("HOST"));}
printf ("HOST = %s\n", getenv ("HOST"));}

vfork function

pid t vfork(void);

« Similar to fork, but:
- child shares all memory with parent

- parent is suspended until the child makes an exit or exec call

~N N

fork example

main ()

int ret, glob=10;

printf ("glob before fork: %d\n", glob);

ret = fork()

if (ret == 0) {

glob++;

printf ("child: glob after fork: %d\n", glob) ;

exit (0);

if (ret > 0) {

if (waitpid(ret, NULL, 0) != ret) printf("Wait error!\n");

printf ("parent: glob after fork: %d\n", glob) ;

vfork example

main ()

int ret, glob=10;

printf ("glob before fork: %d\n", glob);

ret = vfork() ;

if (ret == 0) {

glob++;

printf ("child: glob after fork: %d\n", glob) ;

exit (0);

if (ret > 0) {

//if (waitpid(ret, NULL, 0) != ret) printf("Wait error!\n");

printf ("parent: glob after fork: %d\n", glob) ;

Race Conditions

static void charatatime (char *str
{
char *ptr;

int c;

setbuf (stdout, NULL);

for (ptr=str;c=*ptr++;) putc(c,stdout);

main ()

pid_t pid;

if ((pid = fork())<0) printf("fork error!\n");

else if (pid ==0) charatatime ("12345678901234567890\n");

else charatatime ("abcdefghijklmnopgrstuvwxyz\n");

Output

S fork3
12345678901234567890
abcdefghijklmnopgrstuvwxyz

S fork3
12a3bcd4d5e6£78901g23hi45677k890

lmnopgrstuvwxyz

—_

Avoid Race Conditions

static void charatatime (char *str
{
char *ptr;

int c;

setbuf (stdout, NULL);

for (ptr=str;c=*ptr++;) putc(c,stdout);

main ()

pid_t pid;
TELL_WAIT () ;

if ((pid = fork())<0) printf ("fork error!\n");
else if (pid ==0) {WAIT_PARENT(); charatatime("12345678901234567890\n");}
else {charatatime ("abcdefghijklmnopgrstuvwxyz\n"); TELL CHILD();}

Process Accounting

» Kernel writes an accounting record each time a process
terminates

« acct struct defined in <sys/acct.h>

typedef u short comp t;
struct acct {
char ac_flag; /* Figure 8.9 — Page 227 */
char ac_stat; /* termination status (core flag + signal #) */
uid t ac_uid; gid_t ac_gid; /* real [uglid */
dev_t ac_tty; /* controlling terminal */
time t ac_btime; /* staring calendar time (seconds) */
comp t ac_utime; /* user CPU time (ticks) */
comp t ac_stime; /* system CPU time (ticks) */
comp t ac_etime; /* elapsed time (ticks) */
comp t ac _mem; /* average memory usage */
comp_t ac_io; /* bytes transferred (by r/w) */
comp t ac_rw; /* blocks read or written */
char ac_comm[8]; /* command name: [8] for SVR4, [10] for
4.3 BSD */

}:

ww

Process Accounting

» Data required for accounting record is kept in the
process table
« Initialized when a new process is created
- (e.g. after fork)
« Written into the accounting file (binary) when the
process terminates
- in the order of termination
» No records for
- crashed processes
- abnormal terminated processes

o

Pipes

» one-way data channel in the kernel
» has a reading end and a writing end

e e.g. who | sort or ps | grep ssh

“n @

Process Communication via Pipes

int pipe(int filedes[2]);

» pipe creates a pair of file descriptors, pointing to a
pipe inode, and places them in the array pointed to by
filedes. filedes[0] is for reading filedes[1] is for writing

> W

main(int ac, char *av[])

{

int thepipe[2], newfd, pid;*/
if (ac != 3){fprintf(stderr, "usage: pipe cmdl cmd2\n");exit(1);}
if (pipe(thepipe) == -1){perror("cannot create pipe"); exit(l); }
if ((pid = fork()) == -1){fprintf (stderr,"cannot fork\n"); exit(1l);}
/*
* parent will read from reading end of pipe
*/
if (pid > 0){ /* the child will be av([2] */
close (thepipe[l]); /* close writing end */
close(0); /* will read from pipe */
newfd=dup (thepipe[0]) ; /* so duplicate the reading end */
if (newfd != 0){ /* if not the new stdin.. */
fprintf (stderr, "Dupe failed on reading end\n");
exit (1) ;
}
close (thepipe[0]); /* stdin is duped, close pipe */
execlp(av[2], av[2], NULL);
exit(1); /* oops */
} 3
7
/%
* child will write into writing end of pipe
*/
close (thepipe[0]) ; /* close reading end */
close(1); /* will write into pipe */
newfd=dup (thepipe[1l]); /* so duplicate writing end */
if (newfd != 1){ /* if not the new stdout.. */
fprintf (stderr, "Dupe failed on writing end\n");
exit (1);
}
close (thepipe[l]); /* stdout is duped, close pipe */

execlp(av([1l], av[1l], NULL);

exit (1) ; /* oops */

o W

Acknowledgments

Advanced Programming in the Unix Environment by R.
Stevens

The C Programming Language by B. Kernighan and D.
Ritchie
Understanding Unix/Linux Programming by B. Molay

Lecture notes from B. Molay (Harvard), T. Kuo (UT-
Austin), G. Pierre (Vrije), M. Matthews (SC), and B.
Knicki (WPI).

o w

