Nache: Design and Implementation of a Caching Proxy for NFSv4

Ajay Gulati
Rice University
gulati@rice.edu

Manoj Naik

Abstract

In this paper, we present Nache, a caching proxy for
NFSv4 that enables a consistent cache of a remote NFS
server to be maintained and shared across multiple lo-
cal NFS clients. Nache leverages the features of NFSv4
to improve the performance of file accesses in a wide-
area distributed setting by bringing the data closer to the
client. Conceptually, Nache acts as an NFS server to the
local clients and as an NFS client to the remote server.
To provide cache consistency, Nache exploits the read
and write delegations support in NFSv4. Nache enables
the cache and the delegation to be shared among a set of
local clients, thereby reducing conflicts and improving
performance. We have implemented Nache in the Linux
2.6 kernel. Using Filebench workloads and other bench-
marks, we present the evaluation of Nache and show that
it can reduce the NFS operations at the server by 10-50%.

1 Introduction

Most medium to large enterprises store their unstructured
data in filesystems spread across multiple file servers.
With ever increasing network bandwidths, enterprises are
moving toward distributed operations where sharing pre-
sentations and documents across office locations, multi-
site collaborations and joint product development have
become increasingly common. This requires sharing
data in a uniform, secure, and consistent manner across
the global enterprise with reasonably good performance.

Data and file sharing has long been achieved through
traditional file transfer mechanisms such as FTP or dis-
tributed file sharing protocols such as NFS and CIFS.
While the former are mostly adhoc, the latter tend to be
“chatty” with multiple round-trips across the network for
every access. Both NFS and CIFS were originally de-
signed to work for a local area network involving low la-
tency and high bandwidth access among the servers and
clients and as such are not optimized for access over a

IBM Almaden Research Center
manoj @ almaden.ibm.com

Renu Tewari
IBM Almaden Research Center
tewarir@us.ibm.com

wide area network. Other filesystem architectures such
as AFS [17] and DCE/DFS[20] have attempted to solve
the WAN file sharing problem through a distributed ar-
chitecture that provides a shared namespace by uniting
disparate file servers at remote locations into a single log-
ical filesystem. However, these technologies with propri-
etary clients and protocols incur substantial deployment
expense and have not been widely adopted for enterprise-
wide file sharing. In more controlled environments, data
sharing can also be facilitated by a clustered filesystem
such as GPFS[31] or Lustre[1]. While these are designed
for high performance and strong consistency, they are ei-
ther expensive or difficult to deploy and administer or
both.

Recently, a new market has emerged to primarily
serve the file access requirements of enterprises with out-
sourced partnerships where knowledge workers are ex-
pected to interact across a number of locations across a
WAN. Wide Area File Services (WAFS) is fast gaining
momentum and recognition with leading storage and net-
working vendors integrating WAFS solutions into new
product offerings[5][3]. File access is provided through
standard NFS or CIFS protocols with no modifications
required to the clients or the server. In order to compen-
sate for high latency of WAN accesses, low bandwidth
and lossy links, the WAFS offerings rely on custom de-
vices at both the client and server with a custom protocol
optimized for WAN access in between.

One approach often used to reduce WAN latency is
to cache the data closer to the client. Another is to
use a WAN-friendly access protocol. The version 4 of
the NFS protocol added a number of features to make
it more suitable for WAN access [29]. These include:
batching multiple operations in a single RPC call to the
server, enabling read and write file delegations for reduc-
ing cache consistency checks, and support for redirecting
clients to other, possibly closer, servers. In this paper, we
discuss the design and implementation of a caching file
server proxy called Nache. Nache leverages the features

USENIX Association

FAST ’07: 5th USENIX Conference on File and Storage Technologies

199

of NFSv4 to improve the performance of file serving
in a wide-area distributed setting. Basically, the Nache
proxy sits in between a local NFS client and a remote
NFS server bringing the remote data closer to the client.
Nache acts as an NFS server to the local client and as an
NES client to the remote server. To provide cache con-
sistency, Nache exploits the read and write delegations
support in NFSv4. Nache is ideally suited for environ-
ments where data is commonly shared across multiple
clients. It provides a consistent view of the data by al-
lowing multiple clients to share a delegation, thereby re-
moving the overhead of a recall on a conflicting access.
Sharing files across clients is common for read-only data
front-ended by web servers, and is becoming widespread
for presentations, videos, documents and collaborative
projects across a distributed enterprise. Nache is bene-
ficial even when the degree of sharing is small as it re-
duces both the response time of a WAN access and the
overhead of recalls.

In this paper, we highlight our three main contribu-
tions. First, we explore the performance implications
of read and write open delegations in NFSv4. Second,
we detail the implementation of an NFSv4 proxy cache
architecture in the Linux 2.6 kernel. Finally, we dis-
cuss how delegations are leveraged to provide consistent
caching in the proxy. Using our testbed infrastructure,
we demonstrate the performance benefits of Nache using
the Filebench benchmark and other workloads. For these
workloads, the Nache is shown to reduce the number of
NEFS operations seen at the server by 10-50%.

The rest of the paper is organized as follows. In the
next section we provide a brief background of consis-
tency support in various distributed filesystems. Sec-
tion 3 analyzes the delegation overhead and benefits in
NFSv4. Section 4 provides an overview of the Nache ar-
chitecture. Its implementation is detailed in section 5 and
evaluated in section 6 using different workloads. We dis-
cuss related work in section 7. Finally, section 8 presents
our conclusions and describes future work.

2 Background: Cache Consistency

An important consideration in the design of any caching
solution is cache consistency. Consistency models in
caching systems have been studied in depth in various
large distributed systems and databases [9]. In this sec-
tion, we review the consistency characteristics of some
widely deployed distributed filesystems.

e Network File System (NFS): Since perfect co-
herency among NFS clients is expensive to achieve,
the NFS protocol falls back to a weaker model
known as close-to-open consistency [12]. In this
model, the NFS client checks for file existence and

permissions on every open by sending a GETATTR
or ACCESS operation to the server. If the file at-
tributes are the same as those just after the previ-
ous close, the client will assume its data cache is
still valid; otherwise, the cache is purged. On every
close, the client writes back any pending changes
to the file so that the changes are visible on the
next open. NFSv3 introduced weak cache con-
sistency [28] which provides a way, albeit imper-
fect, of checking a file’s attributes before and after
an operation to allow a client to identify changes
that could have been made by other clients. NFS,
however, never implemented distributed cache co-
herency or concurrent write management [29] to
differentiate between updates from one client and
those from multiple clients. Spritely NFS [35] and
NQNEFS [23] added stronger consistency semantics
to NFS by adding server callbacks and leases but
these never made it to the official protocol.

o Andrew File System (AFS): Compared to NFS, AFS
is better suited for WAN accesses as it relies heav-
ily on client-side caching for performance [18]. An
AFS client does whole file caching (or large chunks
in later versions). Unlike an NFS client that checks
with the server on a file open, in AFS, the server
establishes a callback to notify the client of other
updates that may happen to the file. The changes
made to a file are made visible at the server when
the client closes the file. When there is a conflict
with a concurrent close done by multiple clients, the
file at the server reflects the data of the last client’s
close. DCE/DFS improves upon AFS caching by
letting the client specify the type of file access (read,
write) so that the callback is issued only when there
is an open mode conflict.

o Common Internet File System (CIFS): CIFS enables
stronger cache consistency [34] by using oppor-
tunistic locks (OpLocks) as a mechanism for cache
coherence. The CIFS protocol allows a client to
request three types of OpLocks at the time of file
open: exclusive, batch and level II. An exclusive
oplock enables it to do all file operations on the file
without any communication with the server till the
file is closed. In case another client requests access
to the same file, the oplock is revoked and the client
is required to flush all modified data back to the
server. A batch oplock permits the client to hold on
to the oplock even after a close if it plans to reopen
the file very soon. Level II oplocks are shared and
are used for read-only data caching where multiple
clients can simultaneously read the locally cached
version of the file.

200

FAST ’07: 5th USENIX Conference on File and Storage Technologies

USENIX Association

3 Delegations and Caching in NFSv4

The design of the version 4 of the NFS protocol [29] in-
cludes a number of features to improve performance in a
wide area network with high latency and low bandwidth
links. Some of these new features are:

1. COMPOUND RPC: This enables a number of tra-
ditional NFS operations (LOOKUP, OPEN, READ,
etc.) to be combined in a single RPC call to the
server to carry out a complex operation in one
network round-trip. COMPOUND RPCs provide
lower overall network traffic and per command
round trip delays.

2. Client redirection: The NFSv4 protocol provides
a special return code (NFS4ERR_MOVED) and a
filesystem attribute (fs_locations) to allow an
NFS client to be redirected to another server at
filesystem boundaries. Redirection can be used for
building a wide-area distributed federation of file
servers with a common namespace where data can
be replicated and migrated among the various file
servers.

3. OPEN delegations: File delegation support in
NFSv4 is a performance optimization which elim-
inates the need for the client to periodically check
with the server for cache consistency. Later in this
section, we will investigate delegations in detail as
they form an important component of Nache.

By granting a file delegation, the server voluntarily
cedes control of operations on the file to a client for
the duration of the client lease or until the delegation
is recalled. When a file is delegated, all file access
and modification requests can be handled locally by the
client without sending any network requests to the server.
Moreover, the client need not periodically validate the
cache as is typically done in NFS as the server guaran-
tees that there will be no other conflicting access to the
file. In fact, the client need not flush modified data on
a CLOSE as long as the server guarantees that it will
have sufficient space to accept the WRITEs when they
are done at a later time.

NFSv4 delegations are similar to CIFS oplocks but are
not exactly the same [29]. Delegations in NFSv4 are
purely a server driven optimization, and without them,
the standard client-side caching rules apply. In CIFS, on
the other hand, oplocks are requested by the client and
are necessary for caching and coherency. If oplocks are
not available, a CIFS client cannot use its cached data
and has to send all operations to the server. In addition,
NFSv4 delegations can be retained at the clients across
file CLOSE as in CIFS batch oplocks.

14 " No deledations —
With Read Delegations ----s----

NFS Ops at Server (in '000s)
(o]

32

Number of accesses

Figure 1: Performance of Read Delegations: The graph shows
the number of NFS ops (packets) sent to the server with and
without read delegations. The X axis denotes the number of
times a single NFSv4 client opens, reads and closes a file.

3.1 Read Delegation

A read delegation is awarded by the server to a client
on a file OPENed for reading (that does not deny read
access to others). The decision to award a delegation
is made by the server based on a set of conditions that
take into account the recent history of the file [32]. In
the Linux NFSv4 server, for example, the read delega-
tion is awarded on the second OPEN by the same client
(either after opening the same file or on opening another
file) [13]. After the delegation is awarded, all READs
can be handled locally without sending GETATTRSs to
check cache validity. As long as the delegation is active,
OPEN, CLOSE and READ requests can be handled lo-
cally. All LOCK requests (including non exclusive ones)
are still sent to the server. The delegation remains in ef-
fect for the lease duration and continues when the lease
is renewed. Multiple read delegations to different clients
can be outstanding at any time. A callback path is re-
quired before a delegation is awarded so that the server
can use it to recall a delegation on a conflicting access
to a file such as an OPEN for write, RENAME, and RE-
MOVE. After a delegation has been recalled, the client
falls back to traditional attribute checking before reading
cached data.

Currently, the NFSv4 server hands out delegations at
the granularity of a file. Directory delegations are being
considered in future revisions of the protocol [21], but
the design of Nache relies only on file level delegations.

To illustrate the benefit of read delegations, both in
terms of server response time and message overhead,
we measured the values for a single NFSv4 client, with
multiple application processes, iterating over a OPEN-
READ-CLOSE operation sequence on a file. Both the
client and server were running Linux kernel version
2.6.17 [13]. Figure 1 shows the number of NFS oper-

USENIX Association

FAST ’07: 5th USENIX Conference on File and Storage Technologies

201

ations processed by the server with and without dele-
gations. As shown, the server load in terms of number
of packets received is reduced by 50% with read dele-
gations enabled. Further gains are achieved when the
file is cached for a long time by saving on the addi-
tional GETATTRs sent to validate the cache after a time-
out. We observe that if the file is cached beyond the at-
tribute timeout (typically 30 seconds), the operations at
the server with delegations reduced by another 8%.

3.2 Write Delegation

Similar to read delegations, write delegations are
awarded by the server when a client opens a file for
write (or read/write) access. While the delegation is out-
standing, all OPEN, READ, WRITE, CLOSE, LOCK,
GETATTR, SETATTR requests for the file can be han-
dled locally by the client. Handling delegations for write,
however, is far more complicated than that for reads. The
server not only checks if a callback path exists to the
client to revoke the delegation, it also limits the max-
imum size that the client can write to prevent ENOSPC
errors since client has the option to flush data lazily. On a
conflicting OPEN by another client, the server recalls the
delegation which triggers the client to commit all dirty
data and return the delegation. The conflicting OPEN
is delayed until the delegation recall is complete. The
failure semantics with write delegations are also com-
plicated, given that the client can have dirty data that has
not yet been committed at the server even after a CLOSE.
To maintain the close-to-open cache consistency seman-
tics, the client, even with a write delegation, may flush
all dirty data back to the server on a CLOSE. Observe
that, with write delegations, the consistency semantics
are slightly tighter than a pure close-to-open model. The
second client, on an OPEN after a delegation recall, sees
the data written by the first client before the first client
closes the file.

At the time of writing, the Linux server implementa-
tion (2.6.17) only hands out read delegations. We have
a prototype implementation to enable write delegations
which we discuss in detail in section 6. Figure 2 shows
the NFS operations processed at the server with and with-
out write delegations. The workload is the same as in the
previous experiment with a single NFSv4 client iterating
over a sequence of OPEN-WRITE/READ-CLOSE op-
erations on a file with a balanced number of reads and
writes. The server load, in terms of number of packets
received, is reduced by 5 times with write delegations
enabled. One would expect write delegations to provide
significantly better performance than what is observed.
The reason this is not the case is that write delegations are
not completely implemented in our prototype. Although
the delegation is granted, a client still sends WRITE re-
quests to the server, whereas they need not once a dele-

‘ No delégations —
With Write Delegations ----#----

NFS Ops at Server (in '000s)
nN
o

20
15
/ X
10 // ____
: e G B "
............... o
| 2 . ° 16 32

Number of accesses

Figure 2: Performance of Write Delegations: The graphs
shows the number of ops (NFS packets) sent to the server with
and without write delegations. The X axis denotes the number
of times a single NFSv4 client opens, writes/reads and closes a

file.

gation is obtained.

As we have demonstrated, delegations can substan-
tially improve cache performance and coherency guar-
antees for a single client that is frequently accessing a
file. However, if read-write sharing is common (as is the
case in joint software development), write delegations, if
not granted intelligently, may make matters worse.

LAN access | WAN access
No delegations 1.5-9 ms 150-500ms
Read delegation 1007 ms 1400 ms
Write delegation 1010 ms 1600 ms

Table 1: Overhead of recalling a delegation. The table shows
the time taken to complete a conflicting OPEN with delegation
recall over a LAN and a WAN.

Table 1 measures the overhead of recalling a dele-
gation in terms of the delay observed by a conflicting
OPEN (with read/write access) for both read and write
delegations. The second OPEN is delayed until the del-
egation is recalled from the first client. With write dele-
gations this also includes the time taken to flush all dirty
data back to the server. We observe that the recall of a
read delegation adds a one second delay to the second
OPEN on Linux. This is because the NFSv4 client waits
one second before retrying the OPEN on receiving a de-
lay error from the server. The overhead with write del-
egations was similar to that with read delegations as the
overhead of flushing data is low for a file smaller than
2MB. However, for large file writes the recall time is
substantial. Figure 3 shows the client OPEN time with
a write delegation recall when the size of the dirty data
varies from 256KB to 32MB.

Clearly, the above experiments show that delegations

202

FAST ’07: 5th USENIX Conference on File and Storage Technologies

USENIX Association

Délegreturh Overhead ——

i /

Time taken for conflicting open (sec)
[e¢]
\

0.25 0.5 1 2 4 8 16 32
Total Write Size (MB)

Figure 3: Overhead of recalling a write delegation. The X-
axis is the size of the data written to the file. The Y-axis is the
time taken to complete a conflicting OPEN.

are beneficial if a single client is exclusively accessing
a file; and that any conflict can substantially affect the
client response time. However, if it was possible for
clients to share the delegations there would be no con-
flict. The underlying principle of Nache is to extend del-
egations and caching from a single client to a set of lo-
cal clients that share both the cache and the delegation,
thereby minimizing conflict. Even with read delegations
that can be simultaneously awarded, Nache adds the ben-
efit of a shared cache.

4 Nache Overview

The need for the Nache caching proxy arose from our
earlier work on building a wide-area federated filesys-
tem leveraging NFSv4 [16]. The goal of this system was
to provide a uniform filesystem view across heteroge-
neous file servers interconnected by enterprise-wide or
Internet-scale networks. Figure 4 shows the distribution
of file servers and the common namespace view that they
all export to the clients. The namespace was created
by leveraging the client redirection feature of NFSv4.
The client can mount the root of the common namespace
tree from any server in the federation and see a uniform
namespace.

4.1 Caching Proxy vs. Redirection

In such a federated system, with data on different geo-
graphically distributed physical locations, there are two
models for data access: client redirection and data ship-
ping. In the client redirection model, the client is referred
to the server where the data actually resides for fetching
it over the network. In the data shipping model, data
from the remote server is cached on a server closer to the
client to reduce frequent WAN accesses. Figure 5 shows
the two access models.

Server B exports: /home/alice
Replicates: /project/federation

Server A exports: /project/federation

NFS V4 SERVERS Boston

/ domain Server C exports: /home/bob

backup users

e C Federation-” aiibe\ Bob N° *Federation) \\\
| | ¥ X
. bin src/’ \sretmp, “myfiles src/’ “.bin ste/’
Server B Server B Server C Server A

Figure 4: Wide-area Federation of Filesystems

e =
—
Client 1

| Server
—1

g

Client 2
(a) No Nache: Client redirection to remote server

=

100

Server

:] :]
Client 1 — |
/ —J [—

Client 2

(b) With Nache: Client access directly from proxy

Figure 5: System Architecture (a) Client redirection without
NFSv4 Proxy (b) With Nache

The client redirection model relies on the standard
NFSv4 client’s ability to follow the protocol-specified re-
ferral. A client first mounts the root of the namespace
from a local NFSv4 server. When it traverses a directory
(filesystem) that happens to refer to a remote server loca-
tion, the server initiates redirection and, when queried,
returns an ordered list of remote server addresses and
path names. The client then “sub-mounts” the directory
(filesystem) from one of the remote servers in the list and
continues its traversal.

Two factors contribute to the overhead of handling a
redirection: (i) the processing overhead of following the
referral along with the new sub-mount at the client, and
(i1) the network overhead of accessing data from a re-
mote server, possibly over a lower bandwidth, higher la-
tency link. Figure 6 captures the processing overhead of
following the referral. It shows that the time taken for

USENIX Association

FAST ’07: 5th USENIX Conference on File and Storage Technologies

203

2.6 T T T T i i
Referral Overhead —— Applications
A User
2.4
/ Kernel
22 e
g 5 L Proxy NFS Proxy NFS ~
z) server client ’
< (export to) (mount from)
‘xg 1.8 Local client A Nache A Remote server
g 16 y y
£
1.4 VFS layer
1.2 A
] \ 4
0 200 400 600 800 1000 1200 1400 1600 Buffer ¢) CacheFs
Number of references Cache

Figure 6: Redirection overhead in traversing (Is -IR) a direc-
tory tree with 1500 directories. X-axis shows the number of
redirections; Y-axis shows the response time of a tree traversal.
All redirections point to the same path on the remote server.

traversing an NFS mounted directory tree (with Is -IR)
with 1500 directories and no re-directions is around 1.2
seconds. The time for a similar traversal where each di-
rectory is a referral to another server is 2.5 sec. In this
example, all the referrals point to the same path on an-
other server, thereby requiring only a single submount.
As more servers get added to the federation, the time
would further increase due to the additional submounts.

The network overhead of a redirection is, as expected,
due to the latency and delay caused by a remote data
transfer. For example, we measured the time taken to
read a file of SMB when the redirection was to a local
(same LAN) server to be 0.7 secs while that when the
redirection was to a remote server (over the WAN with
the client in CA and the server in NY) was 63.6 secs.

When a number of co-located clients mount a filesys-
tem from a local server they may each incur the redi-
rection and remote access overhead. To reduce network
latency, one obvious approach is to replicate the data
at multiple servers and let the client select the closest
replica location. However, replication is not feasible
for all workloads as data may be constantly changing
and what data needs to be replicated may not always be
known.

Ideally, the data should be available locally on de-
mand, kept consistent with respect to the remote server,
and shared among all the local clients. The local server
can act as a proxy by caching the remote data and for-
warding requests that cannot be serviced locally to the
remote server.

4.2 Nache Architecture

Conceptually, the Nache proxy is similar to any other
proxy say a web caching proxy. However, a number of
factors make it more challenging. First, NFSv4 is a state-
ful protocol with the server maintaining open state, clien-

Figure 7: Nache Architecture Block Diagram

tids, lock owners, etc. Second, unlike web caches, data is
both read and written and the close-to-open consistency
guarantee has to be maintained. Third, other consider-
ations of file handle management and security concerns
make a file server proxy non-trivial.

Observe that the Nache proxy is different from a net-
work layer-7 switch based routing proxies [4]. Such
routing proxies typically terminate the TCP connection,
parse the NFS packet information and route the packet
to the appropriate server. They do not act as a fully
functioning NFS server and client. The caching done
in routing proxies is for read-only data where consis-
tency support is not a concern. Moreover, the routing
switch/appliance becomes a single bottleneck for all data
to and from the client.

The Nache caching proxy relies on the delegation sup-
port in NFSv4 for improving cache performance. The
delegation granted by the remote server to the proxy is
shared among the local clients of the proxy. Thus, all
operations on a file across multiple clients can be han-
dled locally at the proxy. As we discussed in Section 3,
in scenarios where a number of local clients are sharing
a file for reads and writes, the overhead of a delegation
recall is prohibitive. With the shared delegation model of
Nache, a recall is avoided if all accesses are from local
clients. If there is absolutely no sharing, however, it is
better for clients to directly receive the delegations.

Figure 7 shows the block components of the Nache
proxy architecture. It consists of the NFS server and
client components that communicate via the VES layer.
CacheFS [19] is used to add persistence to the cache.
Nache fits well in the NFSv4 model of a federated
filesystem where each server exports the root of the com-
mon namespace and can act as a proxy for a remote
server. On entering a directory that is not local, a server
can either redirect the client to a local replica if data is
replicated or act as a proxy to fetch the data locally.

204

FAST ’07: 5th USENIX Conference on File and Storage Technologies USENIX Association

5 Implementation

In essence, Nache acts as a bridge between NFSv4 clients
and servers, handling client requests and forwarding
them to target NFSv4 servers when there is a cache miss.
It provides all the server functionality that NFS clients
expect. Nache has been implemented on Linux by glu-
ing together the client and server code paths for the vari-
ous NFS operations. The implementation centers around
three main areas: Cascaded NFS mounts, NFS operation
forwarding and Sub-operation RPC call handling.

5.1 Cascaded Mounts

Nache enables an NFS client to access a remote NFSv4
filesystem locally by mounting it from the proxy. Inter-
nally, Nache mounts the remote filesystem and re-exports
it so that local clients can access it over the NFS protocol.
To provide such cascaded mounts, Nache must be able to
export NFSv4 mounted filesystems. For this, we define
export operations for the NFS client that allow client re-
quests to be routed to remote servers.

We use Linux bind mounts to link the filesys-
tem mounted from the remote server with a direc-
tory within the root of the exported pseudo filesys-
tem at the proxy. Consider the case where a remote
NFSv4 server nf s4 - server is exporting a filesystem
at /export, while /nfs4 is the root of the pseudo
filesystem exported by the proxy nfs4 -proxy. In or-
der for nfs4 - proxy to re-export /export, we need
to bind mount /export to a directory in the tree rooted
at /nfs4, say at /nfs4/export. Here /nfs4 is the
root of the proxy’s NFSv4 pseudo filesystem. This can
be done at the proxy by the following sequence of com-
mands:

mount -t nfs4 nfsé4-server:/ /export
mount --bind /export /nfs4/export

The client can then access the exported filesystem
from the proxy as:

mount -t nfs4 nfsé4-proxy:/ /nfs

With cascaded mounts, the client can mount the re-
mote server’s filesystem from the proxy and access it lo-
cally at /nfs/export. We ensure that the proxy ex-
ports the remote filesystem using the appropriate options
(nohide, crossmnt)thatenablethe NFSv4 clientto
view a filesystem mounted on another filesystem. Thus
the modified code is able to export a remote filesystem
that is mounted over NFS. The proxy is implemented by
merging the functionality of the NFSv4 client and server
kernel modules which communicate through an unmod-
ified VFS layer. The interaction of the client and server
components is shown in Figure 8. The NFSv4 client
sends an RPC request to the proxy’s server-side mod-
ule (nfsd in Linux). The server-side module at the proxy
forwards the call to the proxy’s client-side module (nfs

Client Proxy Server
vrs
P !
NFS ‘ NFSD ‘ ‘ NFS ‘ ‘ NFSD ‘

t

Figure 8: Communication between kernel modules at client,
proxy and server.

in Linux) using the VFS interface. Finally, the client-
side module at the proxy forwards the call to the remote
server if needed. The response from the remote server is
stored at the client-side buffer cache and can be reused
for later requests.

The official Linux NFS kernel implementation does
not permit re-exporting of NFS mounted filesystems
(multi-hop NFS) because it is difficult to detect errors
such as infinite mount loops. Moreover, there are con-
cerns over host or network failures, access control and
authentication issues along with the inefficiency of using
an intermediate server between the NFS client and the
file server in a LAN environment [36]. In a trusted en-
terprise environment with WAN access, however, mul-
tihop NFS can be used to reduce the high latency by
caching locally at the proxy. NFSv4 also has better secu-
rity, authentication and failure handling support that can
be leveraged by the proxy. We discuss the security issues
later in Section 5.5.

5.2 NFS Operation Forwarding

Once an NFS operation (such as LOOKUP or OPEN) is
received at the Nache server-side module (Nache server),
it is forwarded to the client-side module (Nache client)
via the VFS interface. Thus the NFS request gets trans-
lated to a VFS call which then calls the corresponding
operation in the underlying local filesystem. In the proxy
case, this is the NF'S mounted remote filesystem.

The translation between an NFS request to a VFS call
and back to an NFS request works without much modifi-
cation in most cases. However, operations that are “state-
ful” require special handling both at the Nache server and
at the Nache client. Additionally, calls from the Nache
server to the VFS layer need modifications to make them
appear to have originated from a local process at the
proxy. In the following discussion we will describe in
detail some of the operations that need special attention.

e OPEN: The OPEN request processing required
modifications due to the integrated handling of
NFSv4 OPEN and LOOKUP operations in Linux.
In the NFSv4 client, processing a file OPEN triggers
a LOOKUP operation and the OPEN request is sent
to the server as part of LOOKUP. The NFS client’s

USENIX Association

FAST ’07: 5th USENIX Conference on File and Storage Technologies

205

generic file open function (nf s_open) does not ac-
tually send an OPEN request to the server. This cre-
ated a problem at the proxy during an OPEN re-
quest because the Nache server was invoking the
generic filesystem open function through the VES
layer which translated to nfs_open for an NFS
mounted filesystem. This function, however, would
not send an OPEN request to the remote server.

To resolve this, we modified the open operation
in the Nache server to emulate the way a local file
open would have been seen by the Nache client. In
Linux, this includes extracting the arguments of the
open and calling the appropriate lookup function in
the Nache client. The NFSv4 server stores state
(nfs4_stateid) associated with a file OPEN re-
quest. To obtain this state at Nache, we modified the
return path of the OPEN to extract the relevant state
created at the Nache client and populate the stateid
structure in the Nache server.

CREATE: In the normal Linux NFS client, the
create function (nfs_create) needs some data
(nameidata) that is populated by the VFS layer.
In Nache, when translating between the server-side
and client-side functions, the information to do this
initialization is not readily available. In the Nache
server, on a create request, we extract the open
flags and the create mode and use it to initialize
nameidata before invoking the VES function,
vis_create (). That, in turn, calls the Nache
client’s nfs_create () with the required data al-
ready initialized.

LOCK: When a LOCK request is processed at
the Nache server, it gets translated to the under-
lying POSIX function. The POSIX lock function,
however, does not call the associated NFS lock-
ing (nfs_lock) function in the Nache client. This
is because most regular filesystems do not specify
their own lock operation. Hence, none of the lock
requests (LOCK, LOCKU) would get forwarded to
the remote server. We modified the lock function in
the Nache server to check if the inode on which the
lock is desired belongs to an NFS mounted filesys-
tem and call the corresponding lock operation of the
Nache client.

CLOSE: This happens to be one of the most compli-
cated operations to handle. The CLOSE operation
depends on the state associated with the file at the
client. A client with multiple OPENSs for the same
file only sends one CLOSE to the server (the last
one). At the Nache server, there are two scenarios
that could occur: (i) the multiple opens are all from
the same client, (ii) the multiple opens are from dif-
ferent clients. Although the number of CLOSE re-
quests received by the Nache server is equal to the

number of distinct clients, the Nache client should
only send one CLOSE to the remote server. To han-
dle a CLOSE, we have to keep track of the state as-
sociated with a file and make sure that the file open
counters are adjusted properly during the OPEN and
CLOSE operations. The counters should be incre-
mented only once per client and not for every OPEN
request from the same client. This client state is dif-
ficult to maintain at the Nache server. In our current
implementation, we experimented with various op-
tions of counter manipulation and eventually chose
to simply count the number of open requests seen
by the proxy across all clients. This implies that
some CLOSE requests may not be sent to the re-
mote server in cases where a client opens the same
file multiple times. We expect to provide a better
solution as we continue the development of Nache.

5.3 Sub-operation RPC Calls

Another issue that arose due to performance-related op-
timizations is that the NFS server while handling a re-
quest does low level inode operations which, in Nache,
result in RPC calls sent to the remote server from the
proxy. The NFS server is optimized for doing lo-
cal filesystem operations and not for remote filesys-
tem access. As a representative example, consider the
OPEN request at the server. In processing the OPEN
(nfsd4_open), the server calls other local operations
for lookup (do_open_lookup) and permissions check-
ing (do_open_permissions). In Nache, however
these operations cannot be done locally and are sent to
the remote server. Thus a single OPEN call leads to
three RPC calls exchanged between Nache and the re-
mote server. To avoid this, we reorder these checks in
the usual path in the Nache server code as they would be
eventually done in the OPEN processing at the remote
server. Numerous such optimizations are possible to re-
duce the number of remote accesses.

5.4 CacheFS and Persistence

To add persistence to the cache, increase cache capac-
ity, and survive reboots, Nache relies on CacheFS [19].
CacheFS is a caching filesystem layer that can be used
to enhance the performance of a distributed filesystem
such as NFS or a slow device such as a CD-ROM. It
is designed as a layered filesystem which means that it
can cache a back filesystem (such as NFS) on the front
filesystem (the local filesystem). CacheFS is not a stan-
dalone filesystem; instead it is meant to work with the
front and back filesystems. CacheFS was originally used
for AFS caching but is now available for any filesys-
tem and is supported on many platforms including Linux.
With CacheFS, the system administrator can set aside a
partition on a block device for file caching which is then

206

FAST ’07: 5th USENIX Conference on File and Storage Technologies

USENIX Association

mounted locally with an interface for any filesystem to
use. When mounting a remote NFS filesystem, the ad-
min specifies the local mount point of the CacheFS de-
vice. In Nache, CacheFS is used primarily to act as an
on-disk extension of the buffer cache.

CacheFS does not maintain the directory structure of
the source filesystem. Instead, it stores cache data in the
form of a database for easy searching. The administrator
can manually force files out of the cache by simply delet-
ing them from the mounted filesystem. Caching granu-
larity can range from whole files to file pages. CacheFS
does not guarantee that files will be available in the cache
and can implement its own cache replacement policies.
The filesystem using CacheFS should be able to continue
operation even when the CacheFS device is not available.

5.5 Discussion

Security Issues In a proxy setting, security becomes
an important concern. The proxy can provide clients ac-
cess to read and modify data without the server knowing
or verifying their authority to do so. The current imple-
mentation of Nache does not include any additional secu-
rity support beyond what exists with vanilla delegations.
Presently, the server returns the list of access control en-
tries when a delegation is awarded. However, the user ID
space at the proxy and server maybe different. In such
cases the proxy resorts to sending an ACCESS request to
the server to verify the access permissions for that client
for every OPEN. In case Nache is deployed as part of a
managed federation, the client access control can be cen-
trally managed.

Delegation Policy Another issue that needs attention is
the policy used by the server to decide when to award a
delegation. For example, the current implementation in
Linux awards a delegation on the second OPEN by the
same client. This policy may be too liberal in giving out
delegations which must be recalled if there is a conflict-
ing access. It may not be feasible to implement a com-
plex policy based on access history of each file within the
kernel. As part of the Nache implementation, we are ex-
ploring different policies that try to maintain additional
access information about the file to better grant delega-
tions.

Protocol Translation One interesting use of Nache is
as a protocol translator between NFS versions. Nache
behaves exactly like a v4 server to v4 clients and as a
v3 server to v3 clients. This is useful when leveraging
client features in NFSv4 such as redirection and volatile
file handles and the WAN-friendly protocol features. The
file delegation happens between the proxy acting as a v4
client and the back-end v4 server, hence the consistency
semantics are maintained for both v3 and v4 clients. Ef-
forts to integrate with an NFSv3 client are ongoing in

Nache.

Failure Handling Any component of the system —
client, proxy, or server can fail during an NFS operation.
In general the failure of the server can be masked some-
what by the proxy as it can respond to reads from the
cache (although these can no longer be backed by dele-
gations). However, the failure of the proxy will affect the
clients in two ways. First, the clients will not be able to
access the data on the server even when the server is op-
erational. Second, the writes done at the proxy that have
not been flushed back to the server may be lost. Some
of the problems of write delegations to a client without
a proxy are further complicated with the use of a proxy
as dirty data could have been read by multiple clients. If
the writes are flushed periodically to the server the lag
between the proxy and server state can be reduced.

6 Experimental Evaluation

The Nache implementation is based on CITI, University
of Michigan’s NFSv4 patches [13] applied to Linux ker-
nel version 2.6.17. User-space tools required on Linux
(such as nfs-utils) also have CITI patches applied for
better NFSv4 capabilities. We used IBM xSeries 335
servers with Intel Pentium III (1133MHz) processor,
1GB of RAM, 40GB IDE disk with the ext3 filesystem
for our experimental testbed. For the WAN access exper-
iments, we used machines over a wide area network be-
tween IBM Almaden (California) and IBM Watson (New
York) that had a round-trip ping delay of about 75 msec.
One of the local machines was set up as the Nache proxy
that runs the kernel with nfs and nfsd kernel modules
suitably modified for proxy implementation. The remote
server machine’s nfsd module is also modified to enable
write delegations and provide a fix for the COMMIT op-
eration on a delegated file, as we discuss later in this sec-
tion.

The evaluation is divided into four categories. First,
we evaluate the delegation support currently in Linux.
Next, we experiment with write delegations and their
performance with certain workloads. We argue that write
delegations should be awarded more carefully. Third, we
test Nache with a set of workloads for gains achieved in
terms of the total NFS operations sent to the server and
the time taken to complete certain file operations. Some
of the workloads are based on the different profiles avail-
able in Sun’s filesystem benchmark Filebench [24]. The
setup consists of two or more clients, a Nache proxy and
one server. We compute the benefits with Nache in sce-
narios where clients show overlap in their data access.
Finally, we measure the overhead of deploying Nache
especially in scenarios where there is no sharing among
clients, thereby, limiting the benefits of a shared cache.

USENIX Association

FAST ’07: 5th USENIX Conference on File and Storage Technologies

207

6.1 Effect of Delegations on NFSv4 Opera-
tions

We discussed the advantages and shortcomings of the
NFSv4 delegation support in the Linux kernel in Sec-
tion 3. Here we further investigate how individual file
operations are affected when a delegation is granted. Re-
call that a delegation is awarded to a client when a call-
back channel has been successfully established between
the server and the client for a recall; and a client opens a
file twice (not necessarily the same file). As mentioned
in Section 3, presently the Linux server only hands out
read delegations, while we added a prototype implemen-
tation for awarding write delegations. Our prototype uses
the same policy as used by read delegations, namely a
write delegation is granted on the second OPEN for write
from the same client. With our changes, we observed that
the server did not recall delegations correctly on a con-
flicting OPEN and was not handling a COMMIT from a
client with write delegations properly. The server tried
to recall the delegation on a COMMIT which the client
would not return until the COMMIT succeeded. This
deadlock caused new OPENs to see long delays. Our
prototype fixes the delegation recall handling on a con-
flicting OPEN and the COMMIT on a delegated file. We
expect these issues to be correctly resolved when write
delegations are officially supported in the Linux kernel.

|| NFSOp. | Delegation ON | Delegation OFF ||

OPEN 101 800
CLOSE 101 800
ACCESS 101 1

GETATTR 1 700

LOCK 101 800
LOCKU 1 800

READ 100 100

Table 2: The number of NFSv4 operations seen by the server
with and without read delegations.

To assess activity locally and at the server in the pres-
ence of delegations, we performed a sequence of OPEN-
READ-CLOSE operations over 100 files and repeated it
8 times. Table 2 shows the operations with read dele-
gations enabled. Observe that there are 101 OPEN (and
CLOSE) operations that are sent to the server with read
delegations. This is because the first OPEN from the
client does not get a delegation as per the server deci-
sion policy and is sent again to the server on the second
run. All other files only require one OPEN to be sent
to the server. However, as per the protocol, the client
must check caller’s access rights to the file even when
delegations are available (after the attribute timeout has
expired). We detect one such timeout during our run,
hence observe 101 ACCESS calls in the presence of del-

— ‘ ‘ With delegations —
Without delegations ===

NFS Ops at Server (in '000s)

4t .

m ol w ol wm |

kernel emacs gdb webserver varmail

Figure 9: Performance of Read and Write delegations (total
ops at server): the Y-axis shows the server ops with and without
delegations.

egations. Note also that no GETATTR requests need to
be sent to the server for revalidation when read delega-
tions have been obtained. Also the number of reads sent
to the server are the same with and without delegations as
the file data is cached after the first OPEN in both cases.
Similarly, we introduced the LOCK-ULOCK pair in the
sequence to determine the LOCK operation behavior and
observe that unlocks can be serviced locally when dele-
gations are available.

We repeated the experiments with write delegations
and found that all the writes are flushed to the server on
a CLOSE although they can be kept dirty if delegations
are in place. The inconsistent results are due in part to the
fact that the Linux server’s delegation implementation is
incomplete.

To further study the benefits of delegations, we used
different workloads to evaluate the performance. One set
of workloads consist of compilations of different source
code packages, namely the Linux kernel, Emacs and
GDB, where the source tree is mounted over NFS from
a remote server. Another set includes webserver and var-
mail profiles from the filebench benchmark. Figure 9
shows the server operations for different workloads with
read and write delegations enabled. Here the number of
operations at the server are 16 to 1.2 times lower for the
different workloads when delegations are granted. No-
tice the massive benefits in the compile of the Linux ker-
nel compared to those of Emacs and GDB. This is be-
cause the kernel is relatively self-contained and does not
reference many files outside the source tree. On the other
hand, the compiles of Emacs and GDB use standard in-
clude files and libraries during the build which are ac-
cessed from the local filesystem. Figure 10 shows the
benefits in terms client response time and throughput for
the same workloads.

208

FAST ’07: 5th USENIX Conference on File and Storage Technologies

USENIX Association

With delegations s
Without delegations ===
z
E Time (m) Time (m) Time (m) Ops/s Ops/s
8 29
©
(0]
£
= 565
o
@
g 95
S 14 2 2 65 65 390 92
5
o
=
[=2]
=3
°
=
) I I
kernel emacs gdb webserver varmail

Figure 10: Performance of Read and Write delegation (total
throughput): the Y-axis shows the server throughput (ops/sec)
or response time with and without delegations. The number at
the top of the bar is the actual value.

6.2 Impact of Write Delegation Policy

In Section 3, we showed that the overhead of a delegation
recall can be substantial enough to negate its benefits.
Here, we further investigate the impact for delegation re-
calls in workloads with concurrent writes. To simulate
such a workload, we modified Filebench to use multi-
ple threads each doing a sequence of open-read-append-
close operations on a set of files directly from the server.
Because of write delegations being awarded and recalled,
the performance varies by a large degree depending on
the number of clients. With two clients doing concur-
rent writes, one client’s throughput was observed to be
109 ops/sec while the other client’s was half that at 54
ops/sec. Similarly, the average latencies observed by the
clients were 252 ms and 435 ms, respectively. With write
delegations disabled, both the clients had similar perfor-
mance. The first two bars show these results in Figure 11.

We had also shown in Section 3 that the time taken
for a conflicting OPEN increases substantially with the
amount of dirty data that needs to be flushed on a del-
egation recall. However, if the dirty data is synced at
regular intervals, the time taken to respond to a conflict-
ing OPEN should be significantly reduced. To verify this
we added a £sync () operation before the close () in
the Filebench workload for each file.

This improved the throughput and latency for the sec-
ond client and both achieved 75 ops/sec with average la-
tencies of 531ms and 548ms respectively. These results
are shown in the last two bars of Figure 11. Keeping
the dirty data size less than 1MB seems to be a good
heuristic as the overhead remains fairly constant when
the unwritten data ranges from a few KBs to 1 MB. Note
that latencies are worse with £sync () because data is
written more frequently.

Similarly, Figure 12 shows the average latency for

600

T
Client1 (delegations)
Client2 (delegations)

Client1 (no delegations)

Client2 (no delegations)

500

400

300

200

) H
0

Ops/s

Throughput (Ops/s) or Latency (msec) at clients

msec Ops/s (with fsync) msec (with fsync)

Figure 11: Effect of WRITE delegation on a workload with
write sharing among clients. The 4 bars in each set show the
performance of Clientl with write delegation, Client2 with a
conflicting write and Clientl and Client2 with delegations dis-

abled respectively.

T
Client1 (delegations;
Client2 ion:

Client1 (no delegations,

Client2 (no delegations;

Open/Close latency at clients (msec)

OPEN CLOSE

OPEN (fsync)

CLOSE (fsync)

Figure 12: Effect of WRITE delegation on latencies of OPEN
and CLOSE operations.

OPEN and CLOSE operations for each of the two clients
in the presence of write delegations and with the op-
tional periodic £sync (). We observe that the second
client’s OPEN takes twice the amount of time as the first
client when write delegations are handed out. This reen-
forces the claim that the delegation policy can have an
adverse affect on the performance if there are conflicting
accesses.

6.3 Performance Benefits of Nache

In this section we evaluate the performance benefits of
Nache using different workloads. In the experimental
testbed, a group of client machines access a remote file
server via the same proxy server. For results demonstrat-
ing LAN access, all machines are on the same 100 Mbps
LAN. For experiments with WAN access, the access is
over an enterprise network between California and New
York.

USENIX Association

FAST ’07: 5th USENIX Conference on File and Storage Technologies

209

40

Without Nache s
With Nache ===

35

30

25

20 -

NFS Ops at Server per 100 Filebench Ops

2 clients 3 clients 4 clients

1 client

Figure 13: Benefits of Nache: Filebench Web server workload.

6.3.1 Filebench Workloads

The Filebench benchmark contains a number of profiles
that are representative of different types of workloads.
Some of them are: a webserver with read-only data, an
OLTP transaction processing system, a varmail workload
(similar to the Postmark benchmark), and a web proxy
workload (webserver). We provide results for the web-
server and OLTP workloads.

Webserver: This workload generates a dataset with a
specified number of directories and files using a gamma
distribution to determine the number of sub-directories
and files. It then spawns a specified number of threads
where each thread performs a sequence of open, read en-
tire file and close operations over a chosen number of
files, outputting resulting data to a logfile. As part of the
runs, we observed that Filebench was accessing all files
uniformly with no skew which we believe is not repre-
sentative of a typical webserver access pattern [11]. We
modified the access pattern function to select files based
on a Zipf distribution [11]. We obtained results for both
the uniform and Zipf file access pattern using 500 files,
10 threads and a run time of 100 seconds. Figure 13
shows the total number of operations sent to the server
normalized with respect to the total number of Filebench
operations. The normalization was done to remove the
effect of any variance in the total number of operations
generated by filebench as the number of clients varied.
We observe that Nache reduces the number of operations
seen at the server by 38% with four clients.

OLTP: The OLTP workload is a database emulator us-
ing an I/O model from Oracle 9i. This workload tests for
the performance of small random reads and writes. In our
experiments we use 20 reader processes, 5 processes for
asynchronous writing, and a log writer. Since Filebench
was originally written for Solaris and modified to work
on Linux, we found that it was quite unstable in running
the OLTP profile, possibly due to the asynchronous I/O
requests. We could not reliably run the OLTP workload

100
Without Nache -
With Nache (2 clients) ===

80

60

40

NFS Ops at Server per 100 Filebench Ops

20

oltp

Figure 14: Benefits of Nache: Filebench OLTP workload.

for more than two clients. Figure 14 shows the total num-
ber of operations sent to the server normalized with re-
spect to the total number of filebench operations. Ob-
serve that with Nache, the server operations are reduces
by 12.5% for two clients.

6.3.2 Software Builds

In this experiment we consider the scenario of a joint
software development project where clients build indi-
vidual versions of a large software package for local
testing. This involves using a common source tree at
a remote server and building it with locally modified
files. We performed the build of three software pack-
ages: Linux kernel (version 2.6.17), GDB (version 6.5),
and Emacs (version 21.3). In each case, the directory
containing the source was NFS mounted at the proxy and
the object and executable files generated during the com-
pilation are written locally at the client.

Figures 15, 16, 17 show the number of NFS opera-
tions sent to the server for each of the three workloads
with varying number of clients sharing the proxy cache.
Based on these experiments we observe that: (i) with
Nache, the operations at the server decrease or stay flat
as the number of clients increase (i.e., there is more shar-
ing), (ii) without Nache, the operations at the server lin-
early increase with the number of clients (as do the op-
erations at the proxy with Nache), (iii) with Nache, the
time taken over a LAN for various builds stays constant
as the number of clients increase (iv) with Nache, the
time taken for various builds decreases over WAN (as
shown in Figure 18). For example, for the kernel build
in Figure 15, the server operations are reduced by more
than 50% with Nache and 2 clients. Interestingly, with
Nache the number of operations at the server with multi-
ple clients is sometimes less than that for a single client.
This is because some operations such as CLOSE will
not be sent to the server if multiple clients have opened
the file via Nache. Furthermore, the number of granted

210

FAST ’07: 5th USENIX Conference on File and Storage Technologies

USENIX Association

300 T
Without Nache
With Nache o

250

200

150
100
) .

1 client 2 clients 3 clients

NFS Ops at Server (in '000s)

o

4 clients

Figure 15: Benefits of Nache: Compile of Linux kernel.

Without Nache —
With Nache ===

20

j|l||L

1 client 2 clients 3 clients 4 clients

NFS Ops at Server (in '000s)

o

o

Figure 16: Benefits of Nache: Compile of GDB.

delegations is higher as more files may be opened con-
currently with two clients than with one client. This is
an artifact of the way the server awards delegations (on
the second concurrent OPEN from a client) rather than
an inherent benefit of the proxy. Similarly, the response
time on a WAN reduces by 70% for the same build. Ob-
serve that the kernel compile had the best performance
improvement when using a proxy for the same reasons
as discussed in Section 6.1.

Response time over WAN We repeated the software
build experiments over a WAN to measure the latency
improvements with Nache. Figure 18 shows the time
taken to build the Linux kernel, GDB and Emacs with
and without Nache. As in the LAN case, the source code
is NFS mounted, but the object files and executables are
stored locally.

For a single client accessing data directly from the re-
mote server without Nache, the time taken is 533min,
15.8min and 5.6min respectively. The response time
decreases as we increase the number of clients going
through Nache. In case of the kernel build, the response
time is slightly higher with a single client due to the over-

Without Nache
With Nache s

!

1 client 2 clients 3 clients 4 clients

IS

W

NFS Ops at Server (in '000s)

N

o

Figure 17: Benefits of Nache: Compile of Emacs.

T
No Nache mmmmm -
With Nache (1 client) s
With Nache (2 clients) s
With Nache (4 clients) s

a
o

n
a
>

N
@

3
R

%]
(S

=)

Time taken over WAN (mins)

Kernel GDB

Emacs

Figure 18: Effect of Proxy on response time over a WAN.

head incurred by an intermediary proxy and the absence
of sharing. With two clients, on the other hand, the re-
sponse time is 3.5 times lower than without Nache. The
marked improvement in response time is due in part to
the fewer operations sent to the server as we discussed
earlier.

6.4 Measuring Proxy Overhead

In certain scenarios such as a single client accessing files
or when there is no file sharing, Nache simply adds to
the data path without any added benefit of a shared con-
sistent cache. In this section, we measure the overhead
of the proxy in such scenarios using micro-benchmark
tests. The workloads used for the micro-benchmark are
as follows:

e Create Files: Creates 25,000 files, writes up to
16KB of data and then closes all of them.

e Random Reads: Performs random reads on a large
1GB file using a single thread.

o Random Writes: Performs random writes on a large
1GB file using a single thread.

USENIX Association

FAST ’07: 5th USENIX Conference on File and Storage Technologies

211

Micro- ops/sec | ops/sec | latency | latency

benchmark | (Nache)| (NFSv4) (Nache)| (NFSv4
ms ms

Create 37 40 1283 1172

Files

Random 99 127 1.3 7.8

Reads

Random 27 32 37.6 31.3

Writes

Random 9 11.9 220 146

Appends

Create 9 16 5217 3009

Files

(WAN)

Random 77 48 12.9 20.7

Reads

(WAN)

Random 8.6 10 116.3 98

Writes

(WAN)

Random 2.2 2.4 883.4 821

Appends

(WAN)

Table 3: Micro-benchmark results and comparison among
configurations with and without Nache

e Random Appends: Creates a dataset with multiple
files and does append-fsync on the files with random
append sizes ranging from 1KB to 8KB. The file is
flushed (fsync) every 10MB up to the maximum file
size of 1GB.

We ran all the benchmarks over a LAN and a WAN to
measure latencies for the different workloads. Table 3
shows the operation rate (ops/sec), the number of NFS
operations sent to the server and the average latency
for each of the micro-benchmarks. The results show
that overhead is higher (7-40% worse) in create-intensive
cases compared to the other scenarios. This is expected
because Nache just acts as another router and seems to
provide no benefit in terms of data or metadata caching.
Some gains are observed in case of random reads on
WAN which can be attributed to caching at the proxy.
The Nache code is not fine-tuned and some of the over-
head should decrease with some optimizations.

7 Related Work

Caching has always been used in distributed filesys-
tems to improve performance. Most popular distributed
filesystems rely on a client-server architecture where
caching is done primarily at the client. While the var-
ious NFS versions have supported client-side caching,

they enforce only weak cache consistency. NFS exten-
sions such as Spritely-NFS and NQNEFS tried to improve
the NFS consistency semantics. Spritely-NFS [35] used
the Sprite [27] cache consistency protocols and applied
them to NFS. This allowed for better cache consistency
by using server callbacks. NQNFS [23] also aimed at
improving NES consistency semantics but differed from
Sprite in the way it detected write sharing.

While NFS was more suited for LAN access, the
AFS [2, 17, 18] filesystem was designed for wide-area
access. For this, AFS relied extensively on client-side file
caching and supported cache consistency through call-
backs. The successor to AFS was the DFS [20] filesys-
tem which had most of the features of AFS but also
integrated with the OSF DCE platform. DFS provided
better load balancing and synchronization features along
with transparency across domains within an enterprise
for easy administration. AFS also led to the Coda [22]
filesystem that dealt with replication and client-side per-
sistent caching for better scalability while focusing on
disconnected operations.

Along with NFS and AFS, which are more prevalent
on Unix platforms, Microsoft Windows clients use the
CIFS (Common Internet File System) [34] protocol to
share data over a network. CIFS provides various opti-
mizations such as batched messages, opportunistic locks
for stronger cache coherency, and local buffering to im-
prove response times and save network round trips. The
Microsoft DFS filesystem leverages the CIFS protocol to
create a filesystem federation across multiple hosts [25].

In case of AFS, along with client-side caching, Muntz-
Honeyman [26] analyzed the performance of a multi-
level cache for improving client response times in a
distributed filesystem. They concluded that multi-level
caching may not be very useful due to insufficient shar-
ing among client workloads. While it is known that
the effectiveness of an intermediate cache is limited by
the degree the sharing across clients, we believe that re-
mote collaboration has significantly increased in the last
decade due to advances in network bandwidth and im-
provements in collaborative tools. Current web work-
loads, for example, show a high degree of sharing of
“hot” documents across clients [11]. Similarly, dis-
tributed collaborative projects have increased with global
outsourcing. In Nache, we show that even when sharing
is low (say 8-10%), the gain in response time can be high
when data is accessed across a WAN. Moreover, Muntz-
Honeyman’s paper shows that an intermediate proxy can
substantially reduce the peak load at the server. Thus,
along with client response time, a proxy can also im-
prove the server scalability by reducing server overload.
We observed with Nache that even a very low degree of
sharing can eliminate all the gains of a pure client-side
cache due to the recall of delegations on a conflicting

212

FAST ’07: 5th USENIX Conference on File and Storage Technologies

USENIX Association

access. This suggests that a shared proxy cache is bene-
ficial to reduce conflicts if cache consistency is desired.

The client-side cache can also be optimized by making
it persistent and policy-based. Nache relies on CacheFS
for on-disk caching. Xcachefs is similar to CacheFS in
that it allows persistent caching of remote filesystems but
further improves performance by de-coupling the cache
policy from the underlying filesystem [33]. It allows
clients to augment the caching mechanism of the under-
lying filesystem by specifying workload specific caching
policies.

Recently a plethora of commercial WAFS and WAN
acceleration products have started offering caches for
NFS and CIFS protocol for improving wide-area perfor-
mance. These often use custom devices both in front of
the server and the client with an optimized protocol in
between [5, 3].

Although proxy caching is not that prevalent in file
serving environments, it has been widely used in the Web
due in part to the read-only nature of the data and the
high degree of WAN accesses. The Squid proxy cache
that grew out of the Harvest project [14, 15] uses a hi-
erarchical cache organization to cache FTP, HTTP and
DNS data.

While Nache focuses on improving the wide-area ac-
cess performance of existing file servers, numerous re-
search efforts have focused on building scalable file
servers. Slice [7] implements a scalable network-wide
storage by interposing a request switching filter on the
network path between clients and servers. Clients see
a unified file volume and access it over NFS. Slice is
mainly designed to provide a scalable, powerful NAS
abstraction over LAN whereas our main goal is to im-
prove file serving performance over a WAN. The Tiger
file server [10] provides constant rate delivery by strip-
ing the data across distributed machines (connected via
high speed ATM) and balancing limited I/O, network and
disk resources across different workloads. Farsite [6]
implements a server-less distributed filesystem that pro-
vides the benefits of shared namespace, location trans-
parency and low cost. Thus it transforms unreliable lo-
cal storage at clients to a more reliable, logically cen-
tralized storage service. XFS is another server-less dis-
tributed filesystem that uses cooperative caching to im-
prove performance [8]. Lustre [1] is an object based dis-
tributed filesystem that is designed to work with object
based storage devices where controllers can manipulate
file objects. This leads to better I/O performance, scal-
ability, and storage management. While these and other
efforts [31, 30] have focused on improving file serving
performance, they are not designed for improving the
performance of existing file servers and NAS appliances.

8 Conclusion

In this paper, we have presented the design and imple-
mentation of a caching proxy for NFSv4. Nache lever-
ages the features of NFSv4 to improve the performance
of file accesses in a wide-area distributed environment.
Basically, the Nache proxy sits in between a local NFS
client and a remote NFS server caching the remote data
closer to the client. Nache acts as an NFS server to the
local client and as an NFS client to the remote server.
To provide cache consistency Nache exploits the read
and write delegations support in NFSv4. We highlighted
the three main contributions of the paper. First, we ex-
plored the performance implications of read and write
open delegations in NFSv4. Second, we detailed the
implementation of the Nache proxy cache architecture
on the Linux 2.6 platform. Finally, we discussed how
to leverage delegations to provide consistent caching in
the Nache proxy. Using our testbed infrastructure, we
demonstrated the performance benefits of Nache using
the Filebench benchmark and different workloads. In
most cases the Nache proxy can reduce the number of
operations seen at the server by 10 to 50%.

As part of on going work we are exploring different
policies for awarding read and write delegations to lower
the probability of a conflict. Also the Nache architecture
is being integrated with the federated filesystem architec-
ture that provides a common file-based view of all data
in an enterprise.

References
[1] Cluster File Systems Inc.,

Performance File System.
docs/whitepaper.pdf.

Lustre: A Scalable, High-
http://www.lustre.org/

[2] OpenAFS: http://www.openafs.org.

[3] Packeteer Inc., Wide Area File Services: Delivering on the
Promse of Storage and Server Consolidation at the Branch
Office. http://www.packeteer.com/resources/
prod- sol /WAFS_WP.pdf.

[4] Acopia Networks, Intelligent File Virtualization with
Acopia. http://www.acopianetworks.com/pdfs/
adaptive_resource_networking/Intelli%gent_
File Virtualization_wp.pdf, Nov. 2006.

[5] Expand Networks, WAN Application Acceleration for LAN-
like Performance. http://www.expand.com/products/
WhitePapers/wanForLan.pdf, Nov. 2006.

[6] A. Adya, W. Bolosky, M. Castro, R. Chaiken, G. Cermak,
J. Douceur, J. Howell, J. Lorch, M. Theimer, and R. Wattenhofer.
FARSITE: Federated, Available, and Reliable Storage for an In-
completely Trusted Environment, Dec 2002.

[7] D. C. Anderson, J. S. Chase, and A. M. Vahdat. Interposed Re-

quest Routing for Scalable Network Storage. In Proceedings of

the Fourth Symposium on Operating System Design and Imple-
mentation (OSDI), Oct 2000.

[8] T. Anderson, M. Dahlin, J. Neefe, D. Patterson, D. Roselli, and

R. Wang. Serverless Network File Systems. In ”Proceedings of

the Fifteenth ACM Symposium on Operating Systems Principles”,
Dec 1995.

USENIX Association

FAST ’07: 5th USENIX Conference on File and Storage Technologies

213

[9]

[10]

(1]

[12]

[13]

[14]

[15]
[16]

(171

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

(271

(28]

[29]

P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency
Control and Recovery in Database Systems. Addison-Wesley,
1987.

W. Bolosky, J. Draves, R. Fitzgerald, G. Gibson, M. Jones,
S. Levi, N. Myhrvold, and R. Rashid. The Tiger Video File-
server. In Proceedings of the 6th International Workshop on Net-
work and Operating System Support for Digital Audio and Video
(NOSSDAV’96), Apr 1996.

L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web
Caching and Zipf-like Distributions: Evidence and Implications.
In Proc. IEEE INFOCOM, pages 126-134, 1999.

B. Callaghan. NFS [llustrated. Addison-Wesley Longman Ltd.,
Essex, UK, 2000.

CITI. Projects: NFS Version 4 Open Source Reference Imple-
mentation. http://www.citi.umich.edu/projects/
nfsv4/1linux, Jun 2006.

J. Dilley, M. Arlitt, and S. Perret. Enhancement and validation
of the Squid cache replacement policy. In Proceedings of the 4th
International Web Caching Workshop, 1999.

D. Hardy and M. Schwartz. Harvest user’s manual, 1995.

J. Haswell, M. Naik, S. Parkes, and R. Tewari. Glamour: A Wide-
Area Filesystem Middleware Using NFSv4. Technical Report
RJ10368, IBM, 2005.

J. Howard and et al. An Overview of the Andrew Filesystem. In
Usenix Winter Techinal Conference, Feb 1988.

J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols,
M. Satyanarayanan, R. N. Sidebotham, and M. J. West. Scale
and Performance in a Distributed File System. ACM Trans. Com-
put. Syst., 6(1):51-81, 1988.

D. Howells. FS-Cache: A Network Filesystem Caching Facility.
In Proceedings of the Linux Symposium, volume 1, Jul 2006.

M. L. Kazar, B. W. Leverett, O. T. Anderson, V. Apostolides,
B. A. Buttos, S. Chutani, C. F. Everhart, W. A. Mason, S. Tu, and
E. R. Zayas. DEcorum File System Architectural Overview. In
Proceedings of the Summer USENIX Technical Conference, 1990.
S. Khan. NFSv4.1: Directory Delegations and Notifica-
tions, Internet draft. http://tools.ietf.org/html/
draft-ietf-nfsv4d-directory-delegation-01,
Mar 2005.

J. J. Kistler and M. Satyanarayanan. Disconnected Operation in
the Coda File System. In Thirteenth ACM Symposium on Oper-
ating Systems Principles, volume 25, pages 213-225, Asilomar
Conference Center, Pacific Grove, U.S., 1991. ACM Press.

R. Macklem. Not Quite NFS, Soft Cache Consistency for NFS. In
Proceedings of the USENIX Winter 1994 Technical Conference,
pages 261-278, San Fransisco, CA, USA, 1994.

R. McDougall, J. Crase, and S. Debnath. FileBench: File System
Microbenchmarks. http://www.opensolaris.org/os/
community/performance/filebench, 2006.
Microsoft. Distributed File System (DFS).
//www.microsoft.com/windowsserver2003/
technologies/storage/dfs/default.mspx.

http:

D. Muntz and P. Honeyman. Multi-level Caching in Distributed
File Systems. In Proceedings of the USENIX Winter 1992 Techni-
cal Conference, pages 305-313, San Fransisco, CA, USA, 1992.
M. N. Nelson, B. B. Welch, and J. K. Ousterhout. Caching in
the Sprite Network File System. ACM Transactions on Computer
Systems, 6(1):134-154, 1988.

B. Pawlowski, C. Juszczak, P. Staubach, C. Smith, D. Lebel, and
D. Hitz. NFS Version 3: Design and Implementation. In USENIX
Summer, pages 137-152, 1994.

B. Pawlowski, S. Shepler, C. Beame, B. Callaghan, M. Eisler,
D. Noveck, D. Robinson, and R. Thurlow. The NFS Version 4
Protocol. In Proceedings of Second International System Admin-
istration and Networking (SANE) Conference, May 2000.

[30]

[31]

[32]

[33]

[34]

[35]

[36]

K. W. Preslan, A. P. Barry, J. E. Brassow, G. M. Erickson,
E. Nygaard, C. J. Sabol, S. R. Soltis, D. C. Teigland, and M. T.
O’Keefe. A 64-bit, Shared Disk File System for Linux. In Pro-
ceedings of the Seventh NASA Goddard Conference on Mass Stor-
age Systems, pages 2241, San Diego, CA, 1999. IEEE Computer
Society Press.

F. Schmuck and R. Haskin. GPFS: A Shared-Disk File System
for Large Computing Clusters. In Proc. of the First Conference
on File and Storage Technologies (FAST), pages 231-244, Jan.
2002.

S. Shepler and et al. Network File System (NFS) version 4 Proto-
col. RFC 3530 http://www.ietf.org/rfc/rfc3530.
txt.

G. Sivathanu and E. Zadok. A Versatile Persistent Caching
Framework for File Systems. Technical Report FSL-05-05, Com-
puter Science Department, Stony Brook University, Dec 2005.
SNIA. Common Internet File System (CIFS) Technical Ref-
erence. http://www.snia.org/tech_activities/
CIFS/CIFS-TR-1p00_FINAL.pdf.

V. Srinivasan and J. Mogul. Spritely nfs: experiments with cache-
consistency protocols. In Proceedings of the 12th Symposium on
Operating Systems Principles, pages 45-57, Dec. 1989.

H. Stern, M. Eisler, and R. Labiaga. Managing NFS and NIS.
O’Reilly, Jul 2001.

214

FAST ’07: 5th USENIX Conference on File and Storage Technologies

USENIX Association

