
Edge-based Discovery of Training Data for Machine Learning

Ziqiang Feng, Shilpa George, Jan Harkes, Padmanabhan Pillai†, Roberta Klatzky, Mahadev Satyanarayanan
Carnegie Mellon University and †Intel Labs

{zf, shilpag, jaharkes, satya}@cs.cmu.edu, padmanabhan.s.pillai@intel.com, klatzky@cmu.edu

Abstract—We show how edge-based early discard of data

can greatly improve the productivity of a human expert in

assembling a large training set for machine learning. This

task may span multiple data sources that are live (e.g., video

cameras) or archival (data sets dispersed over the Internet).

The critical resource here is the attention of the expert. We

describe Eureka, an interactive system that leverages edge

computing to greatly improve the productivity of experts in

this task. Our experimental results show that Eureka reduces

the labeling effort needed to construct a training set by two

orders of magnitude relative to a brute-force approach.

I. INTRODUCTION

Deep neural networks (DNNs) have transformed computer
vision. By supervising the training of DNNs, a domain
expert with no programming skills or computer vision back-
ground can create highly accurate classifiers in domains such
as medical research, ecology, and military intelligence. The
discriminative power of these classifiers can be impressive,
embodying questions that are hard for a human non-expert
to answer. Examples include: “Is this skin lesion melanoma
or basal cell carcinoma?”; “Does this pathology image show
pagetoid spread or nuclear atypia?”; “Is this a caterpillar of
the pest moth Cactoblastis cactorum or of a benign moth?”;
“Is this seismic image indicative of an underground nuclear
explosion or a minor earthquake?”

Through the use of Web-based training tools, a domain
expert can produce highly accurate image classifiers. Vir-
tually all the effort is in assembling a large training data
set, labeling the data, running a long-running batch job to
perform training, and then evaluating the resulting classifier.
The use of DNNs avoids the need to perform explicit feature
extraction, which typically requires creation of custom code
and hence requires programming skills.

The empowerment of domain experts by DNNs introduces
a new problem: namely, how to collect a large enough
training data set and label it. This is the problem addressed
by this paper. DNNs typically need to be trained on thou-
sands of labeled examples before their accuracy reaches
an acceptable level. How many hours will it take for a
domain expert to assemble such a large training data set
for a rare phenomenon? How much junk will she need to
wade through? An expert cannot delegate the task of gener-
ating training data to a less skilled person. Crowd-sourcing
approaches such as those using Amazon Mechanical Turk
(AMT) that have been successful in other contexts [1], [2]

are not applicable here for two reasons. First, crowds are not
experts. By definition, only the expert possesses the depth
of domain-specific knowledge needed to reliably distinguish
true positives from false positives, and avoid false negatives.
Second, access to data sources may be restricted for reasons
such as patient privacy, national security, or business policy.

In this paper, we show how edge computing can be used to
create a human-in-the-loop system called Eureka for human-
efficient discovery of training data from distributed data
sources on the Internet. “Human-efficient” in this context
refers to (a) leveraging human judgement and expertise;
(b) avoiding long stalls awaiting results; and (c) avoiding
overloading the expert with a flood of irrelevant results.
Eureka views user attention as the most precious resource
in the system. This resource is used well if most of it
is consumed in examining results that prove to be true
positives. It is used poorly if most of it is spent waiting for
results, or dismissing frivolous false positives. To this end,
Eureka uses an iterative workflow that starts from a handful
of examples and evolves through increasingly sophisticated
classifiers that lead to discovery of more examples.

This paper focuses on the setting of multiple data sources
dispersed across the Internet. The data source may be live
(e.g., recently-captured video streams from a swarm of
drones, recent sensor data in automated manufacturing, etc.)
or archival (e.g., video from previous drone flights, multi-
year patient records from a large hospital system, etc.). In
this setting, the terms “edge” and “cloudlet” correspond to
their familiar interpretations. However, the concepts under-
lying Eureka are more broadly applicable. In all settings, the
edge is a location that can read from a data source at very
high bandwidth and low latency. A cloudlet is the compute
infrastructure at this location. Archival data may often be
concentrated in a single cloud data center. In that setting,
the data set can be statically or dynamically partitioned into
subsets that are each processed by a different machine in the
data center. Those machines play the role of cloudlets, and
their locations can be viewed as the edge. Eureka concepts
can also be extended to hardware implementations of storage
that embed processing capability. Various forms of “active
disks” and “intelligent storage” have been proposed over
the years, as discussed in Section VII. In that setting, the
embedded processing capability within storage is effectively
the “cloudlet”, and its location is the “edge”.

In all settings, high bandwidth and low latency access to

Expert with
domain-specific

GUI

Archival
Data

Source
LANLAN

cloudlet

Archival
Data

Source
LANLAN

cloudlet

LANLAN

cloudlet Live
Video

I
n
t
e
r
n
e
t

Figure 1. Eureka System Architecture

An infectious disease expert has just learned that a shy rodent, long
considered benign, may be the transmitter of a new disease. There
is a need to create an accurate image classifier for this rodent so
that it can be used in public health efforts to detect and eradicate
the pest. The expert has only a few images of the rodent, but needs
thousands to build an accurate DNN. There are likely to be some
untagged occurrences of this rodent in the background of images
that were captured for some other purpose in the epidemiological
image collections of many countries. A Eureka search can reveal
those occurrences. In the worst case, it may be necessary to deploy
cloudlets with large arrays of associated cameras in the field to serve
as live data sources for Eureka.

Figure 2. Example: Infectious Disease Control

data is used by domain-specific code executing on a cloudlet
to perform early discard. In other words, the rejection of
clearly irrelevant data happens as early as possible in the
processing pipeline that stretches from the data source to the
user. With this architecture, the bandwidth demand between
cloudlet and user is typically many orders of magnitude
smaller than the bandwidth demand between data source and
cloudlet. In addition to early discard, Eureka also harnesses
high levels of parallelism across multiple cloudlets. This
speeds up discovery of training data for rare phenomena.

The focus on early discard makes it natural to asso-
ciate Eureka with edge computing rather than cloud-based
settings. This is because of two reasons. First, ingress
bandwidth savings from edge-located sensors is a major part
of the rationale for edge computing. That is precisely what
early discard achieves. In cloud-based settings, the need for
bandwidth savings within a data center is less compelling
because bandwidth is plentiful. The user could simply run
her GUI on a virtual desktop that is located within the data
center, thus completely avoiding large-volume data transfers
out of the cloud. Second, Eureka is able to use both live and
archival data in an edge computing setting. The aligns well
with another aspect of edge computing, which is the ability
to create real-time services on edge-sourced data — early
discard is the “service” in this case.

In summary, Eureka can be viewed as an architecture that
trades off computing resources (e.g., processing cycles, net-
work bandwidth, and storage bandwidth) for user attention.
Edge computing is the key to making this tradeoff effective.
We describe the iterative workflow of Eureka in Section II,
present its design and implementation in Section III, derive
an analytical model of its workflow in Section IV, and report
on experiments in Sections V and VI. We describe related
work in Section VII, and close in Section VIII.

II. DISCOVERY WORKFLOW

Eureka views data sources as unstructured collections of
items. Early in our implementation, an item referred to a
single image in JPEG, PNG, or other well-known format.

We have since extended Eureka to treat a short segment of
a video stream as an item (Section III). We plan to further
extend Eureka to other data types such as whole-slide images
in digital pathology [3], map data from OpenStreetMap, and
other forms of domain-specific multi-dimensional data. In
each case, what constitutes an item will be specific to its
data type. For simplicity, we focus on images in this section.

Structured information, such as a SQL database, may
sometimes be available for a data source. This can be applied
in a pre-processing step to shrink the size of the data source.
For example, when searching medical images, patient record
details such as age, gender, and prior medical history may be
used to reduce the number of images that need to examined
with Eureka. In this paper, we will assume that any possible
pre-processing to shrink data sources has already been done
prior to the start of the Eureka workflow.

Figure 1 illustrates the system architecture for the Eureka
workflow. A domain-specific front-end GUI runs on a client
machine close to the expert. An early-discard back-end
runs at each cloudlet, LAN-connected to its data source.
The back-ends execute in parallel, and transmit thumbnails
of undiscarded images to the front-end. Each thumbnail
includes back pointers to its origin cloudlet and full-fidelity
image on that cloudlet. The expert sees a merged stream
of thumbnails from all back-ends. If a thumbnail merits
closer examination, a mouse click on it will open a separate
window to display the full-fidelity image and its associated
meta-data. Thumbnails are queued by the front-end, awaiting
the expert’s attention. If demand greatly exceeds available
attention, queue back pressure throttles cloudlet processing.

As a working example, consider the scenario described
in Figure 2. Starting from just a few example images, how
can the expert bootstrap her way to the thousands to tens
of thousands of images needed for deep learning? We start
with the premise that the base rate [4] is low — i.e., that the
rodent is rarely seen, and hence there are very few images in
which it appears. If a good classifier already existed, discard-
based search could be used in parallel on a very large number
of cloudlets. The number of false positives would be low,

Explicit features, manual
weights (color histogram,
SIFT, perceptual hashing)

Explicit features, learned
weights (HOG + SVM)

Shallow transfer learning
(MobileNet + SVM)

Deep transfer learning
(Faster R-CNN finetuning)

Deep learning

100 101 102 103 104

Number of Images (log scale)

A
cc

ur
ac

y
(n

ot
 to

 s
ca

le
)

Each type of model requires a different number of examples
before its accuracy starts to improve steadily. Their accura-
cies saturate at different levels when sufficient data is given.

Figure 3. Training Data Set Size vs. Accuracy

and the rate of true positives would be reasonably high. The
expert would neither waste her time rejecting obvious false
positives, nor would she waste time waiting for the next
image to appear. Most of her time would be spent examining
results that prove to be true positives. Alas, this state of
affairs will only exist at the end of the Eureka workflow.
No classifier exists at the beginning. What can we use for
early discard at the start of the workflow?

Based on our experience using Eureka, Figure 3 illustrates
the tradeoff that exists between classifier accuracy (higher is
better, but not to scale) and the amount of labeled training
data that is available. Using an iterative workflow, Eureka
helps an expert to efficiently work her way from the extreme
left, where just a handful of labeled images are available, to
the extreme right, where thousands of training images are
used to train a DNN. At the extreme left, the Eureka GUI
allows simple features such as color and texture to be defined
by example patches outlined on the few training examples
that are available. This defines a very weak classifier that
can be used as the basis of early discard. Because of the
weakness of the classifier, there are likely to be many false
positives. Unless the expert restricts her search to just a few
data sources, she will be overwhelmed by the flood of false
positives. Buried amidst the false positives are likely to be
a few true positives. As the expert sees these in the result
stream, she labels and adds them to the training set. Over
a modest amount of time (tens of minutes to a few hours,
depending on the base rate and number of cloudlets), the
training set is likely to grow to a few tens of images. At this
point, there is a sufficient amount of training data to create
a classifier based on more sophisticated features such as
HOG, and learned weights from a simple machine learning
algorithm such as SVM. The resulting classifier is still far
from the desired accuracy, but it is significantly improved.
Since the improved accuracy reduces the number of false
positives, the number of data sources explored in parallel
can be increased by recruiting more cloudlets. Once the
training set size reaches a few hundreds, shallow transfer
learning can be used. This yields an improved classifier that
further reduces false positives, and allows further expansion
in the number of data sources, thus speeding up the search.

Figure 4. Front-end GUI at the User

Once the training set size reaches a few thousands, deep
transfer learning can be used and beyond that, deep learning.
This iterative workflow can be terminated at any point if a
classifier of sufficient accuracy has been obtained.

Throughout this iterative workflow, the most precious
resource is the attention of the human expert. Eureka helps
to optimize the use of this scarce resource in two ways.
First, it enables immediate use of more accurate classifiers
as they are created. Second, as improved classifiers become
available, Eureka allows the search to be easily expanded
to more data sources, thus harnessing more parallelism to
increase the rate at which results are delivered to the expert.

The classifier generated at the end of Eureka’s workflow
may have bias, which is an essential part of expertise. In
real life, we overcome bias through mechanisms such as
obtaining a second opinion on a medical diagnosis. It is
not Eureka’s goal to generate a classifier that beats the
expert — after all, “your model is only as good as your
training data.” Rather, our goal is to help in capturing
expertise in the form of a training set, which is then used
to train a DNN. This DNN will inevitably reflect the bias
of the expert who trained it. In future, we envision multiple
experts each training a different DNN to allow for “second
opinions.” Higher-order machine learning approaches can
integrate DNNs from several experts into a single classifier.

III. SYSTEM DESIGN AND IMPLEMENTATION

Eureka is designed around two major considerations. The
first is software generality, allowing use of computer vision
code written in a wide range of programming languages
and libraries. The second is runtime efficiency, allowing
rapid early discard of large volumes of data. The Eureka
implementation substantially extends the OpenDiamond R�

platform for discard-based search [5], [6], [7], which was
developed in 2003–2010 (prior to the emergence of DNNs).
This platform has been used to implement many applications
in the medical domain, and they provide a rich collection of
domain-specific GUIs that helped us to conceptualize the
Eureka workflow. It also gave us a robust framework for

Itemizer
(scoping, caching)

Data Source
(images, videos, map data, etc.)

User Interface

Item

c k
Attribute

Filter

dcba
jihg C

loudlet
W
AN

Item Processor

F2
drop

drop

e
f k

F1

Figure 5. Execution Model

early discard that we were able to use as a starting point in
implementing Eureka. Finally, it comes with a rich collection
of simple image processing filters that are valuable in the
early iterations of a workflow (i.e., at the left of Figure 3).

Eureka is controlled and operated from a domain-specific
front-end GUI running on the human operator’s computer.
Figure 4 shows an example of such a GUI. It allows the
user to construct a search query that takes the form of
an early-discard pipeline of cascaded filters. The system
deploys this set of filters across many cloudlets that host the
data collections, and begins searching the associated data in
parallel. Only the results that pass these early-discard filters
are transmitted and displayed to the user. Figure 5 depicts
the logical execution model of Eureka.

A. Data Model and Query Formulation

1) Item: Eureka views data sources as unstructured col-
lections of items. Our current implementation supports im-
ages, individual frames of a video, or overlapping segments
from a video. We focus on images in this paper. The
appropriate granularity of items depends on the task. For
example, an object detection task may use individual frames
as items, while an activity recognition task may use 10-
second segments as items. Items are considered indepen-
dently by Eureka. Item attributes (Section III-A3) facilitate
post-analysis of Eureka results using traditional big data
technologies such as MapReduce or Spark.

2) Filter: A filter is an abstraction for executing any
computer vision code in Eureka. A filter’s main function is
to inspect items, declare which ones are clearly “irrelevant”,
and then discard them. Eureka defines a simple API between
filters and the Eureka runtime. A filter uses these APIs to
get user-supplied parameters (e.g., example texture patches)

for this query. A filter is required to implement a scoring
function, score(item), where it examines a given item
and outputs a numeric score. The runtime applies the filter’s
score function to each item, and if the returned score exceeds
a user-provided threshold, the item is deemed to pass; other-
wise the item is discarded. An early-discard query pipeline
consists of multiple filters, with corresponding parameters
and passing thresholds. The system requires an item to pass
all of the filters (logical conjunction) before transmitting and
presenting it to the user. This effectively implements the
Boolean operator AND across filters. Eureka could easily
be extended to support the full range of Boolean operators
and expressions. Eureka performs short-circuit evaluation:
once an item fails a filter, it is discarded without further
evaluation by later filters in a cascade.

3) Attribute: A filter can also attach attributes to an item
as a by-product of scoring. Attributes are key-value pairs
that can represent arbitrary data, and are accessed using
the get-attribute(item, key) function, and can be
written using the set-attribute(item, key, val)
interface. The primary purpose of the attribute abstraction is
to facilitate communication between filters, where a filter
gets attributes set by another. Attributes are analogous to
columns in relational databases but with significant differ-
ences. In Eureka, attributes are rarely complete for all items
(rows) in the data, both due to early-discard of items in
the pipeline and due to fast-aborted searches. Additionally,
unlike most databases, where the schema tends to be stable,
new attributes may be created rapidly in each new query
as the user applies new filters (e.g., a retrained DNN).
Finally, the user can designate a set of interesting attributes
to be retrieved along with the items. Unwanted attributes
are stripped off before Eureka transmits results back to the
user to reduce bandwidth demand over the WAN. Returned
attributes can be used for analysis using other tools.

4) Examples: Figure 6 shows several example filters.
While some filters output a pass/fail boolean result (e.g.,
JPEG decoder), others output a numeric score (e.g., SVM
confidence) that can be compared with a threshold. As
explained in Section III-B4, the use of numeric scores allows
reuse of cached filter execution results even when filter
thresholds are changed. The SVM filter in Figure 6 illustrates
how attributes enable communication between filters. It uses
the mobilenet_pool1a attribute created by the Mo-
bileNet [8] filter, which in turn uses the rgb attribute created
by the JPEG decoder, forming a chain of dependency. This
attribute mechanism allows decomposition of complex tasks
into independent, manageable, and reusable components,
while still adhering to the filter chain abstraction.

B. Eureka Edge Implementation

Most of the Eureka system runs on cloudlets, colocated
with distributed data sources. The cloudlets both store the

Filter Synopsis

JPEG decoder

jpeg decode() ! bool
Decodes a JPEG image.
Set-attributes: rgb
Returns true if successful, false otherwise.

SIFT matching

sift match(distance ratio: float, example: Image) ! int
Finds matched SIFT keypoints between example and test image.
Get-attributes: rgb
Returns number of matched keypoints.

MobileNet classification

mobilenet classify(target class: string, top k: int) ! bool
Classifies image into ImageNet classes and test if target class is in top k predictions.
Get-attributes: rgb
Set-attributes: mobilenet pool1a
Returns true if target class is in top k predictions of the test image, false otherwise.

SVM

svm(training data: ListhImagei) ! float
Train an SVM with the given training set, using MobileNet’s 1024-dimensional feature
as SVM input. Then use the SVM to classify the test image.
Get-attributes: mobilenet pool1a
Returns probability of the test image being positive.

Each filter has algorithm-specific parameters, get-/set-attributes and return scores. The user can specify a threshold on each
filter’s return score to drop objects below the threshold.

Figure 6. Examples of Eureka Filters

collected data, and execute queries. As mentioned earlier,
Eureka has been designed with software generality and
runtime efficiency in mind. This section describes how key
components of the Eureka backend address these dual goals.

1) Filter Container: Eureka encapsulates each filter in
its own Docker container. This facilitates use of many
different frameworks with varying software dependencies
concurrently within a single query. For example in Figure 6,
the JPEG decoder may be a proprietary library, while SIFT
is written in OpenCV, MobileNet in TensorFlow, and SVM
in Scikit-learn. Some filters may depend on specific versions
of software (e.g., a specific release of TensorFlow).

The containers representing filters can access multi-core
CPU resources as well as specialized hardware (e.g., GPUs).
For typical uses of GPUs such as DNN inference, we batch
incoming items to exploit the efficient batch processing
capability of popular deep learning frameworks. Eureka
reuses running containers whenever possible, e.g., when the
same filter is used in multiple queries. To simplify filter
development, we have implemented Docker base images for
different Linux distributions. These include all of the logic
needed to interface with Eureka as well as a skeleton filter.
A developer only needs to add code for the computer vision
algorithm that corresponds to the filter being implemented.

2) Itemizer: The itemizer obtains raw data from its data
source, transforms it into an item stream, and injects this
stream into the execution pipeline. The simplest case just in-
volves loading individual files from disk. More generally, the
itemizer can preprocess the data from its native format and
transform it into the items needed for the query. For example,
it can take continuous data (e.g., streaming or stored video),

and emit multiple separate items at a granularity appropriate
for the query (e.g., individual frames for object detection,
or overlapping short video clips for activity recognition).
In addition to selecting granularity, users can also set the
scope of the itemizer. This can limit the search to only a
subset of underlying data based on metadata attributes such
as geographical location and recorded date or time. To take
advantage of temporal locality in the iterative workflow, the
itemizer aggressively caches items that it emits. This item
caching is in addition to the result caching that is described
in Section III-B4. The existence of temporal locality in
Eureka workloads is in contrast to stream analytics, where
each item is processed only once.

3) Item Processor: The item processor is responsible
for much of the query execution in Eureka. It evaluates
the set of early-discard filters on each item independently,
exploiting available data parallelism and multiple cores when
available. It uses filter scores and supplied thresholds to
decide whether an item should be discarded. As mentioned
in Section III-A2, short-circuit evaluation of the filter chain
is used to implement early discard. The item processor
communicates to the filter containers using a narrow API, of
which the three main functions (score, get-attribute
and set-attribute) were described earlier. These at-
tributes are retained in memory for access by downstream
elements of the filter chain. The narrow-waist API and the
use of Docker containers simplify the conversion of off-the-
shelf computer vision code into a Eureka filter. Only the
items passing all filters (usually only a tiny subset of the
entire item stream) are sent to the user. Each transmitted
item includes selected attributes that can be used as the basis

of front-end operations such as aggregations and joins.
4) Result and Attribute Cache: Eureka workloads typ-

ically exhibit two important properties. First, queries are
aborted long before running to completion. As soon as
a user decides to refine filters or their thresholds, she is
effectively starting a new iteration. Second, as mentioned
in Section III-B2, Eureka workloads exhibit high temporal
locality because of iterative refinement. Since a new filter
chain may overlap with earlier filter chains, the same items
may be re-evaluated by the same filters with the same
parameters. For example, after viewing some results, a user
may retrain an SVM filter with a larger data set. In this
case, only the SVM filter is changed — all the other filters
repeat computations from the previous query. Alternatively,
the user may lower the SVM’s threshold. This may enable
her to discover some previously missed true positives (i.e.,
false negatives in the current iteration).

Eureka’s reuse of cached results preserves strict execution
fidelity as long as a filter is deterministic — i.e., its execution
on the same item with the same parameters always pro-
duces the same result. To preserve execution fidelity, Eureka
immediately detects if the code or parameters of a filter
are changed, thus rendering its cache entries stale. This is
implemented as follows. Filter execution accesses a subset
of attributes (in_attrs). It may update or create a set of
attributes (out_attrs), and typically outputs a score.
Eureka stores two types of cache entries in a Redis database.
In the result cache, it writes:
(item_id, filter_id, filter_params[]) !

(score, {h(a) for a in in_attrs},
{h(b) for b in out_attrs})

where h(·) is the hash digest of its argument. In the
attribute cache, it writes: h(b) ! b for all output at-
tributes in out_attrs. When evaluating a query on an
item, Eureka first identifies all filters in the query and
retrieves all cache entries with the matching item_id,
filter_id and filter_params[]. It then validates
the cache entries by examining their chains of dependency.
A cache entry is deemed valid if and only if all hash digests
of its input attributes match the hash digests of the output
attributes of another validated entry, or a newly-executed
filter. If a valid entry is found, cached results are used;
otherwise, the filter is re-executed. This approach avoids
redundant execution, ensures correctness of cached results,
and minimizes re-computations of hash digests. Compared
to whole-query caching (i.e., hashing all filters together as
a single cache key), Eureka’s finer-grain approach provides
more opportunities to reuse prior results.

Note that result caching is very different from blindly
precomputing and indexing features or metadata ahead of
time. Especially for DNN features, such a priori indexing
can be quite inefficient or even impossible. There is a vast
array of different DNNs that could be used in queries. This
set is constantly growing as new deep learning techniques

emerge. Furthermore, any given network may be trained on
different data, resulting in a very different set of features
extracted. Finally, because of early abort of queries and
early discard, many filters may never be executed on all
data. Hence, aggressive precomputation may be wasteful. In
contrast, the attribute and result caching approach used in
Eureka can be seen as a lazy or just-in-time partial indexing
system [9]. Of course, Eureka can make use of preindexed
attributes if they have already been created.

IV. MATCHING SYSTEM TO USER

The previous sections describe how Eureka is able to exe-
cute queries efficiently at the edge. A key metric is how well
the system can utilize the human expert’s time and attention,
which is the most precious resource in the system. Here, we
present an analysis of the workflow between Eureka and
the expert, with the goal of optimizing delivery of items for
evaluation. The optimal workflow delivers candidate images
at a rate matching the expert’s ability to evaluate them. Too
fast a delivery will waste system resources, and generate a
backlog of wasted work that may never be seen by the user;
too slow a delivery will frustrate the expert with idle waiting
time. Note that although computers usually process much
faster than humans, the expert can still be forced to wait
when the target phenomena are sufficiently rare (i.e., very
low base rate) and the filters are highly selective. Another
constraint is that the delivered images should be reasonable
candidates; that is, images deemed as obvious negatives
should be avoided. This depends, of course, on the set of
early-discard filters currently deployed.

In this section we introduce an analytic model to explore
parameters that will govern the expert’s waiting time. The
model is idealized, as its purpose is to show how the various
parameters interact, rather than to simulate an actual use
case. Figure 7 shows the notation used in the model. Using
this notation, Figure 8 defines several well-known metrics
that pertain to classifier accuracy.

The base rate represents the “rarity” of the search target.
In many valuable use cases of Eureka, the base rate is very
low. This makes it difficult for the classifier, even if highly
accurate, to yield candidates at a fast rate for the expert
to evaluate. Given a single data source, such as a cloudlet
that stores and processes data collected from one or a few
cameras mounted in some physical environment, we can also
compute the pass rate — the average fraction of the W
images in the world that it passes on for expert inspection.

pass rate = BR · TPR+ (1�BR) · FPR

A. Result Delivery Rate
To evaluate the temporal performance of the system, it is

necessary to determine two further parameters: The first is
the average time for the filter set to evaluate a single image
on a cloudlet and decide whether it is a candidate to pass to
the expert. We denote this as tc. The second parameter is the

TP True positive: items from the population that
are instances of the class, and that are so
designated by the classifier.

FP False positive: items from the population
that are not instances of the class, but are
accepted as instances by the classifier.

TN True negative: items from the population that
are not instances of the class, and that are so
designated by the classifier.

FN False negative: items from the population
that are instances of the class, but that are
rejected as instances by the classifier.

W The size of the entire image population.

Figure 7. Notation

TPR =
TP

TP + FN

FPR =
FP

FP + TN

BR =
TP + FN

W

True positive rate
(aka “recall” or “hit rate”)

False positive rate
(aka “false alarm rate”)

Base rate
(aka “prevalence”)

Figure 8. Metrics Pertaining to Classifier Accuracy

time for the expert to evaluate a candidate image. Although
this is inevitably going to vary with the images and the target
class, human decision times are likely to be on the order of
many seconds or tens of seconds for non-trivial decisions.
We denote this as th.

Given a single data source (cloudlet with stored
camera data), we define the average time to deliver a
new image to the expert as time to next result, or TTNR.
This depends on the above parameters in the following way:

TTNR =
tc

pass rate

As we add more data sources to the system, edge
computing makes high degrees of coarse-grained parallel
processing possible. For N sources,

TTNR(N) =
tc

N · pass rate

B. Optimization Metric

In general, TTNR(N)/th is a measure of how well the
system’s delivery matches the user’s time-scale. We will call
this ratio the User:System match. When the system is per-
forming optimally, the User:System match will approximate
1.0. That is, each new item is delivered when the expert

finishes evaluating its predecessor. A match > 1.0 means
that the user is waiting; a match < 1.0 means that the system
is running ahead, wasting bandwidth and compute resources
on candidates the expert may never look at.

Time is not the only constraint, however. There is also the
need to keep the expert occupied with meaningful decisions
that will ultimately improve the query. It is always easy for
the system to send in more “junk” to avoid letting the user
wait. If the User:System match is high, that is, the filters
are stringent, the user may wait a long time to see the next
candidate. It may be tempting to increase the rate of system
delivery by lowering the thresholds on the filters of the
query. Given a low base-rate environment, this unfortunately
tends to waste the user’s time by presenting obviously bad
candidates (false positives from the system). In essence, a
high false positive rate produces “false positive rage” on the
part of the user! – i.e, extreme annoyance. Ultimately, the
solution is to iteratively improve the query by combining
multiple filters, and incorporating newly found examples to
improve accuracy. Ideally, this will reduce false positives
without increasing false negatives.

C. Analytical Results
The User:System match depends on the true positive rate

TPR, false positive rate FPR, base rate BR of the target
phenomenon, and the number of sources N . It also depends
on the time for the classifier to process an item at one source
tc relative to the time for the human user to evaluate a
delivered item th. In example calculations, we assume that
the time for the system to process a single item from one
source is a factor of 5X faster than the human time to process
a delivered image; other assumptions would scale the results
differently, but the qualitative pattern would be the same.

Because we are dealing with problems where the base
rate is low, the false positive rate governs the system more
than the true positive rate. This effect is shown in Figure 9.
Figure 9(a) illustrates the User:System match ratio when the
classifier is highly accurate: TPR = 0.8, FPR = 0.01.
Under these conditions, the User:System Match is highly
dependent on the base rate and number of sources. Because
target items are scarce, and most of the items that the system
delivers are true positives, it is highly beneficial to deliver
from more sources – more so when the base rate is lower. An
optimal ratio is approached here with 8 sources, regardless
of base rate. Even at the lowest base rate, the user accepts
1 in 13 items presented, and at the highest base rate, half of
the presented items are true positives.

Figure 9(b), in contrast, shows the disastrous effect of a
high false positive rate. As the number of sources increases,
the user is flooded with irrelevant data and the system backs
up, wasting resources. Base rate is irrelevant here because
it is not the sparse targets that are the problem. Rather it
is the overwhelming flood of false positives. At the lowest
base rate, the user rejects 125 items for each one accepted.

0

5

10

15

20

0 1 2 3 4 5 6 7 8 9

Us
er

:S
ys

te
m

 M
at

ch

Number of Sources

TPR = 0.8, FPR = 0.01
BR = 0.001
BR = 0.005
BR = 0.009
BR = 0.013
Ideal

(a) Low False Positive Rate

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5 6 7 8 9

Us
er

:S
ys

te
m

 M
at

ch

Number of Sources

TPR = 0.8, FPR = 0.1
BR = 0.001
BR = 0.005
BR = 0.009
BR = 0.013
Ideal

(b) High False Positive Rate

This graph shows User:System match as the number of
data sources, N , processed in parallel increases. The ideal
match of 1.0 is shown by the dotted line. Base rate (BR)
is a parameter. In (a), the classifier has TPR = 0.8 and
FPR = 0.01; in (b) TPR is unchanged, but FPR = 0.1.

Figure 9. Negative Effect of High False Positive Rate

D. Summary
In this section, we presented an idealized model to show

how the various parameters interact in Eureka, from which
implications can be drawn about critical parameters gov-
erning system performance. We acknowledge limitations of
this calculation. In particular, it is not intended to predict
numerical outcomes in real-world use cases of Eureka,
where the base rate is generally not precisely known; the
delivery is not regular, particularly at the beginning of the
process where few examples are available; and the ratio of
machine to human processing time may be greatly skewed
in favor of the machine. Nonetheless, by characterizing the
User:System match, the model provides an observable metric
that can be used in Eureka to recruit or omit cloudlets and
thus move toward an optimal match.

The analysis further suggests some practical strategies for
iterative Eureka searches. First, in the initial iterations, where
the query’s filter set will have poor accuracy, it does not
make sense to scale out the number of sources, as it will
just overwhelm the user. Second, for phenomena with such
low base rates, it makes sense to focus first on reducing FPR.
Once the FPR is under control, additional data sources can
be added to optimally match the expert.

Dataset YFCC100M ImageNet COCO
images 99.2 million 1.2 million 330 thousand
classes unlabeled 1000 80

Figure 10. Comparison of Well-Known Image Datasets.

V. EXPERIMENTAL METHODOLOGY

As described in Section II, the iterative workflow of
Eureka enables users to efficiently discover training data
from distributed data sources by incrementally improving
the classifier accuracy. We apply this iterative workflow to
collect training data for several selected targets and try to
answer the question: Is Eureka effective in reducing the time
taken to create a training set?

We consider two main evaluation criteria:
• the total elapsed time taken to discover a training set
of a certain size;
• productivity: number of training examples discovered
per unit time, over all of the iterations of Eureka.

We compare Eureka against two alternatives: BRUTE

FORCE and SINGLE-STAGE EARLY-DISCARD. With BRUTE

FORCE, the user manually inspects and labels every image.
For targets with a low base rate this requires the user to plow
through many images before collecting even a small training
set. SINGLE-STAGE EARLY-DISCARD improves the situation for
the user by allowing them to use a simple filter chain to
perform early-discard [5]. These filters are based on the
initial set of sample images of the target, and are essentially
identical to the queries used in the first iteration of the
Eureka experiments. However, there is no use of machine
learning or of iterative refinement.

Our experiments use 99.2 million images from the Ya-
hoo Flickr Creative Commons 100 Million (YFCC100M)
dataset [10]. This is by far the largest publicly available
multimedia dataset. The images in it are representative of
real-world complex scenes as opposed to datasets such as
ImageNet [11] and COCO [12], both of which are curated
and have a relatively few, evenly-distributed classes. Fig-
ure 10 compares these datasets. As Section VI shows, the
number of images that need to be processed in order to
discover just 100 true positives easily exceeds the sizes of
the ImageNet and COCO datasets.

We run experiments on 8 cloudlets. Each cloudlet has a 6-
core/12-thread 3.6GHz Intel R� Xeon R� E5-1650 v4 processor,
32GB DRAM, a 4 TB SSD for image storage, and an
NVIDIA GTX 1060 GPU (6GB RAM). The 99.2 million im-
ages in YFCC100M are evenly divided among the cloudlets.
Each cloudlet accesses its own subset of the data from its
SSD, thus ensuring high bandwidth and low latency. The
user’s GUI connects to the cloudlets over the Internet.

VI. EXPERIMENTAL RESULTS

We present results for three experimental case studies. In
each, we attempt to build a labeled training dataset for a
novel target. The three targets chosen are (in descending

(a) Deer

(b) Taj Mahal

(c) Fire hydrant

Left column: examples used in the initial Eureka iteration.
Right column: examples discovered using Eureka, and used
as training data in following iterations.

Figure 11. Examples of Targets Used in Our Case Studies

order of base rate): (1) deer, (2) Taj Mahal, and (3) fire
hydrant. Figure 11 gives examples of each target. There
are no publicly available labeled datasets or off-the-shelf
detectors for these targets. Although no specialized expertise
is needed to identify these targets, they are fairly rare in
Flickr photos and still serve as an initial proof of the Eureka
concept. We defer formal user studies in domains such as
healthcare or national security to future work.

For each target we started with an initial set of 5 example
images. These were used to bootstrap an initial set of
filters for the first Eureka iteration. Over five iterations
with increasingly sophisticated and better trained filters, we
collected a total of approximately 100 new images of the
target. The GUI assists users with no programming skills or
computer vision background to easily create filters by using
example patches from the training images collected so far.
For the first two iterations we used explicit features such as
color, texture, or shape to perform early-discard of irrelevant
data. Once we collected more than 10 positive examples,
we used a MobileNet + SVM filter, in which an SVM is
trained over the 1024-dimensional feature vectors obtained
using MobileNet. The GUI allows the user to easily add and
remove examples to just-in-time train the SVM. We incre-
mentally improve classifier accuracy by retraining the SVM
when the collected example set is approximately doubled.
In general, the optimal point to switch filter types or retrain

Target Estimated Images Positive
base inspected examples
rate by user discovered

Deer 0.07 % 7,447 111
Taj Mahal 0.02 % 4,791 105
Fire hydrant 0.005% 15,379 74

Figure 12. Summary Results for Case Studies

This graph shows the estimated amount of human attention
needed (Y-axis, log scale) using three different approaches
to acquire a training set of fixed size (111 images of deer,
105 images of Taj Mahal, and 74 images of Fire hydrant).

Figure 13. Number of Images Presented to User

a machine learning model depends on the characteristics of
data, target, and filters, and can be highly empirical. Our
rule-of-thumb is to escalate to advanced filters when adding
more training examples to the current machine learning
algorithm fails to improve the quality of the results.

To allow unbiased evaluation of filters, we used a disjoint
subset of the source data in every iteration so that the data
being processed was never seen before by the filter. Hence,
these experiments did not take advantage of result caching.

Figure 12 summarizes the overall results of using Eureka
to build a training set of approximately 100 examples for the
three targets. Although the specific numbers are primarily
determined by dataset characteristics and filter quality, they
give an intuition about the targets’ rarity and the human
effort spent. We estimate the base rates in YFCC100M based
on the metadata of Flickr tags, titles, and descriptions. This
metadata is only used in analysis of the results and not used
in the search process. Although this measure is subject to
inclusion error (tag without actual target) and exclusion error
(target without tag), it provides at least a crude estimate of
the prevalence of the targets in the dataset.

Figure 13 (Y-axis in log scale) compares Eureka to
alternatives in the number of images the user has to inspect
when building a training set of given size. For brute force,
this number is extrapolated using the estimated base rate.
For single-stage early-discard, this is based on the precision
of the filters used in the first Eureka iteration. We see
that single-stage early-discard reduces demand for human
attention by an order of magnitude over brute force. Eureka
reduces demand by a further order of magnitude.

Filters Examples Items Items New Pass Precision Elapsed Product-
Pos Neg processed shown hits rate time ivity

Initial set of images 5
1 RGBhist x2 + DoG texture 5 0 991,814 1,836 5 0.19% 0.27% 12.53 0.40
2 RGBhist x2 + DoG texture 10 0 652,357 2,002 5 0.31% 0.25% 13.98 0.36
3 MobileNet + SVM 15 15 90,047 1,704 17 1.89% 1.00% 11.40 1.49
4 MobileNet + SVM 32 32 130,266 1,204 35 0.92% 2.91% 8.25 4.24
5 MobileNet + SVM 67 67 247,039 701 49 0.28% 6.99% 10.27 4.77

Number of initial examples = 5 Pass rate = Items shown / Items processed
Items processed = Images processed by machine on edge nodes Precision = New hits / Items shown
Items shown = Images passing all filters, transmitted and shown to user Elapsed time = Wall clock time of that iteration (minutes)
New hits = Images labeled as true positives by user in that iteration Productivity = New hits / Elapsed time (# per minute)

Figure 14. Case Study: Building a Training Set for a Deer DNN

Filters Examples Items Items New Pass Precision Elapsed Product-
Pos Neg processed shown hits rate Time ivity

Initial set of images 5
1 RGBhist + SIFT + Person 5 0 850,352 3,741 4 0.44% 0.11% 30.17 0.13
2 HOG x2 9 0 245,315 352 5 0.14% 1.42% 9.88 0.51
3 MobileNet + SVM 14 14 228,266 343 13 0.15% 3.79% 8.07 1.61
4 MobileNet + SVM 27 27 590,187 172 37 0.03% 21.51% 20.50 1.80
5 MobileNet + SVM 64 64 633,560 183 46 0.03% 25.14% 15.63 2.94

Columns have the same meaning detailed in Figure 14.

Figure 15. Case Study: Building a Training Set for a Taj Mahal DNN

A. Case Study: Deer

Figure 14 shows the results for the deer training set. For
the first iteration we used an RGB histogram filter and a
DoG (Difference of Gaussian) texture filter, which use color
and texture features respectively to pass the images. Patches
of deer fur from the bootstrapping images were given to
the DoG texture filter. Patches defining the color of the
deer fur and verdure of the scene constituted the two RGB
histogram filters. Note that although we use filter names
such as RGB, DoG, and SIFT in our current implementation,
we expect that a production version of Eureka would use
more accessible descriptions such color, texture, and shape.
Although the user does not need to know the underlying
computer vision algorithms of these filters, she would need
to know that a specific filter is indicative of the target class.
This is, of course, an essential part of domain expertise.

Iterations lasted 8–14 minutes, with the variability reflect-
ing image processing time on cloudlets, filter accuracy, and
human inspection time. Since deer constitute a deformable
and varying class of objects, the RGB histogram and DoG
texture filters showed no improvement over two succes-
sive iterations. The MobileNet + SVM filter introduced in
iteration 3, in contrast, showed substantial improvements
across iterations in terms of precision. Most importantly, it
also resulted in greater productivity (last column). In five
iterations, the productivity increased from 0.40 new positives
per minute to 4.77, an improvement of more than 10X.

B. Case Study: Taj Mahal
Figure 15 details the steps in obtaining a dataset of 105

positive examples of the Taj Mahal. Since the Taj Mahal is
a rigid structure with distinctive features, we used a SIFT
(Scale Invariant Feature Transform) filter. The knowledge of
the target helped us to include other filters such as an RGB
histogram filter (for the white marble) and a human body
filter. The choice of the body filter is based on the intuition
that the Taj Mahal is a popular tourist destination and is
likely to have people in most target images.

On the second iteration, two HOG filters (Histogram of
Oriented Gradients) were created based on the 9 available
examples, to capture the shape of (1) minarets, and (2)
small domes. From the third iteration onwards we used
a MobileNet + SVM filter which was improved in each
iteration by adding the new positive examples obtained by
the prior iteration. The returned false positives were mostly
buildings such as Humayun’s tomb and Sikandara which
closely resemble Taj Mahal’s dome and entrance. As can be
seen, there is an improvement of user productivity in each
iteration. In the final iteration, over a quarter of the items
presented to the user are true positives.

C. Case Study: Fire Hydrant
The base rate of fire hydrant is much lower than the first

two targets chosen. In Figure 16, we present measurements
from building a training set of 74 fire hydrant images.
A HOG filter was used initially to capture the shape of

Filters Examples Items Items New Pass Precision Elapsed Product-
Pos Neg processed shown hits rate Time ivity

Initial set of images 5
1 HOG x2 5 0 524,136 6,643 6 1.27% 0.09% 13.00 0.46
2 HOG x3 11 0 523,008 3,133 5 0.60% 0.16% 15.15 0.33
3 MobileNet + SVM 16 16 210,688 1,775 9 0.84% 0.51% 7.68 1.17
4 MobileNet + SVM 25 25 517,789 2,856 24 0.55% 0.84% 17.52 1.37
5 MobileNet + SVM 49 49 973,828 972 30 0.10% 3.09% 23.18 1.29

Columns have the same meaning detailed in Figure 14.

Figure 16. Case Study: Building a Training Set for a Fire Hydrant DNN

(a) Image Processing Rate

(b) Fraction of Time Spent on Data Access

Figure 17. Effect of Bandwidth between Cloudlet and Data Source

the hydrants. From the third iteration onwards, using a
MobileNet + SVM filter helped to improve precision. Many
of the remaining false positives returned by Eureka include
British royal mail boxes and traffic cones that resemble
fire hydrants. In the later iterations, the classifier accuracy
improves significantly but user productivity stalls. This is
due to the low inherent base rate and the fact that we have
only 8 data sources, resulting in wait time for the user. In
this situation, as discussed in Section IV, Eureka should add
additional data sources to speed up discovery.

D. The Necessity of Edge Computing
Edge computing is a key enabler of Eureka as it allows

the user to scale out to many data sources without stressing
the WAN. The proximity of cloudlets to data sources is cru-
cial for efficiency — typically providing LAN connectivity
(1 Gbps or higher) to an archival data source.

To study the importance of proximity, we throttled the
network bandwidth between cloudlets and their data sources
using the Linux command line tool tc qdisc. We ran
experiments at 1 Gbps, 100 Mbps, 25 Mbps and 10 Mbps.
The US national average broadband value of 18.7 Mbps in
2017 [13] lies towards the lower end of this range.

We selected three filters (ordered by increasing cost in
terms of computation time): RGB histogram, MobileNet
inference, and SIFT matching. Figure 17(a) reports the
processing throughput on the cloudlets (processed images
per second, higher is better) as we decrease the bandwidth
from 1 Gbps to 10 Mbps. At 1 Gbps, the RGB histogram fil-
ter achieves significantly higher throughput than MobileNet
and SIFT because it is the least computationally expen-
sive. As the bandwidth decreases, its throughput decreases
drastically. SIFT, the most expensive filter, is still bound
by computation at 100 Mbps, but also suffers from low
bandwidth starting at 25 Mbps. Under 25 Mbps, there is
only marginal difference in throughput among the three
filters, implying data access has become the bottleneck for
all of the filters. This can be confirmed in Figure 17(b),
where we measure the percentage of total run time spent
on retrieving data as opposed to computation (lower is
better). At the lowest bandwidth of 10 Mbps, even the most
computationally expensive SIFT filter spends 80% of its run
time retrieving data, and the RGB filter spends 98%! This
confirms the fundamental premise that edge computing is
essential for the success of Eureka.

VII. RELATED WORK

While machine learning has long been used in computer
vision, the use of DNNs only dates back to the 2012
victory of Krizhevsky, Hinton, and Sutskever in that year’s
ImageNet competition [14]. Since then, DNNs have become
the gold standard for accuracy in image classification. As
discussed earlier, DNNs enable direct creation of classifiers
by domain experts once the training framework has been
set up. No coding is required of them. Their primary task
becomes creation of a large, accurately-labeled training set.
Since accurate labeling follows implicitly from expertise,
finding an adequate number of training examples becomes
the dominant challenge. For DNNs to deliver good results,
the training set sizes have to be very large: typically on

the order of 103 to 104 items. It is very time consuming
and laborious to manually discover so many true positive
items for a phenomenon whose intrinsic base rate is low.
This effort cannot be outsourced to non-experts or crowd-
sourced. It requires the painstaking effort of domain experts.

To the best of our knowledge, no previous work has
studied the above problem specifically in the context of
experts. Previous efforts to construct large training sets have
typically used crowd-sourcing to achieve high degrees of
human parallelism in the discovery process. The work of
Vijayanarasimhan et al. [1] and Sigurdsson et al. [2] are two
recent examples of this genre. Unfortunately, by definition,
expertise in any domain is rare. That is the whole point of
using the term “expert” to refer to such a person. Large
investments of time in education, training, and experience,
possibly amplified by rare genetically-inherited talents, are
needed to produce expertise. Experts are not cheap, and
crowd-sourcing them is not viable. Further, as discussed in
Section I, even if crowd-sourcing experts were viable, there
may be stringent controls on the accessibility of data sources.
In the extreme case, only one expert may have access.

In spite of sustained efforts in unsupervised and semi-
supervised learning [15], [16], [17], [18], supervised learning
still provides the best accuracy for domain-specific computer
vision tasks. As long as an expert needs to manually create a
large and accurately-labeled training set from huge volumes
of unlabeled data, Eureka will be valuable.

Eureka substitutes machine parallelism (growing number
of cloudlets in the later stages of the workflow) for human
parallelism. Rather than trying to harness many experts to
work on the same task in parallel, Eureka tries to improve
the efficiency of a single expert in discovering training data.
We are not aware of any other work that has studied this
specific problem. This is an inherently human-in-the-loop
problem. Hence, the vast body of “big data” solutions to date
(including well-known tools such as Hadoop) have little to
offer in this context. Virtually all of those solutions use a
batch approach to processing, and depend on optimizations
such as deep pipelining that have little value in a context
where a user may abort processing at any moment [7].

The approach of using early discard for human-in-the-loop
searches of unindexed image data was introduced in 2004
by Huston et al. [5] in a system called Diamond [6], [7].
This was, of course, long before the emergence of DNNs
and the resulting problem of creating large training sets.
Eureka applies the Diamond concepts of early discard, filter
cascades, and iterative query refinement to machine learning.
As mentioned in Section III-B, the Eureka implementation
leverages and extends the OpenDiamond R� platform.

The term “early” in “early discard” refers to the process-
ing pipeline from data storage (disk or SSD) through various
stages of server hardware, operating system, and application
layers, to transmission across the Internet, further processing
at the client operating system and application layers, and

eventual processing by the human expert. The ability to
discard irrelevant data as early as possible in this pipeline
improves the efficiency of the system. As discussed earlier
in this paper (Section VI-D), edge computing helps in the
Internet context by avoiding WAN transfer of items that can
be deemed irrelevant by cloudlet processing.

In the current Eureka implementation, filters that perform
early discard execute as Docker containers on cloudlets.
Further efficiency in early discard could be achieved by
executing filters even closer to data storage. This could
leverage the large body of work that has been done in
the context of active disks and active flash, also referred
to as intelligent storage [19], [20], [21], [22], [23], [24],
[25], [26], [27]. Closely related are approaches such as
Abacus [28], Coign [29], River [30] and Eddies [31] that
dynamically relocate execution relative to data based on
current processing attributes. Also related is the large body
of work on operator ordering for query optimization in rela-
tional database systems. This has been a staple of database
research over almost its entire history, starting from System
R [32] down to today [33], [34], [35], [36], [37].

There has been recent work on the use of teacher models
for early discard in computer vision [38], [39]. This ap-
proach assumes that an accurate, domain-specific teacher
model exists to label data. In the absence of such a pre-
trained teacher model, there is no alternative to using a real
human expert. This is Eureka’s sweet spot.

VIII. CONCLUSION AND FUTURE WORK

DNNs have greatly increased the accuracy of computer
vision on image classification tasks, as shown by the near-
human accuracy of recent face recognition software such
as DeepFace [40], FaceNet [41] and OpenFace [42]. This
success comes at a high price: namely, the need to assemble
a very large labeled dataset for DNN training. How to
efficiently use an expert’s precious time and attention in
creating such a training set is an unsolved problem today.

Eureka leverages edge computing to solve this problem.
The essence of the Eureka approach is an iterative workflow
in which the training examples that have been discovered so
far can be immediately used to improve the accuracy of early
discard filters, and thus improve the speed and efficiency
of further discovery. Our experiments show that Eureka can
reduce by up to two orders of magnitude the amount of data
that a human must inspect to produce a training set of given
size. Our analysis reveals the complex relationship between
filter accuracy and parallel search of multiple data sources.

Many future directions are suggested by this work. A
natural next step would be to extend the Eureka implemen-
tation beyond simple images and video to a wider range
of data types, such as whole-slide images in pathology [3],
map data, and multi-spectral images. Although this paper
focused on independent Internet-based data sources, the
Eureka concept has relevance to many other settings, as

discussed in Section I. Today, many large archival datasets
are stored in a single cloud data center. Extending Eureka
to support this setting would be valuable. The concepts of
“edge” and “cloudlet” will need to be re-interpreted, and
the implementation will need to be extended to reflect this
new setting. From the viewpont of validation, it would be
valuable to explore how domain experts use Eureka and
whether they benefit from it. This work would include
creation of GUIs that bridge the semantic gap between
domain-specific concepts and raw data. Another area of
future work would be to enhance Eureka’s early discard
efficiency by using processing embedded in storage when
it is available. As discussed in Section VII, modern imple-
mentations of concepts such as active disk and active flash
have emerged recently and these would be good performance
accelerators for early discard. Eureka could also be extended
to support commercial products such as IBM’s Neteeza
appliances [43], which provide specialized edge computing
for storage. Finally, our discussion of Eureka so far has
focused on its use by a single expert at a time. For reasons
discussed in Sections I and II, it is rare that multiple experts
are simultaneously available to work on the task of creating
a training set for a DNN. However, if one has the good
fortune to benefit from multiple experts, it would be valuable
to extend the architecture shown in Figure 1 to a multi-user
setting. The changes to the Eureka front-end are likely to be
deep and extensive if the goal is to allow these experts to ac-
tively collaborate in a joint task. The ability to share newly-
discovered training examples and newly-created filters, and
thereby accelerate the process of discovery would effectively
create a new form of computer-supported cooperative work
(CSCW). It also offers the possibility of developing new
multi-expert techniques to overcome the problem of single-
expert bias that was discussed in Section II.

In closing, Eureka is based on the premise that at least
some aspects of domain-specific human expertise can be
captured in DNNs. Its goal is to help experts efficiently
capture their own expertise in the form of a large training set.
This difficult and human-intensive task is likely to remain
important well into the future, as long as supervised learning
remains central to the creation of DNNs.

ACKNOWLEDGEMENTS
We wish to thank our shepherd, Ganesh Ananthanarayanan, and the

anonymous reviewers for helping us improve the technical content and
presentation of this paper. We greatly appreciate the help of Luis Remis
in helping us acquire the YFCC100M dataset. We thank Vishakha Gupta-
Cledat, Christina Strong, Luis Remis, and Ragaad Altarawneh for their
insightful discussions on Eureka in cloud-based settings. This research
was supported in part by the Defense Advanced Research Projects Agency
(DARPA) under Contract No. HR001117C0051 and by the National Science
Foundation (NSF) under grant number CNS-1518865. Additional support
was provided by Intel, Vodafone, Deutsche Telekom, Verizon, Crown
Castle, NTT, and the Conklin Kistler family fund. Any opinions, findings,
conclusions or recommendations expressed in this material are those of the
authors and do not necessarily reflect the view(s) of their employers or the
above-mentioned funding sources.

REFERENCES

[1] S. Vijayanarasimhan and K. Grauman, “Large-scale live ac-
tive learning: Training object detectors with crawled data and
crowds,” International Journal of Computer Vision, 2014.

[2] G. A. Sigurdsson, G. Varol, X. Wang, A. Farhadi, I. Laptev,
and A. Gupta, “Hollywood in homes: Crowdsourcing data
collection for activity understanding,” in European Confer-
ence on Computer Vision, 2016.

[3] A. Goode, B. Gilbert, J. Harkes, D. Jukic, and M. Satya-
narayanan, “Openslide: A vendor-neutral software foundation
for digital pathology,” Journal of Pathology Informatics,
September 2013.

[4] S. K. Lynn and L. F. Barrett, “‘Utilizing’ signal detection
theory,” Psychological science, 2014.

[5] L. Huston, R. Sukthankar, R. Wickremesinghe, M. Satya-
narayanan, G. R. Ganger, E. Riedel, and A. Ailamaki, “Dia-
mond: A storage architecture for early discard in interactive
search.” in Proceedins of USENIX Conference on File and
Storage Technologies, 2004.

[6] M. Satyanarayanan, R. Sukthankar, A. Goode, N. Bila,
L. Mummert, J. Harkes, A. Wolbach, L. Huston, and
E. de Lara, “Searching Complex Data Without an Index,”
International Journal of Next-Generation Computing, 2010.

[7] M. Satyanarayanan, R. Sukthankar, L. Mummert, A. Goode,
J. Harkes, and S. Schlosser, “The Unique Strengths and
Storage Access Characteristics of Discard-Based Search,”
Journal of Internet Services and Applications, 2010.

[8] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Effi-
cient convolutional neural networks for mobile vision appli-
cations,” arXiv preprint arXiv:1704.04861, 2017.

[9] M. Satyanarayanan, P. Gibbons, L. Mummert, P. Pillai,
P. Simoens, and R. Sukthankar, “Cloudlet-based Just-in-Time
Indexing of IoT Video,” in Proceedings of the IEEE 2017
Global IoT Summit, Geneva, Switzerland, 2017.

[10] B. Thomee, D. A. Shamma, G. Friedland, B. Elizalde, K. Ni,
D. Poland, D. Borth, and L.-J. Li, “YFCC100M: the new data
in multimedia research,” Communications of the ACM, 2016.

[11] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,
A. C. Berg, and L. Fei-Fei, “ImageNet Large Scale Visual
Recognition Challenge,” International Journal of Computer
Vision, 2015.

[12] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ra-
manan, P. Dollár, and C. L. Zitnick, “Microsoft COCO:
Common objects in context,” in European Conference on
Computer Vision. Springer, 2014.

[13] Akamai, “Q1 2017 state of the Internet / connectivity report,”
2017.

[14] D. Parthasarathy, “A Brief History of CNNs in
Image Segmentation: From R-CNN to Mask R-CNN,”
https://blog.athelas.com/a-brief-history-of-cnns-in-image-
segmentation-from-r-cnn-to-mask-r-cnn-34ea83205de4,
April 2017, last accessed on May 17, 2018.

[15] X. Wang and A. Gupta, “Unsupervised learning of visual
representations using videos,” in Proceedings of the IEEE
International Conference on Computer Vision, 2015.

[16] C. Doersch, A. Gupta, and A. A. Efros, “Unsupervised visual
representation learning by context prediction,” in Proceedings
of the IEEE International Conference on Computer Vision,
2015.

[17] I. Misra, C. L. Zitnick, and M. Hebert, “Shuffle and learn:
unsupervised learning using temporal order verification,” in
European Conference on Computer Vision, 2016.

[18] M. Noroozi and P. Favaro, “Unsupervised learning of visual
representations by solving jigsaw puzzles,” in European Con-
ference on Computer Vision, 2016.

[19] A. Acharya, M. Uysal, and J. Saltz, “Active Disks: Program-
ming Model, Algorithms and Evaluation,” in Proceedings
of Architectural Support for Programming Languages and
Operating Systems, 1998.

[20] K. Keeton, D. Patterson, and J. Hellerstein, “A Case for
Intelligent Disks (IDISKs),” ACM SIG on Management of
Data Record, 1998.

[21] E. Riedel, G. Gibson, and C. Faloutsos, “Active Storage for
Large-Scale Data Mining and Multimedia,” in Proceedings of
Very Large Data Bases, 1998.

[22] X. Ma and A. Reddy, “MVSS: An Active Storage Ar-
chitecture,” IEEE Transactions On Parallel and Distributed
Systems, 2003.

[23] G. Memik, M. Kandemir, and A. Choudhary, “Design and
Evaluation of Smart Disk Architecture for DSS Commercial
Workloads,” in Proceedings of the International Conference
on Parallel Processing, 2000.

[24] J. Rubio, M. Valluri, and L. John, “Improving Transaction
Processing using a Hierarchical Computing Server,” Labora-
tory for Computer Architecture, The University of Texas at
Austin, Tech. Rep. TR-020719-01, July 2002.

[25] R. Wickremisinghe, J. Vitter, and J. Chase, “Distributed
Computing with Load-Managed Active Storage,” in Proceed-
ings of IEEE International Symposium on High Performance
Distributed Computing, 2002.

[26] S. Boboila, Y. Kim, S. S. Vazhkudai, P. Desnoyers, and G. M.
Shipman, “Active Flash: Out-of-core Data Analytics on Flash
Storage,” in Proceedings of the 28th IEEE Mass Storage
Symposium, 2012.

[27] D. Tiwari, S. Boboila, S. S. Vazhkudai, Y. Kim, X. Ma,
P. J. Desnoyers, and Y. Solihin, “Active Flash: Towards
Energy-Efficient, In-Situ Data Analytics on Extreme-Scale
Machines,” in Proceedings of the File and Storage Technolo-
gies Conference, 2013.

[28] K. Amiri, D. Petrou, G. Ganger, and G. Gibson, “Dynamic
Function Placement for Data-Intensive Cluster Computing,”
in Proceedings of USENIX Annual Technical Conference,
2000.

[29] G. Hunt and M. Scott, “The Coign Automatic Distributed
Partitioning System,” in Proceedings of USENIX Operating
Systems Design and Implementation, 1999.

[30] R. Arpaci-Dusseau, E. Anderson, N. Treuhaft, D. Culler,
J. Hellerstein, D. Patterson, and K. Yelick, “Cluster I/O with
River: Making the Fast Case Common,” in Proceedings of
Input/Output for Parallel and Distributed Systems, 1999.

[31] R. Avnur and J. Hellerstein, “Eddies: Continuously Adaptive
Query Processing,” in Proceedings of ACM SIG on Manage-
ment of Data, 2000.

[32] P. Selinger, M. Astrahan, D. Chamberlin, R. Lorie, and
T. Price, “Access path selection in a relational database
management system,” in Proceedings of ACM SIG on Man-
agement of Data, 1979.

[33] P. Menon, T. C. Mowry, and A. Pavlo, “Relaxed operator
fusion for in-memory databases: making compilation, vector-
ization, and prefetching work together at last,” Proceedings
of Very Large Data Bases, 2017.

[34] I. Trummer and C. Koch, “Solving the join ordering problem
via mixed integer linear programming,” in Proceedings of
ACM SIG on Management of Data, 2017.

[35] K. Dursun, C. Binnig, U. Cetintemel, and T. Kraska, “Revisit-
ing reuse in main memory database systems,” in Proceedings
of ACM SIG on Management of Data, 2017.

[36] T. Karnagel, D. Habich, and W. Lehner, “Adaptive work
placement for query processing on heterogeneous computing
resources,” Proceedings of the Very Large Data Bases, 2017.

[37] A. Floratou, A. Agrawal, B. Graham, S. Rao, and K. Ra-
masamy, “Dhalion: self-regulating stream processing in
heron,” Proceedings of the Very Large Data Bases, 2017.

[38] D. Kang, J. Emmons, F. Abuzaid, P. Bailis, and M. Zaharia,
“Noscope: optimizing neural network queries over video at
scale,” Proceedings of the Very Large Data Bases, 2017.

[39] Y. Lu, A. Chowdhery, S. Kandula, and S. Chaudhuri, “Accel-
erating machine learning inference with probabilistic predi-
cates,” in Proceedings of ACM SIG on Management of Data,
2018.

[40] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “Deepface:
Closing the gap to human-level performance in face verifica-
tion,” in Proceedings of IEEE Computer Vision and Pattern
Recognition, 2014.

[41] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A
unified embedding for face recognition and clustering,” in
Proceedings of IEEE Computer Vision and Pattern Recogni-
tion, 2015.

[42] B. Amos, B. Ludwicznik, and M. Satyanarayanan, “Open-
Face: A general-purpose face recognition library with mobile
applications,” School of Computer Science, Carnegie Mellon
University, Tech. Rep. CMU-CS-16-118, June 2016.

[43] IBM, “Introducing the next step of Netezza’s evolution:
IBM Integrated Analytics System,” https://www.ibm.com/
analytics/netezza, 2018.

