
9/13/11

1

1

CSE 421/521 - Operating Systems
Fall 2011 Recitations

Presented by Yuan(Alex) Zhang

University at Buffalo
September, 2011

Recitation - II

Unix Processes
Prof. Tevfik Kosar

2

In Today’s Class

•  Unix Process Environment
–  Creation & Termination of Processes
–  Exec() & Fork()
–  ps -- get process info
–  Shell & its implementation
–  Environment Variables
–  Process Control
–  Pipes

2

9/13/11

2

3

$ ps
PID TTY TIME CMD

18684 pts/4 00:00:00 bash

18705 pts/4 00:00:00 ps

4

$ ps a
 PID TTY STAT TIME COMMAND

 6702 tty7 Ss+ 15:10 /usr/X11R6/bin/X :0 -audit 0

 7024 tty1 Ss+ 0:00 /sbin/mingetty --noclear tty1

 7025 tty2 Ss+ 0:00 /sbin/mingetty tty2

 7026 tty3 Ss+ 0:00 /sbin/mingetty tty3

 7027 tty4 Ss+ 0:00 /sbin/mingetty tty4

 7028 tty5 Ss+ 0:00 /sbin/mingetty tty5

 7029 tty6 Ss+ 0:00 /sbin/mingetty tty6

17166 pts/6 Ss 0:00 -bash

17191 pts/6 S+ 0:00 pico program3.cc

17484 pts/5 Ss+ 0:00 -bash

17555 pts/7 Ss+ 0:00 -bash

17646 pts/8 Ss 0:00 -bash

17809 pts/10 Ss 0:00 -bash

17962 pts/8 S+ 0:00 pico prog2.java

17977 pts/1 Ss 0:00 -bash

18014 pts/9 Ss+ 0:00 -bash

18259 pts/10 T 0:00 a.out

18443 pts/2 Ss 0:00 -bash

18511 pts/1 S+ 0:00 pico program3.cc

18684 pts/4 Ss 0:00 -bash

18741 pts/2 S+ 0:00 pico program3.cc

18743 pts/10 S+ 0:00 pico prog2.cpp

18745 pts/4 R+ 0:00 ps a

4

9/13/11

3

5

$ ps la
 F UID PID PPID PRI NI VSZ RSS WCHAN STAT TTY TIME COMMAND

4 0 6702 6701 15 0 25416 7204 - Ss+ tty7 15:10 /usr/X11R6/bin/X :0 -
audit 0 -auth /var/lib/g

4 0 7024 1 17 0 3008 4 - Ss+ tty1 0:00 /sbin/mingetty --noclear
tty1

4 0 7025 1 16 0 3008 4 - Ss+ tty2 0:00 /sbin/mingetty tty2

4 0 7026 1 16 0 3012 4 - Ss+ tty3 0:00 /sbin/mingetty tty3

4 0 7027 1 17 0 3008 4 - Ss+ tty4 0:00 /sbin/mingetty tty4

4 0 7028 1 17 0 3008 4 - Ss+ tty5 0:00 /sbin/mingetty tty5

4 0 7029 1 17 0 3008 4 - Ss+ tty6 0:00 /sbin/mingetty tty6

0 2317 17166 17165 15 0 9916 2300 wait Ss pts/6 0:00 -bash

0 2317 17191 17166 16 0 8688 1264 - S+ pts/6 0:00 pico program3.cc

0 2238 17484 17483 16 0 9916 2300 - Ss+ pts/5 0:00 -bash

0 2611 17555 17554 15 0 9912 2292 - Ss+ pts/7 0:00 -bash

0 2631 17646 17644 16 0 9912 2300 wait Ss pts/8 0:00 -bash

0 2211 17809 17808 15 0 9916 2324 wait Ss pts/10 0:00 -bash

0 2631 17962 17646 16 0 8688 1340 - S+ pts/8 0:00 pico prog2.java

0 2320 17977 17976 16 0 9912 2304 wait Ss pts/1 0:00 -bash

5

6

$ ps -ax
 PID TTY STAT TIME COMMAND

 1 ? S 0:02 init [5]

 2 ? S 0:00 [migration/0]

 3 ? SN 0:00 [ksoftirqd/0]

 4 ? S 0:00 [migration/1]

 5 ? SN 0:01 [ksoftirqd/1]

 6 ? S 0:00 [migration/2]

 7 ? SN 0:16 [ksoftirqd/2]

 8 ? S 0:00 [migration/3]

 9 ? SN 0:16 [ksoftirqd/3]

 10 ? S< 0:00 [events/0]

 11 ? S< 0:00 [events/1]

 12 ? S< 0:00 [events/2]

 13 ? S< 0:00 [events/3]

 14 ? S< 0:00 [khelper]

 15 ? S< 0:00 [kthread]

 653 ? S< 0:00 [kacpid]

 994 ? S< 0:00 [kblockd/0]

 995 ? S< 0:00 [kblockd/1]

 996 ? S< 0:01 [kblockd/2]

 997 ? S< 0:00 [kblockd/3]

 1062 ? S 0:24 [kswapd0]

 1063 ? S< 0:00 [aio/0]

 1064 ? S< 0:00 [aio/1]

 1065 ? S< 0:00 [aio/2]

 1066 ? S< 0:00 [aio/3]

 1662 ? S< 0:00 [kseriod]

 1853 ? S 0:00 [scsi_eh_0]

 1949 ? S 0:00 [scsi_eh_1]

 2000 ? S 0:08 [kjournald]

 3094 ? S 0:03 [kjournald]

 3095 ? S 0:00 [kjournald]

 3096 ? S 0:00 [kjournald]

 3097 ? S 0:00 [kjournald]

 3098 ? S 0:00 [kjournald]

9/13/11

4

7

Process Creation
...
int main(...)
{

 ...
 if ((pid = fork()) == 0) // create a process
 {
 fprintf(stdout, "Child pid: %i\n", getpid());
 err = execvp(command, arguments); // execute child
 // process
 fprintf(stderr, "Child error: %i\n", errno);
 exit(err);
 }
 else if (pid > 0) // we are in the
 { // parent process
 fprintf(stdout, "Parent pid: %i\n", getpid());

 pid2 = waitpid(pid, &status, 0); // wait for child
 ... // process
 }
 ...

 return 0;

}

8

Shell

•  A tool for process and program control
•  Three main functions

–  Shells run programs
–  Shells manage I/O
–  Shells can be programmed

•  Main Loop of a Shell

while (!end_of_input){

get command

execute command

wait for command to finish

} 8

9/13/11

5

9

How does a Program run another Program?

•  Program calls execvp

int execvp(const char *file, char *const argv[]);

•  Kernel loads program from disk into the process
•  Kernel copies arglist into the process
•  Kernel calls main(argc,argv)

1
0

Exec Family

int execl(const char *path, const char *arg, ...);

int execlp(const char *file, const char *arg, ...);

int execle(const char *path, const char *arg , ...,

 char * const envp[]);

int execv(const char *path, char *const argv[]);

int execvp(const char *file, char *const argv[]);

9/13/11

6

1
1

execvp is like a Brain Transplant

•  execvp loads the new program into the current process,
replacing the code and data of that process!

1
2

Running “ls -l”

#include <unistd.h>
#include <stdio.h>

main()

{

 char *arglist[3];

 arglist[0] = "ls";

 arglist[1] = "-l";

 arglist[2] = 0 ;

 printf("* * * About to exec ls -l\n");
 execvp("ls" , arglist);
 printf("* * * ls is done. bye\n");
}

1
2

9/13/11

7

1
3

Writing a Shell v1.0

int main()

{

 char *arglist[MAXARGS+1]; /* an array of ptrs */

 int numargs; /* index into array */

 char argbuf[ARGLEN]; /* read stuff here */

 char *makestring(); /* malloc etc */

 numargs = 0;

 while (numargs < MAXARGS)

 {

 printf("Arg[%d]? ", numargs);

 if (fgets(argbuf, ARGLEN, stdin) && *argbuf != '\n')

 arglist[numargs++] = makestring(argbuf);

 else

 {

 if (numargs > 0){ /* any args? */

 arglist[numargs]=NULL; /* close list */

 execute(arglist); /* do it */

 numargs = 0; /* and reset */

 }

 }

 }

 return 0;

}

1
3

#include <stdio.h>
 #include <signal.h>
 #include <string.h>

 #define MAXARGS 20
 #define ARGLEN 100

1
4

Writing a Shell v1.0 (cont.)

int execute(char *arglist[])
{
 execvp(arglist[0], arglist); /* do it */
 perror("execvp failed");
 exit(1);
}

char * makestring(char *buf)
{
 char *cp, *malloc();

 buf[strlen(buf)-1] = '\0'; /* trim newline */
 cp = malloc(strlen(buf)+1); /* get memory */
 if (cp == NULL){ /* or die */
 fprintf(stderr,"no memory\n");
 exit(1);
 }
 strcpy(cp, buf); /* copy chars */
 return cp; /* return ptr */
}

1
4

9/13/11

8

1
5

Writing a Shell v2.0

execute(char *arglist[])

{

 int pid,exitstatus; /* of child */

 pid = fork(); /* make new process */

 switch(pid){

 case -1:

 perror("fork failed");

 exit(1);

 case 0:

 execvp(arglist[0], arglist); /* do it */

 perror("execvp failed");

 exit(1);

 default:

 while(wait(&exitstatus) != pid)

 ;

 printf("child exited with status %d,%d\n",

 exitstatus>>8, exitstatus&0377);

 }

}

1
5

1
6

Environment Variables

$ env

HOSTNAME=classes

TERM=xterm-color

USER=cs4304_kos

HOSTTYPE=x86_64

PATH=/usr/local/bin:/usr/bin:/opt/gnome/bin:/usr/lib/mit/
sbin:./

CPU=x86_64

PWD=/classes/cs4304/cs4304_kos

LANG=en_US.UTF-8

SHELL=/bin/bash

HOME=/classes/cs4304/cs4304_kos

MACHTYPE=x86_64-suse-linux

LOGNAME=cs4304_kos

...

1
6

9/13/11

9

1
7

Updating the Environment
For sh, ksh or bash:
(use echo $SHELL to check which shell)

$ course=csc4304
$ export course
$ env | grep course
course=csc4304

or

$export course="systems programming"
$ env | grep course

course=systems programming

1
7

1
8

Updating the Environment
For csh or tcsh:
(use echo $SHELL to check which shell)

$ setenv course=cse421
$ env | grep course

course=cse421

1
8

9/13/11

10

1
9

How is Environment Implemented?

2
0

Example 1
#include <stdio.h>

#include <malloc.h>

extern char **environ;

main()

{

 char ** ptr;

 for (ptr=environ; *ptr != 0; ptr++)

 printf("%s\n", *ptr);

}

9/13/11

11

2
1

Example 2
#include <stdio.h>

#include <malloc.h>

main(int argc, char *argv[], char *env[])

{

 char ** ptr;

 for (ptr=env; *ptr != 0; ptr++)

 printf("%s\n", *ptr);

}

2
2

system function

•  used to execute command strings
•  e.g. system(“date > file”);
•  implemented using fork(), exec(), and waitpid()

int system(const char *command);

9/13/11

12

2
3

Example 3
#include <stdio.h>

#include <unistd.h>

extern char **environ;

main()

{

 char *newenv[5];

 printf("The current environment is..\n");

 system("env");

 printf("***** Now Replacing Environment...\n"); getchar();

 newenv[0] = "HOME=/on/the/range";

 newenv[1] = "LOGNAME=nobody";

 newenv[2] = "PATH=.:/bin:/usr/bin";

 newenv[3] = "DAY=Wednesday";

 newenv[4] = 0 ;

 environ = newenv;

 execlp("env", "env", NULL);

}

2
4

Updating the Environment
For sh, ksh or bash:
(use echo $SHELL to check which shell)

$ course=csc4304
$ export course
$ env | grep course
course=csc4304

or

$export course="systems programming"
$ env | grep course

course=systems programming

2
4

9/13/11

13

2
5

Getting Environment Vars

#include <stdio.h>

#include <stdlib.h>

main()

{

 printf("SHELL = %s\n", getenv("SHELL"));

 printf("HOST = %s\n", getenv("HOST"));

}

char * getenv(const char *name);

2
6

Setting Environment Vars

int putenv(const char *name); //name=value

int setenv(const char *name, const char *value, int rw);

void unsetenv(condt char *name);

#include <stdio.h>#include <stdlib.h>main()
{ setenv("HOST", "new host name", 1);

 printf("HOST = %s\n", getenv("HOST"));}

 printf("HOST = %s\n", getenv("HOST"));}

9/13/11

14

2
7

vfork function

•  Similar to fork, but:
–  child shares all memory with parent
–  parent is suspended until the child makes an exit or exec call

pid_t vfork(void);

2
8

fork example
main()

{

 int ret, glob=10;

 printf("glob before fork: %d\n", glob);

 ret = fork();

 if (ret == 0) {

 glob++;

 printf("child: glob after fork: %d\n", glob) ;

 exit(0);

 }

 if (ret > 0) {

 if (waitpid(ret, NULL, 0) != ret) printf("Wait error!\n");

 printf("parent: glob after fork: %d\n", glob) ;

 }

}

9/13/11

15

2
9

vfork example
main()

{

 int ret, glob=10;

 printf("glob before fork: %d\n", glob);

 ret = vfork();

 if (ret == 0) {

 glob++;

 printf("child: glob after fork: %d\n", glob) ;

 exit(0);

 }

 if (ret > 0) {

 //if (waitpid(ret, NULL, 0) != ret) printf("Wait error!\n");

 printf("parent: glob after fork: %d\n", glob) ;

 }

}

3
0

Race Conditions
static void charatatime(char *str)

{

 char *ptr;

 int c;

 setbuf(stdout, NULL);

 for (ptr=str;c=*ptr++;) putc(c,stdout);

}

main()

{

 pid_t pid;

 if ((pid = fork())<0) printf("fork error!\n");

 else if (pid ==0) charatatime("12345678901234567890\n");

 else charatatime("abcdefghijklmnopqrstuvwxyz\n");

}

9/13/11

16

3
1

Output

$ fork3
12345678901234567890

abcdefghijklmnopqrstuvwxyz

$ fork3

12a3bc4d5e6f78901g23hi4567jk890
lmnopqrstuvwxyz

3
1

3
2

Avoid Race Conditions
static void charatatime(char *str)

{

 char *ptr;

 int c;

 setbuf(stdout, NULL);

 for (ptr=str;c=*ptr++;) putc(c,stdout);

}

main()

{

 pid_t pid;

 TELL_WAIT();

 if ((pid = fork())<0) printf("fork error!\n");

 else if (pid ==0) {WAIT_PARENT(); charatatime("12345678901234567890\n");}

 else {charatatime("abcdefghijklmnopqrstuvwxyz\n"); TELL_CHILD();}

}

9/13/11

17

3
3

Process Accounting

•  Kernel writes an accounting record each time a process
terminates

•  acct struct defined in <sys/acct.h>

3
4

Process Accounting

•  Data required for accounting record is kept in the
process table

•  Initialized when a new process is created
–  (e.g. after fork)

•  Written into the accounting file (binary) when the
process terminates
–  in the order of termination

•  No records for
–  crashed processes
–  abnormal terminated processes

3
4

9/13/11

18

3
5

Pipes

•  one-way data channel in the kernel
•  has a reading end and a writing end

•  e.g. who | sort or ps | grep ssh

3
5

3
6

Process Communication via Pipes

•  pipe creates a pair of file descriptors, pointing to a
pipe inode, and places them in the array pointed to by
filedes. filedes[0] is for reading filedes[1] is for writing

3
6

int pipe(int filedes[2]);

9/13/11

19

3
7

main(int ac, char *av[])

{

 int thepipe[2], newfd, pid;*/

 if (ac != 3){fprintf(stderr, "usage: pipe cmd1 cmd2\n");exit(1);}

 if (pipe(thepipe) == -1){perror("cannot create pipe"); exit(1); }

 if ((pid = fork()) == -1){fprintf(stderr,"cannot fork\n"); exit(1);}

 /*

 * parent will read from reading end of pipe

 */

 if (pid > 0){ /* the child will be av[2] */

 close(thepipe[1]); /* close writing end */

 close(0); /* will read from pipe */

 newfd=dup(thepipe[0]); /* so duplicate the reading end */

 if (newfd != 0){ /* if not the new stdin.. */

 fprintf(stderr,"Dupe failed on reading end\n");

 exit(1);

 }

 close(thepipe[0]); /* stdin is duped, close pipe */

 execlp(av[2], av[2], NULL);

 exit(1); /* oops */

 }

 /*

 * child will write into writing end of pipe

 */

 close(thepipe[0]); /* close reading end */

 close(1); /* will write into pipe */

 newfd=dup(thepipe[1]); /* so duplicate writing end */

 if (newfd != 1){ /* if not the new stdout.. */

 fprintf(stderr,"Dupe failed on writing end\n");

 exit(1);

 }

 close(thepipe[1]); /* stdout is duped, close pipe */

 execlp(av[1], av[1], NULL);

 exit(1); /* oops */

}

3
8

 /*

 * child will write into writing end of pipe

 */

 close(thepipe[0]); /* close reading end */

 close(1); /* will write into pipe */

 newfd=dup(thepipe[1]); /* so duplicate writing end */

 if (newfd != 1){ /* if not the new stdout.. */

 fprintf(stderr,"Dupe failed on writing end\n");

 exit(1);

 }

 close(thepipe[1]); /* stdout is duped, close pipe */

 execlp(av[1], av[1], NULL);

 exit(1); /* oops */

}

3
8

9/13/11

20

3
9

Acknowledgments

•  Advanced Programming in the Unix Environment by R.
Stevens

•  The C Programming Language by B. Kernighan and D.
Ritchie

•  Understanding Unix/Linux Programming by B. Molay
•  Lecture notes from B. Molay (Harvard), T. Kuo (UT-

Austin), G. Pierre (Vrije), M. Matthews (SC), and B.
Knicki (WPI).

