
ParkMaster: An in–vehicle, edge–based video analytics
service for detecting open parking spaces in urban

environments
Giulio Grassi

Sorbonne Universitès, UPMC, LIP6
Paramvir Bahl

Microsoft Research, Redmond

Kyle Jamieson
Princeton University; University College London

Giovanni Pau
Sorbonne Universitès, UPMC, LIP6

ABSTRACT
We present the design and implementation of ParkMaster, a
system that leverages the ubiquitous smartphone to help dri-
vers find parking spaces in the urban environment. ParkMas-
ter estimates parking space availability using video gleaned
from drivers’ dash-mounted smartphones on the network’s
edge, uploading analytics about the street to the cloud in
real time as participants drive. Novel lightweight parked-car
localization algorithms enable the system to estimate each
parked car’s approximate location by fusing information from
phone’s camera, GPS, and inertial sensors, tracking and count-
ing parked cars as they move through the driving car’s camera
frame of view. To visually calibrate the system, ParkMaster
relies only on the size of well-known objects in the urban envi-
ronment for on-the-go calibration. We implement and deploy
ParkMaster on Android smartphones, uploading parking ana-
lytics to the Azure cloud. On-the-road experiments in three
different environments comprising Los Angeles, Paris and an
Italian village measure the end-to-end accuracy of the sys-
tem’s parking estimates (close to 90%) as well as the amount
of cellular data usage the system requires (less than one mega-
byte per hour). Drill-down microbenchmarks then analyze the
factors contributing to this end-to-end performance, as video
resolution, vision algorithm parameters, and CPU resources.

CCS CONCEPTS
• Information systems -> Mobile information processing
systems; • Human-centered computing -> Ubiquitous and
mobile computing systems and tools;

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from permissions@acm.org.
SEC ’17, San Jose / Silicon Valley, CA, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to
ACM. 978-1-4503-5087-7/17/10. . . $15.00
DOI: 10.1145/3132211.3134452

KEYWORDS
Fog computing, Edge computing, Mobile Systems, Visual
Analytics

1 INTRODUCTION
Urban driving can be challenging and stressful, with the task
of searching for parking spaces one of the key reasons. For
example, a 2007 study in San Francisco [45] shows that in
one of that city’s commercial districts a driver spends on
average 6.5 minutes to find a parking spot after reaching the
destination, adding about 3.3 km to the trip. The same study
shows that every day in one Los Angeles commercial district
alone, cars searching for a parking space generate more than
3,500 vehicle-miles of travel (VMT)—more than a coast-to-
coast US journey. Hence simply steering drivers to the closest
available parking spot would address a significant portion of
the traffic congestion and pollution present in big cities, with
the added benefits for drivers of increased convenience and
saved time.

While there are several systems that let drivers see parking
garage availability [48], providing such information for road-
side parking spots is more challenging because they are often
not clearly delineated with road markings. Recent rumors [4]
announced Google Maps may provide drivers with statisti-
cal information about how difficult parking is at destination
area, information that however should be based on historical
patterns and should have a coarse granularity (the probabil-
ity of finding a spot is deemed Easy, Medium or Limited).
Focusing on real–time data instead, some cities, such as San
Francisco [44], are currently installing sensors on parking me-
ters to detect cars’ presence. These solutions however entail
significant infrastructure deployment, with an associated cost.
Other prototype systems use image recognition techniques to
detect cars’ presence in parking lots by using cameras placed
on top of buildings or poles [19, 52, 57]. While feasible for
single parking lots, these systems suffer the same infrastruc-
ture costs. [31, 35, 36, 47] instead exploit user’s smartphone
in order to track the owner’s actions (parking the car or leav-
ing the spot). However, those system are unaware of other

Figure 1— ParkMaster deployed in a car’s windshield.

drivers (who may not use these systems) and thus require a
high penetration rate to maintain a reasonable accuracy. [35]
tries to overcome such a limitation by designing a nonuser’s
actions prediction model to estimates the effects of nonusers
to parking availability. However, such a model focuses on
large parking lots and not on the more challenging on-street
parking scenario. The ParkNet System [34] takes a comple-
mentary approach, adding ultrasonic sensors on cars to flag
empty roadside parking bays. While ParkNet achieves high
accuracy using mobile sensors, it again requires the installa-
tion of additional hardware on cars, posing deployment and
cost issues. Nonetheless, the core idea of the vehicles them-
selves operating as a sensor network to collect data about
parking availability remains promising. Such a collection
system would indeed facilitate coverage over a large geo-
graphical area, without the burden associated with adding
roadside infrastructure.

There are three key technology trends also changing the
problem space:

(1) Image processing has made significant accuracy advances
in accuracy and speed.

(2) Mobile devices’ processing capacity and camera qual-
ity have both been steadily increasing over recent years,
making now feasible to run more advanced image–based
machine learning algorithm on smartphones.

(3) Cloud services are being restructured to push latency-criti-
cal parts of their functionality out to the edge.

Viewed together, these three trends suggest a new design
point: a system that leverages users’ smartphones as sensors
to capture parking information at the network’s edge in real-
time, reducing the cost for cities to only that required for the
cloud service.
In this paper, we demonstrate that such an edge-based sensor
system is feasible with nowadays hardware: we present the
design and implementation of ParkMaster, a system that
integrates with users’ smartphones to address the dilemma of
parking without the need for additional infrastructure, either
in the urban environment or on the vehicle. Results from two
major cities in the US and Europe (Los Angeles and Paris),
and a small European village show that ParkMaster achieves
an overall end-to-end accuracy close to 90% with a negligible
overhead in mobile cellular data consumption.

ParkMaster uses the cameras on drivers’ phones to sample
the presence of cars at road-side parking spots from the dri-
ver’s vehicle itself. It features two main components. Firstly,
the ParkMaster app, which runs on the in-car edge — the
driver’s smartphone — performs real-time visual analytics.
Secondly, the ParkMaster cloud service maintains a real-time
database summarizing the number of available parking spaces
on each road and provides client support for location services.
While the user is driving, with the smartphone placed on the
windshield as shown in Figure 1, ParkMaster captures video
with the phone’s camera and, locally processing frames in
real-time, looks at the road-side parking spaces.

The most natural approach to parking-space detection may
seem to be searching for empty spaces, as humans do. Hence
we have investigated edge detection [13] algorithms on the
smartphone to detect and measure free parking spaces them-
selves. However, while feasible in controlled environments
when the background is uniform, this approach quickly be-
comes more challenging in real cities where road and back-
ground scene have an arbitrary appearance. Furthermore,
there are no guarantees that an empty stretch of shoulder is
a legal parking spot, and detailed maps with exact parking
space coordinates (with meter–level accuracy) are unavailable
in most locations. Also, smartphone absolute localization ac-
curacy is too imprecise to reliably identify parking spots. We
further contrast ParkMaster with this approach in Section 2.1.

We therefore take the approach where the smartphone de-
tects the parked cars themselves. The smartphone then esti-
mates the location of each detected vehicle, streaming this
information to the cloud over Wi-Fi or the cellular interface.
In order to detect the presence of a parked car at the roadside,
ParkMaster needs to recognize and track the parked car as
it moves across the frame of the driving car’s camera. Exist-
ing motion tracking algorithms [17, 28, 55, 60] excel at this
when the camera is still or almost still and objects are moving
against background, but to the best of our knowledge, do not
focus on our scenario where both background and object are
moving across the frame together.

Having made the above design choice of detecting parked
cars, in order to estimate free parking space, ParkMaster’s
cloud service relies on an additional information feed: the
number of parking slots per road. This data is nowadays
available in many cities, for example the cities of Seattle and
Paris maintain this data online. At a high level, ParkMaster
estimates the parking availability of each road segment (the
smallest piece of street connecting two intersections) as the
difference between its parking capacity and the number of
parked vehicles that the cloud estimates by aggregating the
parking analytic data that the smartphones upload. Finally,
ParkMaster’s cloud assists the smartphones in their own lo-
calization process by providing GPS data correction. Since
the only hardware ParkMaster requires is users’ off-the-shelf

2

smartphones, ParkMaster benefits from the individual deploy-
ment of each user’s smartphone.
Contributions. This paper contributes the following:

(1) We demonstrate the feasibility of running image–based
machine learning techniques at the edge, on today’s sm-
artphones, to capture valuable information about the sur-
rounding environment in real time without any human
intervention, when battery power is not a concern. In
order to do so we tackle the available parking location
problem designing, building, and deploying a complete
system.

(2) We propose a novel, lightweight tracking algorithm for car
detection that fuses speed estimates of the car with vision
processing of the video stream to “de-duplicate” multiple
detections of the same parked car in a drive, while the
background scene moves with the parked car (unlike most
object tracking algorithms).

(3) We design and implement a localization algorithm to esti-
mate the location of a parked car in a single frame, without
requiring stereo vision or any input from the user, instead
relying on camera calibration against well-known objects
in the driving environment. Our localization algorithm is
lightweight and thus can efficiently run on a smartphone.

Roadmap. The rest of this paper is organized as follows. Sec-
tion 2 describes the design of ParkMaster, while Section 3
summarizes its implementation. A performance evaluation
containing microbenchmarks and a real-world evaluation of
ParkMaster on the streets of two major cities and a village
follows in Section 4. ParkMaster achieves a 90% average
end-to-end accuracy, the result of meter-level video based
localization of cars from the phone’s camera. A sensitivity
analysis of ParkMaster’s design parameters explores optimal
camera and video parameters to use given the smartphone’s
available processing power, and shows a tradeoff between
false positive car detections and missed cars. Section 5 sur-
veys related work, and we conclude in Section 6.

2 DESIGN
This section describes the ParkMaster design in detail. Start-
ing with functionality on the edge, we first explain how Park-
Master recognizes (§2.1) and localizes (§2.2) vehicles parked
on the road. Continuing with functionality located in the
cloud, we then describe how ParkMaster counts parked cars
and free spots on a road (§2.3). We begin with the main goals
of our design, followed by a high-level design summary to
place each part into context.
Design goals. ParkMaster has the following goals:

(1) Since computation at the edge is limited, we avoid overly-
expensive computation on the mobile.

(2) Since real-world conditions and camera limitations may
obscure line of vision or create visual ambiguities, we aim

Smartphone
Data producer

ParkMaster Cloud

Map Service
GPS data Correction
Road Identification

Smartphone
Data consumer

Query: (Lat/Lng)

Answer:
(road; parking spots)

Parking availability
upload:

(Car/Camera position;
 Road id; Timestamp)

Data
Aggregation

Data Storage

GPS raw data

GPS corrected data;
Road id

Image Processing

Localization

Sign
classifier

Car
classifier

Car
detection

Android Camera API

Calibration

Smartphone
Data producer

Smartphone
Data consumer

((ro(

(Ca(Ca
Ro

G

Image Processing

Localization

Si
clas

Car
classifier

detection

Car

Si Car

Android Camera API

gn
sifier
gn

ndroid Cam

Calibrationib ti

G

R
CC

((r(r

EDGE CLOUD
ParkMaster Cloud r

Map Service
GPS data Correction
Road Identification

)s)

ty

on; on;
mp)

Data
Aggregation

Data Storage

;a;

CLOUD

a

p
onon

ty

))s)

Figure 2— ParkMaster architecture.

to design a system that can identify a car given a limited
number of frames in which the car is visible.

(3) Operating within the constraints of the first design goal,
since smartphone-cloud data constitutes a cost for the
users, we design a system that leverages edge processing
to limit the amount of data uploaded.

Non goals. Phone power management: Here we assume that
user powers the smartphone from the car’s electrical system.

Design summary. We present ParkMaster’s overall architec-
ture in Figure 2. Edge-side software running on the smart-
phone begins with the camera calibration phase, processing
the video stream looking for road signs. For each frame con-
taining a road sign of known height and size, ParkMaster
computes its real-world coordinates (relative to the camera)
and records the relationship between these relative real-world
coordinates and the sign’s coordinates in the smartphone’s
two-dimensional camera field of view. As soon as ParkMas-
ter collects enough samples, it runs the calibration algorithm
described in Section 2.2, to derive a rotation and translation
vector that captures the phone’s three-dimensional orientation.
Once calibration concludes, ParkMaster loads a car classifier
and starts searching for cars parked on the right side of the
road, parallel to the street (Section 2.1). On detecting a parked
car, ParkMaster extracts its frame coordinates, computes the
parked car’s real-world coordinates (relative to the camera)
and stores both sets of coordinates and the time of detection
on the phone: we refer to these data together as the parked car
analytics (Section 2.2). Simultaneously, ParkMaster records
data from the phone’s GPS, accelerometer, magnetometer and
gyroscope sensors, leveraging Google Maps’ “snap to road”
functionality [21] to obtain even better phone localization

3

accuracy. Whenever the user enters a new road ParkMas-
ter retrieves the samples collected from the previous road
segment and computes the camera’s position (in real-world
coordinates) at each detection time. This estimate, together
with the relative real-world coordinates of each parked car,
yields latitude-longitude coordinates of the vehicles. If the
sample is deemed valid, ParkMaster uploads the parked car
analytics stored at the edge to the cloud, adding the car’s
real-world latitude and longitude, a road identifier, and the
time each sample was detected. When the cloud receives a
phone’s update it runs the DBSCAN [18] clustering algorithm
in order to count the number of parked cars on the road seg-
ment (using cars’ coordinates to discern between different
vehicles). Finally, ParkMaster subtracts this estimate from
the number of parking spots to compute the number of free
parking spaces.

In the future, as new data arrives about road conditions, the
cloud discards old data in favor of more recent information
provided by other users. When a driver queries the ParkMas-
ter cloud looking for a parking spot, the latter provides the
computed per road-segment parking availability of the area,
together with its timestamp, which allows drivers to evaluate
the freshness of ParkMaster’s information.

In contrast with [31, 35, 36, 47], ParkMaster collects data
about the surrounding parked cars — not about users actions
— thus it doesn’t need to run in every vehicles nor to make
additional efforts in guessing non-users’ behavior.

2.1 Detecting parked cars
Works like [26] have shown the feasibility of running image–
based basic techniques like color filtering and edge detection
on smartphones to detect particular events while driving, like
traffic light status. ParkMaster takes a step further and applies
machine learning techniques, the Viola-Jones feature-based
cascade classifier [30, 56], to detect complex objects — cars
— in the phone camera’s video stream, in real time.

During one-time offline training, the classifier learns about
the object’s features through sets of positive and negative ex-
amples of the object of interest. Once the training terminates,
the classifier’s online detection (on the smartphone) analyzes
the video stream looking for the features listed by the classi-
fier in a multi-stage process. For each object that reaches the
final stage, the classifier provides the frame coordinates of a
bounding box containing the object, as shown in Figure 3.

To search for larger or smaller examples of the object of
interest, at each stage the features of interest are scaled, based
on a scaling parameter. To reduce the number of spurious
object detections, a candidate part of the image is considered
detected only if there are at least k adjacent detections in its
immediate vicinity (i.e., one to two pixels): k is referred to as
the minimum neighbors threshold.

ParkMaster must operate in a variety of light levels, i.e.

Figure 3— Parked car detection: frame samples indicat-
ing bounding box of detected cars.
sunny days v. cloudy days; time of the day i.e. mornings,
afternoons, evenings; and direction of the light. Ideally Park-
Master could use a specialized classifier and/or different de-
tection settings for each situation. However, to reduce system
complexity, we chose to use a single classifier trained in for
a wide range of conditions. As shown in Section 4, we have
obtained good results running ParkMaster in three different
countries across a wide variety of ambient conditions.

Discussion. In order to find empty parking spots the most
natural approach is to look for empty spaces. However, such
approach has two limitations: first, a map with the coordinates
of each parking spot (with meter–level accuracy) is required
to determine if the empty stretch of shoulder is a legal parking
spot, information that is rarely available. Second, smartph-
one localization accuracy doesn’t allow to properly identify
a spot (a few meters error in the localization may translate
in referring to the wrong stretch of shoulder in a hypothet-
ical parking coordinates database). In contrast ParkMaster
relies in a coarser and easier to get knowledge, the number of
parking spots per road, which is already available online for
instance for cities like Seattle and Paris1, and doesn’t need a
precise object localization; instead it simply requires that esti-
mated locations of neighboring cars don’t completely overlap
— they don’t need to match any specific location in the map.

2.2 Localizing parked cars
It is likely that the same vehicle is detected multiple times in
subsequent frames. Thus, to accurately count the number of
parked cars, ParkMaster has to determine when a vehicle has
been already detected in previous frames, and count it only
once. Analyzing subsequent frames, for instance computing
pixel–based image difference, to track a vehicle, is highly
CPU intensive and doesn’t easily handle differences among
subsequent detections of the same car (while the driver is
approaching the parked vehicle, the view of the car and the
background changes). Thus, with its primary design goals
in mind, ParkMaster aims to estimate each detected cars’
latitude-longitude position in the real world, and then decide
whether two detected cars are in fact the same car based on
their computed coordinates.

As described in the previous section, the detection algo-
rithm only provides the position of the parked car in the
coordinates of the camera’s frame. In the remainder, we refer
1See web6.seattle.gov/sdot/seattleparkingmap/ or opendata.paris.fr.

4

�
����

�

�

�

�

�

�

����

Figure 4— Coordinate systems used in ParkMaster’s de-
sign: the calibration process maps objects in the camera
coordinate system to the real-world road coordinate sys-
tem through the lens coordinate system.

to a car’s position in the camera’s two-dimensional coordi-
nate system (u,v) with camera coordinates (u0,v0). In order
to compute the corresponding latitude-longitude in the real
world ParkMaster must map from camera coordinates to a
three-dimensional road coordinate system (X ,Y,Z), whose
X-Z plane is parallel with the road and whose origin is located
on the road under the camera as shown in Figure 4. This is the
classic camera calibration problem, which we now describe.

2.2.1 Camera calibration. Camera calibration uses the
classical pinhole camera model, which treats the camera’s
aperture as a point in space. Although this model does not
account for various factors such as lens distortion, coordinate
discretization, and blurring, it does provide a good first-order
approximation to the camera’s projection. Camera calibra-
tion amounts to estimate two types of parameters. The first
type, intrinsic camera parameters, characterizes unchanging
optical properties of the camera: focal length f , the distance
between the pinhole and the film, and offsets of the axes from
the origin in the film cx and cy. The second type, extrinsic
parameters, describes camera’s location in the world via a
translation vector t and the direction in which the camera
points via a rotation matrix R. In contrast with the intrinsic
parameters, the extrinsic parameters R and t change as the
camera points in different directions.

In order to separate the effects of the intrinsic and extrinsic
parameters, we introduce a new coordinate system (x,y,z),
dubbed lens coordinate system, whose z-axis is aligned with
the camera lens. Now the mapping from lens to camera coor-
dinate systems captures the intrinsic camera properties, while
the mapping from road to lens coordinate systems captures
all extrinsic camera properties (camera tilt, rotation, and ele-
vation) except the GPS coordinates of the camera: these we
process as part of smartphone localization (§2.2.3).

Intrinsic parameter calibration. To find the focal length
f and image center (cx,cy) parameters ParkMaster simply

queries the Android camera API. Then, it can translate be-
tween the lens and camera coordinate systems with the fol-
lowing relationships of the pinhole camera model:

x = (u− cx) · z/ f and y =
(
v− cy

)
· z/ f . (1)

Extrinsic parameter calibration. To find the rotation matrix
R and translation vector t, ParkMaster calibrates the camera
while driving—without user input—using objects of well-
known sizes that can be easily found on the road. In both the
United States and Europe, road signs have a consistent height
hroad

sign (measured in road coordinates) and elevation from the
road Y road

sign mandated by the highway code.
ParkMaster uses a separate cascade classifier trained on

a sign of interest to search for road signs during a “start-up
phase”. Every time the sign classifier detects a sign, it returns
the camera coordinates of the detected sign (u0,v0), as well as
the height of the detected sign in camera coordinates hcamera

sign .
These, along with the intrinsic camera parameters described
above, allow us to compute the camera’s range to the sign Z0
as a function of the sign’s height in camera coordinates:

Z0 = hroad
sign · f/hcamera

sign (2)

To avoid using the results of calibration before the calibra-
tion itself is over, we approximate X0 ≈ x0, and take Y0 =Y road

sign .
This gives us a pair of (camera, road) coordinates for the sin-
gle sign detection. After L detections, the list
[((u0,v0) , (X0,Y0,Z0)) , . . . , ((uL−1,vL−1) , (XL−1,YL−1,ZL−1))]

(3)
of (camera, road) coordinate pairs can be passed to OpenCV [39],
a computer vision library, which calculates the extrinsic pa-
rameters R and t based on a global Levenberg-Marquardt op-
timization algorithm that minimizes projection error [11, 62].

Notice that in order to estimate Z0 and X0, we have assumed
that the X and Y axes of the road and the lens coordinate
systems are aligned. Not having this requirements satisfied,
which is most likely to happen in a realistic scenario (as drawn
in Figure 4), introduces error in the calibration. The misalign-
ment is unlikely to be large in realistic driving settings as
the driver wants to see the phone’s display, and thus can be
tolerate. In order to verify this empirically, we intentionally
placed the smartphone not always perfectly aligned with the
road axis in our experimental evaluation (§4.1).

Once R and t are computed, they are valid till the smart-
phone remains in its original position. Currently ParkMaster
assumes the driver won’t remove the phone from its holder
while driving. However, if this happens, it is straightforward
to pause the car detection, reset R and t and start again the
calibration phase once the phone is back in place (this event
could be triggered manually by the driver or automatically by
the phone’s sensors). Minor changes in the phone’s position,
due for instance to car vibration, have instead a negligible
and usually temporary effect on R and t (the phone holder

5

Figure 5— Extracting the lower-middle point of a de-
tected car’s bounding box in the camera coordinate sys-
tem for processing in the road coordinate system, to yield
a final GPS location estimate of the parked car.

stabilizes the device) and thus ParkMaster doesn’t try to com-
pensate for such events. In the experimental evaluation (§4.1)
we used a standard phone holder without any additional ac-
tions to improve phone’s stability, thus the results reported
include the effects of vibrations, potholes ...

2.2.2 Car localization. After calibration, ParkMaster is
ready to localize parked cars. However, camera parameters do
not suffice to find a unique position in road coordinates given
a set of camera coordinates, since a coordinate in the camera
frame corresponds to multiple points in the road frame. In
order to find a unique road coordinate, we exploit a natural
constraint of our scenario: cars elevation from the ground is
always zero, i.e., Y = 0. Thus, supposing car detection has just
detected a parked car at camera coordinates (uc,vc), our task
is to determine Xc and Zc, the two dimensional location of the
car in the road coordinate system. To this end, consider the
relationship between the road and lens coordinate systems:

⎡

⎣
X
Y
Z

⎤

⎦ = R−1 ·

⎛

⎝

⎡

⎣
x
y
z

⎤

⎦− t

⎞

⎠ . (4)

With Equations in 1 we can compute (xc,yc), the (x,y) posi-
tion of the car in the lens coordinate system. Substituting in
(x ← xc,y ← yc,Y ← 0) and the calibrated values of R and t
into Equation 4 yields a linear system of three equations in
three unknowns (X ,Z,z), which has a unique solution (Xc,Zc)
for the car’s road-coordinate location.

2.2.3 Smartphone localization. Now that we have a mean
of mapping car locations between camera and road coordinate
systems, for each frame where a car is detected, ParkMaster
extracts the lower-middle point of the bounding box (Figure 5)
and computes its road coordinates. This measure, together
with the coordinates of the smartphone, allows ParkMaster
to estimate the absolute position of the detected vehicle and
compare it with the coordinates of subsequently-detected cars.

Nowadays, every smartphone is equipped with a GPS sen-
sor. To improve its accuracy, ParkMaster periodically sends
raw GPS data to Google Maps (“snap-to-road”) API service,
which supports filtering and correction of the GPS traces: it

removes or corrects points out of the road, interpolates coor-
dinates based on street layout and identifies the road segment
on which the user is driving. This information flows into the
next stage of ParkMaster’s processing, counting parked cars.

2.3 Counting parked cars
Now that it has an approximate GPS location for each parked
car detection, ParkMaster relies on car’s approximated coor-
dinates to track its location between successive frames and
estimate the number of parked cars. Since the localization
process is prone to error, we can’t do a mere coordinate com-
parison, because (1) the detection algorithm doesn’t always
pick the same point of a car; (2) the localization process is
affected by inaccuracy, due to calibration imperfection and
camera distortion; and (3) the smartphone location given by
GPS and snap-to-road is not always accurate.

Most likely, whenever ParkMaster detects a car multiple
times, it gets a set of coordinates close to each other (a couple
of meters). Thus, in order to distinguish among different
cars, ParkMaster runs a Density Based Spatial Clustering of
Applications with Noise (DBSCAN[18]) algorithm on all the
coordinates collected on a segment of road, clustering nearby
points into estimates of a single car’s location. Knowing the
maximum number of cars that a given road can accommodate
and the number of estimated cars on that road, ParkMaster
estimates the parking availability.

Preliminary studies have been done in order to choose the
proper clustering algorithm: among the approaches which
don’t require prior knowledge of the total number of clusters,
we evaluated Affinity Propagation [20], Mean Shift [16] and
DBSCAN. In the counting cars problem these techniques
seem equivalent, with DBSCAN that slightly outperforms the
others in CPU time. It must be noticed, however, that due to
the small number of samples (few points per car), in most of
the cases the difference in performance is negligible.

Discussion. The estimate of the maximum number of parking
spaces a road can host may affect the accuracy of ParkMaster.
Indeed, while sometimes road-side parking is marked with
bays, in others they are left unmarked, making the maximum
number of parked vehicles on the road merely an estimate. At
the moment ParkMaster does not take any additional action
to cope with the uncertainty of unslotted areas, but we are
confident that with more sophisticated techniques (i.e., mea-
suring space between parked cars) we will be able to improve
accuracy in free parking scenarios.

2.3.1 Heuristics. In order to increase accuracy ParkMas-
ter applies the following heuristics during the clustering phase:

Sample distance. Increasing the camera-vehicle distance
generally increases the error of the parked car’s localization,
which may lead to unreliable estimation (§4.4). Thus Park-
Master discards samples estimated to lie further than a certain

6

threshold distance, determined empirically in §4.1.1.

Single-element cluster. Today’s smartphones can’t process
every video frames in real-time (§4.1.3). Furthermore, cars
are not always detected, even when clearly visible. As a result,
some vehicles are detected only once. To decrease the number
of misses, ParkMaster conservatively considers elements that
don’t belong to any DBSCAN cluster as individual parked
vehicles. We note here that while this approach will rarely
result in spurious parked vehicle detections, our experimental
evaluation shows that it has an overall benefit to accuracy.

Cluster size. Consecutive cars may be merged into the same
cluster if the points in the overall dataset are dispersed and
the clustering process fails to discriminate between them. In
this case ParkMaster relies on the “size” of the cluster to eval-
uate the number of vehicles. If the maximum distance dmax
among two points in the same cluster is bigger than a certain
threshold maxClusterSize, ParkMaster splits the cluster into
n smaller clusters, where n = dmax/maxClusterSize.

Driving cars. Even though the detection algorithm is trained
with pictures of vehicles capturing the back and part of the
side of a car, it may happen that the classifier detects vehicles
that are driving in the opposite direction (only the front is
visible) or that are driving in front of the camera (only the
back is visible). To mitigate these cases, the classifier focuses
only on the lower-right part of the video, where cars parked
on the right side of the road usually appear. Reducing the area
of interest also allows the classifier to process only a portion
of the frame, which reduces the per-frame processing time.

A special case is represented by multi-lane roads, where
vehicles on the right may be moving cars. In this case, car
detection must be enabled only when the user is driving on
the rightmost lane. While at the moment ParkMaster assumes
the user is always doing so, we believe vision-based [40]
or sensors-based [6, 7, 10, 15, 43] solutions for lane detec-
tion can be easily integrated with ParkMaster to trigger the
detection only when the user is driving on the right lane.

Samples while turning. A vehicle parked on the left side
of the road may fell in the lower-right part of the video, re-
sulting in false detections (Figure 6). Since GPS sometimes
fails to discern these cases, ParkMaster also samples phone’s
magnetometer, accelerometer and gyroscope, and, when ap-
proaching an intersection, discards the sample if the user is
turning i.e. the current orientation of the phone differs from
the average orientation the phone had on that road.

3 IMPLEMENTATION
Edge. We have implemented ParkMaster on three mid-range
to high-end Android phones: a Samsung Galaxy S4 GT-19505
running Android 4.4.2, a Samsung Galaxy S6 edge+ running
Android 5.1.1, and an LG Nexus 5 with Android 6.0.1. The

Figure 6— Car parked on the opposite side of the street.

Galaxy S4 and the Nexus 5 are equipped with a Quad Core
CPU and 2 Gbytes RAM, while the Galaxy S6 is equipped
with two Quad Core CPUs and 4 Gbytes RAM. All smart-
phones are equipped with at least an eight megapixel main
camera as per the “full” specifications [1–3].

For cascade classifier-based car detection on the phone, we
use OpenCV 2.4, an open-source library for image processing
available for Android. The classifier (made available online 2)
has been trained with 1,202 positive samples and 719 nega-
tive samples, resulting in 20 stages. Currently, ParkMaster
focuses on parallel parking only, thus we train the classifier
using pictures capturing the back and the side of the vehicle
as positive examples.3

Cloud. We have implemented ParkMaster cloud services
in Azure, using Azure Mobile Service for cloud backend
functionality and Azure mobile app client and Node.js SDK
for authentication and interaction between clients and the in-
cloud database (MongoDB) used for data collection. For GPS
data correction and road identification instead the Google
Snap Road API has been used. The API is available on
Android as part of the Java Client library for Google Maps.

4 EVALUATION
In this section we present a comprehensive performance eval-
uation of ParkMaster. We begin with single-driver, real-
world experiments that exercise ParkMaster’s entire process-
ing pipeline in “on the road” scenarios in metropolitan and
rural environment (§4.1).We then discuss data coverage and
freshness (§4.2). Finally, we drill down into ParkMaster’s de-
sign, explaining how we have tuned parameters in the car de-
tection algorithm (§4.3) and car localization algorithm (§4.4).

4.1 Road-based experiments
We experiment in both metropolitan (Los Angeles and Paris)
and rural environments (Sant’Angelo in Vado, a small village
in Italy). In Paris cars are typically parked 30–40 cm. from
each other, while in Los Angeles they are usually separated
by larger space and in the European village they are typically
spaced by a half-meter or more, and sometimes isolated (i.e.,
2 Classifier and training set available at www.github.com/grassig/parkmaster.
3It is possible to build a classifier for each type of parking (i.e., angled or
head-in parking) and then, knowing the type of parking spot on a given road,
use the appropriate classifier.

7

Place Distance Unique dist. Slots Parked cars
EU-village 17.9 km. 3.3 km. 1,381 710 cars
EU-city 38.4 7.9 3,527 2,892
USA-city 41.0 19.3 3,268 2,294

Totals 97.3 30.5 8,176 5,896
Table 1— Experiments on the road – covered distance
(only roads with at least one parking spot have been ac-
counted).

(a)— EU-city.
Paris (France).

(b)— EU-village.
Sant’Angelo In
Vado (Italy).

(c)— US-city. Los
Angeles (USA).

Figure 7— Experiments on the road. Red points indicate
streets with parking spaces, blue points indicate roads
with no legal parking.

a few solitary parking spots on a long road). In addition, we
experiment in different weather conditions: our tests span a
period of ten days between December 2015 and March 2016,
between 11 a.m. and 6 p.m. Typical weather includes a clear
sky, dawn, partly cloudy conditions, and cloudy with light
rain. In total, as Table 1 shows, we drove for 97 km. on roads
that have at least one parking spot, covering a 30.5 km. path.
We report a total of 5,896 parked cars and 2,280 available
parking spaces4. Figure 7(a) shows these roads in a map view
all three environments.

We experiment using the three phones described in Sec-
tion 3 and drive three different cars (with different dashboard
heights from the ground). In Paris we used the Galaxy S4 and
S6 respectively for 41% and 59% of the time, while we used
the Nexus 5 for all in-village experiments and we equally
used the Galaxy S6 and Nexus 5 in Los Angeles.

On each run, we place the smartphone as shown in Figure
1, slightly changing its position (i.e. few tens of cm) and
orientation each time (i.e. few degrees). We run the calibra-
tion phase on a traffic sign, and then begin driving (on the
rightmost lane), respecting local speed limits: 30 kph (Paris),
30 kph and 50 kph (Sant’Angelo in Vado), 40 kph and 48 kph
(Los Angeles). On average, during each run we drive for 30
minutes. GPS sampling frequency is one sample per second.

4The amount of parking slots each road–segment can host has been computed
manually, by on-the-field observations.

Ground truth

Pa
rk

M
as

te
r Car No car

Car Correct detection
(TPR)

Spurious detection
(FPR)

No car Missed car (FNR) Correct non-detection
(TNR)

Table 2— Confusion matrix for accuracy evaluation.

4.1.1 Car detection accuracy. Before looking at Park-
Master’s entire pipeline, we begin with the detection phase in
isolation, analyzing the effects of the heuristics described in
Section 2.3.1. We empirically set the threshold of the above
heuristics after preliminary experiments: we set the maxi-
mum sample distance to 7 m. (ParkMaster discards samples
at larger distances) and the maximum cluster size to 6 m.
(ParkMaster splits larger clusters into smaller groups). These
values maximize detection accuracy which, however, was
largely insensitive to their exact settings, varying less than
10% with a ± 1 m. difference.

Accuracy metrics. In order to ascertain ground truth (the
number of parked cars and empty parking spots) an additional
camera records each experiment and we visually tally these
quantities after the drive. We evaluate in terms of the true
positive rate (TPR) and false positive rate (FPR), as shown in
Table 2. TPR is the ratio of the number of cars that ParkMas-
ter detects in at least one frame to the ground-truth number
of parked cars, while FPR is the ratio of the number of spuri-
ously-detected cars ParkMaster reports to the sum of spurious
detection and correct empty parking space detection. If the
same car is detected multiple times, we count it once. Note
that whenever ParkMaster detects a car which is not parked
or which is parked on the left side of the road, we count the
sample as a spurious detection (false positive).

Results. Figure 8(a) shows the results. The heuristics of
§2.3.1 slightly decrease the true positive rate. Indeed they
sometimes fail discarding samples that are correct. In contrast
they are strongly beneficial for the false positive rate. Manual
data inspection shows that the heuristics are able to discard a
good fraction of (1) running cars (based on road coordinates);
(2) cars parked on the other side of the road when the user
is turning (based on GPS and azimuth); (3) cars crossing
intersections (based on GPS) and (4) non-vehicle object mis-
classified as cars that don’t lay on the ground (based on their
higher estimated distance to the camera).

4.1.2 End-to-end accuracy. We now measure end-to-end
accuracy, from detection on the smartphone to clustering and
counting in the cloud.

Metrics. In order to evaluate end-to-end, we extend the above
concepts in order to take into account the counting process.
We consider true positive when a car parked on the right side
of the road appears among the vehicles ParkMaster counted,

8

while we consider as false positive all the non-cars, vehi-
cles parked on the left side of the road and driving cars that
ParkMaster counts as parked cars. Furthermore, whenever
ParkMaster counts the same parked vehicle multiple times,
we consider the first sample as true positive and all the others
as false positives. In addition, we introduce the accuracy
with compensation metric: the final outcome of ParkMaster
is an estimation of the number of parked cars, which includes
both correct samples and counting error—spurious detections
“compensate” misses in the count for a specific road. Thus,
for each road i, we compute errori as the difference among
the number of parked cars (ground-truth) and the number
of vehicles ParkMaster considers as parked. We define the
accuracy with compensation as:

accuracy = 1− ∑#roads
i=0 |errori|

#parked cars
. (5)

During a single experiment, it may happen that we drive
several times on the same road; nevertheless, we consider
each pass independent from the others—the error from one
pass is not mitigated by later pass on the same road.

Finally, we evaluate ParkMaster accuracy when determin-
ing if there is space to park on a road in terms of Positive and
Negative Predictive Value. Defining positive samples as oc-
currences of roads with at least one available parking spot and
negative samples as occurrences of roads without free space,
the Positive Predictive Value is the ratio of correct positive
estimation (ParkMaster correctly estimates there is enough
space) to the number of positive samples. Similarly, Negative
Predictive Value is the ratio of correct negative estimations
(ParkMaster correctly estimates the road is full) to the total
number of negative samples.
Results. Figure 8(b) shows true and false positive rates and
accuracy with compensation. In general, in rural environ-
ments ParkMaster shows better performance compared to
urban scenarios. Indeed, in the first we usually have cars
parked at larger distance, which overcomes eventual inaccu-
racies in the car localization estimates. In contrast, in Paris
spaces among vehicles are limited and the counting process
can tolerate a smaller error in the localization. Intermediate
performance characterizes the experiments in USA, which in-
deed presents a higher density of cars than rural environments
but a less chaotic parking displacement than the European city.
Nevertheless, with its almost free of costs approach, Park-
Master always shows a satisfactory close to 90% accuracy
(notice that the city of San Francisco considers their sensors-
on-parking-meter deployment effective and starts paying for
the service when accuracy is higher than 70% [5]).

Figure 8(c) shows Positive and Negative Prediction values.
Similarly to Figure 8(b), rural environments show the highest
accuracy. Anyhow in most of the cases (from 87% to 98%)
ParkMaster successfully classifies roads with empty parking
spots. Lower accuracy is reported for negative prediction.

Classifier B. B. GPS Loc. F. P.
EU-city 24.3% 29.2% 26.3% 8.0% 12.2%
EU-village 29.6 29.8 14.4 7.0 19.2
US-city 24.5 27.8 25.1 17.1 5.6

Table 3— On-road experiments: Error analysis.

Indeed when a street is full or almost full, a single error may
lead to a misclassification of the road status.

Figure 9 shows the effect of the error compensation on
the accuracy of car counts. In particular, Figure 9(a) shows
the error per road while Figure 9(b) shows the same error
in percentage points (on the number of parking spots on the
road). In both cases, the error is reported as absolute value
and with a sign (a negative error means missing cars, while
positive values mean ParkMaster overestimates the number
of parked cars).

Error analysis. Inaccuracies can be caused by several factors.
In particular, we define the following type of errors:

(1) Classifier: the classifier detects something that does not
correspond to a car,

(2) B. B.: Inaccurate bounding box—the classifier captures
only the upper part of the vehicle,

(3) GPS: ParkMaster fails to properly count cars due to GPS
inaccuracies i.e. phone’s GPS doesn’t report any move-
ment while car is moving (or the opposite), or GPS reports
large distance among two consecutive samples (5-10 me-
ters) while it’s clear from the recorded video that user’s
movement is considerably smaller (1 meter or less),

(4) Loc.: ParkMaster miscounts vehicles because the clus-
tering process is not able to associate samples with the
corresponding car i.e. a car has been counted more than
once or multiple cars are merged into the same cluster,

(5) F. P.: ParkMaster has failed to discard driving vehicles or
cars parked on the left side of the road (false positive).

Table 3 shows the frequency of those errors during the
experiments on–the–road. With the help of logs and videos
we manually evaluate each erroneous sample and pick the
best fitting error category. Table 3 confirms the remarkable
impact that inaccuracy of bounding box and phone’s GPS
have on the car counting process. In particular, between
the three scenarios, it shows a major impact of GPS error
in the two cities. The difference is mainly due to higher
buildings elevation (especially in the European case) and
a more frequent stop-and-go car mobility caused by traffic
lights and stops which characterize urban scenarios [14].

It must be noticed that, while the locations have different
characteristics, all the parameters used in the aforementioned
heuristics, in the clustering process etc. are constant. Adapt-
ing some of those parameters based on the location (e.g. based
on the typical distance among parking spots) may reduce the
error and thus further increase the system accuracy.

9

USA−city EU−city EU−villag e

10
20
30
40
50
60
70
80
90

100

Locations

%

TPR PRE
HEURISTICS

FPR PRE
HEURISTICS

TPR AFTER
HEURISTICS

FPR AFTER
HEURISTICS

(a)— Detection on the road: True and
False Positive rates before and after
applying the §2.3.1 detection
heuristics.

USA−city EU−city EU−villag e

10
20
30
40
50
60
70
80
90

100

Locations

%

TPR

FPR

ACCURACY

(b)— ParkMaster end-to-end accuracy
in real-world driving experiments on
the road.

USA−city EU−city EU−villag e

10
20
30
40
50
60
70
80
90

100

Locations

%

POSITIVE
PREDICTION

NEGATIVE
PREDICTION

(c)— Can we park there? Positive
(there is at least one spot) and
negative (road is full) prediction
accuracy.

Figure 8— On the road experiments

� � �
� �

�
�

�
�

�

�

�

�

�

�

�

�

�

�
� � �

10
20
30
40
50
60
70
80
90

100

−40 −20 0 20 40
Error per road

with compensation

CD
F

� ERROR
ABS(ERROR)

(a)

● ● ● ● ●●●●●

● ●●
●●

●●●●●

●●●●●
●●

●
●●●

●●
●●●
●

●●
●●
●●●
●

●●●
●●
●
●●●
●●●
●

●
●●
●●
●

●●

●
●●

●

●●●
●●●
●
●●
●●
●
●●
●●●
●●●●

● ●●●
●●
●
●
●
●●
●●
●●
●●
●●●

●
●●

●●

●●●

●●
●
●

●

●●
●

●
●
●

●●●
● ●

● ● ● ● ● ●

10
20
30
40
50
60
70
80
90

100

−100−50 0 50 100 150
Error per road with
compensation[%]

C
D

F

● ERROR
ABS(ERROR)

(b)

Figure 9— ParkMaster end-to-end counting accuracy in
real-world driving experiments on the road.

4.1.3 Processing rate. On todays phones ParkMaster
doesn’t keep up with video speed but drops frames: on av-
erage during the experiments Samsung Galaxy S4, S6 and
Nexus 5 processed respectively 5.75, 10,3 and 6.75 frames
per second. Despite the large gap between the two Galaxy
phones, if we compare ParkMaster performance with the two
phones in similar conditions (we run few experiments with
both phones at the same time), the gap reduces: in those ex-
periments the TPRs are 83.4% in the Galaxy S6 and 76.8%
in the S4, while the FPRs are 34.4% and 27.8% respectively.
Drilling down the processing costs of ParkMaster, we iden-
tified in the car detection phase the main burden. Indeed,
having only this phase running, the number of frames per
seconds processed by the phones doesn’t change: the Galaxy
S4 and S6 respectively processed on average 5.78 (against
5.75 with the entire pipeline) and 10.44 fps (against 10.3).

4.1.4 Data usage. By design, ParkMaster concentrates
most of the computation at the edge and relies on the cloud
only for data aggregation. The amount of information ex-
changed by the two parts is therefore negligible. During all
the on-road experiments (about 8 hours driving), the phones
exchanged 6.1 megabytes5 with cloud and Google’s snap-to-
road service, divided as follows: (1) 67 bytes for each sample

5The negligible HTTP/TCP overhead has not been accounted.

uploaded by the phone; (2) 16 bytes for each GPS coordinate
sent to Google’s snap-to-road service; (3) 47 bytes for each
GPS coordinate corrected by Google’s snap-to-road Service.

While ParkMaster required the upload of only 6.1 megabytes
of data to the cloud, we estimate that in a fully cloud-based
approach that requires the entire video to be uploaded for pro-
cessing, the same 8 hours drive would generate approximately
4.8 gigabytes of video (with a 720x480 resolution and same
phones). This estimate demonstrates that, even if the cloud
has “infinite” processing resources which may increase the
accuracy of the system (Section 4.3 evaluates the effects of
processing limitations on the car detection phase), the amount
of data that needs to be transfered over the network is too
high to be sustainable. A study of the benefits of a mixed
approach, where video is sometimes processed at the edge
and sometimes uploaded to the cloud, is left for future work.

4.1.5 Fusion of parked cars analytics. One of ParkMas-
ter’s strength resides in being able to run in COTS smartph-
ones, which potentially enables every driver to participate in
data collection. As a consequence, the cloud may receives
information about the same road from multiple drivers. While
an extended study of multi–user data fusion is out of the scope
of this paper, we evaluate through preliminary experiments
how an extended version of ParkMaster may reduce the error
when users sample the same road in a short period of time
(ParkMaster’s outcome is likely to vary each time because
of different user’s speed, camera’s properties, phone’s char-
acteristics ...). In particular, we look into the single-element
cluster case (object detected only once), which constitutes a
considerable portion of false positives.

In this extended version of ParkMaster, the cloud, after re-
ceiving new data, instead of overriding older samples, assigns
weights to each parked car detection, indicating its confidence.
Whenever data from different users matches the same spot,
samples are merged and their resulting weight is increased. In
order to take into consideration time, the cloud periodically
decreases these weights. Whenever a single-element cluster is

10

uploaded, the cloud accepts it only if other users have recently
reported a car at the same location — only if the resulting
weight is higher than a certain threshold. To cope with GPS
inaccuracy, the cloud may adjust traces of different users in
order to match the position of the parked cars analytics.

In order to give a preliminary assessment of this approach,
we place two smartphones (Samsung Galaxy S4 and S6) in
the same car and we repetitively drive along the same path
(950 m. path for a total of 11.4 km. in the Paris) to emulate
multiple-users’ activities in a short period of time.

Although such a data fusion approach is quite rudimental,
35% of the false positives are identified and removed, with
a small price in terms of true positive rate reduction (2.5%
of true positives are erroneously classified as not-parked-car
and removed), which would further increase the accuracy of
ParkMaster reported in Figure 8 (which have been obtained
without data fusion). We leave for future work a more exten-
sive study of data fusion e.g. external information like traffic
reports (i.e. Waze), or historical parking data, may be used
to evaluate parked-cars-analytics validity over time (once we
detect a parked car, how long will it remain parked?).

4.2 Data pertinence to the parking search
As for any crowd-based system, the number of users collect-
ing data is a crucial factor for the success of ParkMaster. Data
coverage and freshness are indeed vitals to make ParkMas-
ter information of any pertinence to the drivers looking for
parking and strongly depend on the number of data collectors.
In order to evaluate this, we utilizes results reported by [34].
Such a work, as previously mentioned, addresses the parking
problem by installing additional hardware on cars. While the
mean is different, the data collection model is similar: running
cars collect data about parking availability in the area.

[34] analyzes taxis’ traces collected over a month in the
city of San Francisco [50] and estimates that with the only
536 cabs reported in the traces, in the downtown area of San
Francisco, 80% of the road (dubbed cells in [34]) is on average
visited with an inter-visit interval of under 10 minutes. Such
a result shows that with a small subset of vehicles collecting
data a significant data freshness can be achieved.

Moreover, it provides insights on how ParkMaster could
be initially deployed: the system could run on taxis or other
public vehicles, which has been shown to guarantee adequate
data freshness, and then, given the low cost for the users (in
contrast with [34]), expand to other drivers, for instance with
the incentive of more parking queries for non-free-loaders.

4.3 Tuning car detection
We now drill down into ParkMaster’s design, explaining how
we have tuned parameters in the car detection algorithm.

We record a five-minute video using a phone while driving.
Afterwards, we run the detection algorithm on a server, at

 NEIGHBOURS = 1
 NEIGHBOURS = 2

 NEIGHBOURS = 3

 NEIGHBOURS = 4

 NEIGHBOURS = 5

 NEIGHBOURS = 6

 NEIGHBOURS = 8
NEIGHBOURS = 100

25

50

75

100

0 25 50 75 100
FPR

TP
R

(a)— neighbors threshold
(scale = 1.05).

SCALING = 1.02
 SCALING = 1.05

SCALING = 1.1

SCALING = 1.2

SCALING = 1.5

0

25

50

75

100

0 25 50 75 100
FPR

TP
R

(b)— scale parameter
(neighbors = 2).

Figure 10— Tuning parameters of a computationally-un-
constrained car classifier (1920×1080 resolution).

Resolution TPR FPR
1920×1080 92.7% 22%
1280×720 91.5 21
720×480 91.4 15
640×480 86.5 13
320×240 76.8 4.2

Table 4— Car detection with no computational limits:
Impact of changing video resolution with Viola-Jones
classifier parameters scale = 1.05 and neighbors = 2.

first processing every frame of the video (30 fps), and then
artificially skipping frames to emulate the edge limitations.

4.3.1 Tuning video parameters for accuracy. We first
measure car-detection true and false positive rates at 30 fps
while varying input resolution and the classifier parameters.

Viola-Jones classifier parameters. Figure 10(a) shows the
impact of varying the neighbors threshold with a 1920×1080
resolution video and a scale = 1.05 (i.e., scaling in steps of
5%) when the Jones-Viola classifier processes the video at
full 30 fps rate. The ROC curve shows the tradeoff between
fewer spurious car detections but more missed cars with a
high neighbors (high detection confidence) and more detec-
tions (true and false) with low neighbors. Based on this data,
ParkMaster sets neighors = 2.

Figure 10(b) shows the impact of varying the scaling pa-
rameter with the same resolution video and neighbors= 2. We
see a similar tradeoff, with the classifier missing cars when
its scaling search step is coarse (scaling = 1.5). Based on this
data, ParkMaster sets scaling = 1.05 to make a reasonable
tradeoff between misses and spurious detections.

Video resolution. Decreasing the video resolution reduces
the FPR, but, at the same time, leads to lower TPR (see
Table 4). While with resolutions higher than 720×480 the
variation in TPR is relatively small, decreasing further the
resolution causes a more consistent drop in the number of TP.

11

FPS = 2

FPS = 5
FPS = 10

 FPS = 15

 FPS = 20 − FPS = 25

 FPS = 30

●

●

●
●
●●●

0

25

50

75

100

0 25 50 75 100
FPR

TP
R

Figure 11— Detection with smartphone limitations: Im-
pact of processing rate with video resolution 720×480,
classifier parameters scale = 1.05 and neighbors = 2.

Cropping Processing rate
Resolution Scale ↕ ↔ S4 S6
720×480 1.05 1⁄2 1⁄2 5.78 fps 10.4 fps ⋆
720×480 1.05 full full 1.18 4.11
720×480 1.02 1⁄2 1⁄2 2.30 5.22
1280×720 1.05 1⁄2 1⁄2 2.08 5.90
1920×1080 1.05 1⁄2 1⁄2 0.90 3.45

Table 5— Sensitivity analysis of video parameters on
phone performance (processing rate) measured in frames
per second. ⋆ indicates the parameters ParkMaster uses.

4.3.2 Tuning video parameters for performance. Com-
putational power at the edge is increasing, but still limited.
We thus consider what performance level (as measured in
frames per second the phone processes) we require. Figure 11
shows many missed cars at 2 fps and diminishing gains past
10–15 fps, because the classifier already has enough frames
in which it may detect the car.

Table 5 summarizes a sensitivity analysis on performance,
measured in frames per second the Samsung Galaxy S4 and
S6 can process when only car detection is active. Since Park-
Master aims to detect only vehicles parked on the right side
of the road, it can focus on a smaller part of the image, the
bottom-right part of the frame (1⁄2 cropping in both horizontal
and vertical directions). We see that scale factors smaller than
1.05 significantly reduce the frames per second the smartph-
one can process. The data shows that with parameters chosen
for ParkMaster (denoted by the ⋆ symbol), the Samsung S6
can process 10.4 fps, i.e., one frame every 40 cm at 15 kph or
one frame every 1.3 m. at 50 kph, removing frame rate as a
limiting factor for car detection.

4.4 Measuring car localization error
In this section we probe the causes of inaccuracy in the lo-
calization process. Firstly, we evaluate the effects of camera
distortion and calibration: we place an easily-recognizable ob-
ject (a box with a high contrast color and well defined edges)
at the end of a corridor, calibrating the smartphone with a
copy of a road sign. Then, we place the phone at well-known
positions in the corridor and we let it compute the relative

0.0

0.5

1.0

1.5

2.0

3.0 5.0 7.5 10.0
Camera−ob ject distance [m]D

is
ta

nc
e

fro
m

 c
en

tro
id

 [m
]

OBJECT
BOX
CAR

Figure 12— Localization error versus ground-truth dis-
tance from the object of interest, for an easily-recognized
object indoors, and real cars in a parking lot.

position of the object to the camera. Due to the simplicity of
the object, bounding box inaccuracies are close to zero.

Afterwards we measure the effects of bounding box mis-
placements — a classifier recognizing only parts of an object.
We run a second, similar experiment in a parking garage
detecting and localizing a real car.

In both experiments as the camera changes range to the
object of interest, we compute the estimated location of the ob-
ject (as camera-object distance plus camera position). After-
wards we compute the centroid of the set of samples collected
at different locations and we measure the average distance
between each sampled coordinate and the centroid: this es-
sentially measures dispersion in the location estimate, which
we refer to below as localization error. If the points are too
dispersed, ParkMaster won’t be able to track a car among
subsequent frames because points belonging to cars close to
each other will overlap. Figure 12 shows the resulting lo-
calization error for both experiments. As expected, getting
farther from the box increases the localization error, because
a miscalculation in the estimation of the camera extrinsic pa-
rameters (i.e. wrong orientation) increases its effects at large
distance. Similarly for the car experiment, which however
presents a peak in the error at small distance, due to bounding
box error: the classifier detected only part of the vehicle (e.g.
only the upper part of the car), which translates in a further
away estimated location in street coordinates.

5 RELATED WORK
Car detection. Advanced Driver Assistance Systems use
computer vision, among other techniques, to alert drivers
of potential dangers in the surrounding area [49]. Several
mechanisms have been developed to detect and track cars
from a moving vehicle using an in-vehicle camera [9, 22, 38].
ParkMaster uses Viola and Jones classifier for its simplicity
and computational speed.

Object tracking. Object tracking methods can be used in
order to count cars. In [17, 28, 55, 60] the authors use back-
ground subtraction techniques to facilitate object tracking.
This approach is however impractical in ParkMaster’s sce-
nario, where the camera is moving. [8, 17, 27, 29, 46] apply

12

multi-object tracking-by-detection algorithms, which rely on
large temporal video windows to discern among subsequent
objects. In contrast in our scenario the same vehicle may
be detected in few frames only. Finally [23, 42] combine
particle filters with object detector for Markovian tracking-by-
detection, which [12] uses to track pedestrians. The tracker
initialization however requires the same object to be detected
few times in subsequent frames, which again is not always fea-
sible in ParkMaster’s scenario. Furthermore, the processing
time of [12] is not negligible.

Object/obstacle localization. Stereo vision is commonly
used to detect obstacles and estimate their relative location
in the scene using simple triangulation [37, 51, 59]. Stereo
vision comes at the cost of two cameras facing a scene at the
same time, not available in the majority of COTS smartphone.
In [33] authors use different pictures of the same scene taken
by one camera in different locations to emulate two virtual
cameras and reconstruct a 3D model of the scene. This ap-
proach however is very CPU intensive. Similarly Wedel et
al. [58] propose the use of multiple pictures taken by a single
camera to estimate the distance of a vehicle from a moving
car. In order to be accurate the algorithm needs several sam-
ples, which may not be always available in ParkMaster case.
Furthermore, both [33, 58] require an accurate localization of
the camera, which may be hard to achieve with smartphone’s
sensors while moving on a car.

Camera calibration and coordinate system mapping. An-
other class of single-camera based methods for object lo-
calization consists in mapping camera’s two-dimensional
coordinate system to the three-dimensional road coordinate
system. [53] introduces a pattern-based camera calibration,
which has been used by [24] for obstacle avoidance on smart-
phones (through chessboard camera calibration). However,
to calibrate the phone, the driver has to stand in front on the
car with a chessboard every time the phone is placed on the
dashboard. In contrast in ParkMaster, given the triggering
action — the phone has been placed — calibration runs on–
the–go without user intervention. [25, 41, 54] exploit Inverse
Perspective Mapping (IPM) to remove perspective effects.
Such techniques however require to know the height of the
camera and it’s angle to the road [32], which may change at
each run. Similar assumptions are made by [61], which needs
camera’s height to compute car-camera distance.

6 CONCLUSION
This paper has described ParkMaster, the first system to com-
bine advanced vision algorithms, edge computing on mobile
devices, and the cloud to build a zero-overhead parking space
availability solution for dense, vibrant urban environments
that costs drivers and the city next to nothing. On–the–road
experiments run in uncontrolled environments (city of Paris,

Los Angeles and a small Italian village) validate ParkMaster
approach, whose accuracy in estimating parking availability
reaches 90%. We believe ParkMaster and similar technolo-
gies will push the envelope of what is possible in the smart
cities of tomorrow, with a key-role played by the edge in
extracting vital information about the urban environment.

ACKNOWLEDGMENT
This material is based upon work supported by the National
Science Foundation under Grant No. 1617161.

REFERENCES
[1] http~://www.gsmarena.com/samsung_i9505_galaxy_s4-5371.php.
[2] http~://www.gsmarena.com/samsung_galaxy_s6_edge+-7467.php.
[3] http~://www.gsmarena.com/lg_nexus_5-5705.php.
[4] Google maps tells how bas the parking is at your destination.

http://mashable.com/2017/01/18/google-maps-finds-parking-spots/
#LafUADIWnaq3.

[5] Parking sensor performance standards and measurement.
http://sfpark.org/wp-content/uploads/2011/09/SFpark_
SensorPerformance_v01.pdf.

[6] H. Aly, A. Basalamah, M. Youssef. Lanequest: An accurate and
energy-efficient lane detection system. Pervasive Computing and
Communications (PerCom), 2015 IEEE International Conference on,
163–171. IEEE, 2015.

[7] H. Aly, A. Basalamah, M. Youssef. Robust and ubiquitous
smartphone-based lane detection. Pervasive and Mobile Computing,
26, 35–56, 2016.

[8] S. Avidan. Ensemble tracking. IEEE TPAMI, 29(2), 261–271, 2007.
[9] M. Betke, E. Haritaoglu, L. S. Davis. Multiple vehicle detection and

tracking in hard real-time. Proc. of IEEE Intelligent Vehicles
Symposium, 351–356, 1996.

[10] C. Bo, X.-Y. Li, T. Jung, X. Mao, Y. Tao, L. Yao. Smartloc: Push the
limit of the inertial sensor based metropolitan localization using
smartphone. Proceedings of the 19th annual international conference
on Mobile computing & networking, 195–198. ACM, 2013.

[11] J. Bouguet. MATLAB calibration tool:
http~://www.vision.caltech.edu/bouguetj/calib_doc/.

[12] M. D. Breitenstein, F. Reichlin, B. Leibe, E. Koller-Meier,
L. Van Gool. Robust tracking-by-detection using a detector confidence
particle filter. IEEE Conf. on Computer Vision, 1515–1522, 2009.

[13] J. Canny. A computational approach to edge detection. IEEE TPAMI,
(6), 679–698, 1986.

[14] R. Carisi, E. Giordano, G. Pau, M. Gerla. Enhancing in vehicle digital
maps via gps crowdsourcing. WONS, 27–34. IEEE, 2011.

[15] D. Chen, K.-T. Cho, S. Han, Z. Jin, K. G. Shin. Invisible sensing of
vehicle steering with smartphones. Proceedings of the 13th Annual
International Conference on Mobile Systems, Applications, and
Services, 1–13. ACM, 2015.

[16] D. Comaniciu, P. Meer. Mean shift: A robust approach toward feature
space analysis. IEEE TPAMI, 24(5), 603–619, 2002.

[17] N. Dalal, B. Triggs. Histograms of oriented gradients for human
detection. IEEE conf. CVPR, vol. 1, 886–893, 2005.

[18] M. Ester, H. Kriegel, J. Sander, X. Xu. A density-based algorithm for
discovering clusters in large spatial databases with noise. KDD, 1996.

[19] T. Fabian. An algorithm for parking lot occupation detection. CISIM,
165–170. IEEE, 2008.

13

[20] B. J. Frey, D. Dueck. Clustering by passing messages between data
points. Science, 315(5814), 972–976, 2007.

[21] Google snap to road.
https://developers.google.com/maps/documentation/roads/snap.

[22] U. Handmann, T. Kalinke, C. Tzomakas, M. Werner, W. Seelen. An
image processing system for driver assistance. Image and Vision
Computing, 18(5), 367–376, 2000.

[23] S. Ioffe, D. Forsyth. Human tracking with mixtures of trees. Proc.
IEEE Conf. ICCV, vol. 1, 690–695, 2001.

[24] R. Itu, R. Danescu. An efficient obstacle awareness application for
android mobile devices. IEEE Conf. ICCP, 157–163, 2014.

[25] R. Jiang, R. Klette, T. Vaudrey, S. Wang. New lane model and distance
transform for lane detection and tracking. CAIP, 1044–1052. Springer,
2009.

[26] E. Koukoumidis, L.-S. Peh, M. R. Martonosi. Signalguru: leveraging
mobile phones for collaborative traffic signal schedule advisory.
Proceedings of the 9th international conference on Mobile systems,
applications, and services, 127–140. ACM, 2011.

[27] X. Lan, D. P. Huttenlocher. Beyond trees: Common-factor models for
2d human pose recovery. IEEE Conf. ICCV, vol. 1, 470–477, 2005.

[28] N. D. Lawrence, A. J. Moore. Hierarchical gaussian process latent
variable models. Proc. of conf. on Machine learning, 481–488. ACM,
2007.

[29] B. Leibe, E. Seemann, B. Schiele. Pedestrian detection in crowded
scenes. IEEE Conf. CVPR, vol. 1, 878–885, 2005.

[30] R. Lienhart, J. Maydt. An extended set of haar-like features for rapid
object detection. Proc. Conf. on Image Processing, vol. 1, I–900.
IEEE, 2002.

[31] S. Ma, O. Wolfson, B. Xu. Updetector: Sensing parking/unparking
activities using smartphones. Proceedings of the 7th ACM
SIGSPATIAL International Workshop on Computational
Transportation Science, 76–85. ACM, 2014.

[32] H. A. Mallot, H. H. Bülthoff, J. Little, S. Bohrer. Inverse perspective
mapping simplifies optical flow computation and obstacle detection.
Biological cybernetics, 64(3), 177–185, 1991.

[33] J. G. Manweiler, P. Jain, R. Roy Choudhury. Satellites in our pockets:
an object positioning system using smartphones. MobiSys, 211–224.
ACM, 2012.

[34] S. Mathur, T. Jin, N. Kasturirangan, J. Chandrasekaran, W. Xue,
M. Gruteser, W. Trappe. Parknet: drive-by sensing of road-side
parking statistics. MobiSys, 123–136. ACM, 2010.

[35] A. Nandugudi, T. Ki, C. Nuessle, G. Challen. Pocketparker:
Pocketsourcing parking lot availability. Proceedings of the 2014 ACM
International Joint Conference on Pervasive and Ubiquitous
Computing, 963–973. ACM, 2014.

[36] S. Nawaz, C. Efstratiou, C. Mascolo. Parksense: A smartphone based
sensing system for on-street parking. Proceedings of the 19th annual
international conference on Mobile computing & networking, 75–86.
ACM, 2013.

[37] V. D. Nguyen, T. T. Nguyen, D. D. Nguyen, J. W. Jeon. Toward
real-time vehicle detection using stereo vision and an evolutionary
algorithm. VTC Spring, 1–5. IEEE, 2012.

[38] D. Noll, M. Werner, W. Von Seelen. Real-time vehicle tracking and
classification. Proc. of the Intelligent Vehicles Symposium, 101–106.
IEEE, 1995.

[39] OpenCV: http~://opencv.org/.
[40] F. Ren, J. Huang, M. Terauchi, R. Jiang, R. Klette. Lane detection on

the iphone. International Conference on Arts and Technology,
198–205. Springer, 2009.

[41] M. Rezaei, M. Terauchi, R. Klette. Robust vehicle detection and
distance estimation under challenging lighting conditions.
Transactions on Intelligent Transportation Systems, 2015.

[42] E. Seemann, B. Schiele. Cross-articulation learning for robust
detection of pedestrians. Pattern Recognition, 242–252. Springer,
2006.

[43] Y. Sekimoto, Y. Matsubayashi, H. Yamada, R. Imai, T. Usui,
H. Kanasugi. Lightweight lane positioning of vehicles using a
smartphone gps by monitoring the distance from the center line.
Intelligent Transportation Systems (ITSC), 2012 15th International
IEEE Conference on, 1561–1565. IEEE, 2012.

[44] SFPark: http~://sfpark.org/.
[45] D. C. Shoup. Cruising for parking. Transport Policy, 13(6), 479–486,

2006.
[46] L. Sigal, M. J. Black. Measure locally, reason globally:

Occlusion-sensitive articulated pose estimation. IEEE Conf. CVPR,
vol. 2, 2041–2048, 2006.

[47] S. Soubam, D. Banerjee, V. Naik, D. Chakraborty. Bluepark: tracking
parking and un-parking events in indoor garages. Proceedings of the
17th International Conference on Distributed Computing and
Networking, 33. ACM, 2016.

[48] Streetline Networks: http~://www.streetlinenetworks.com/.
[49] Z. Sun, G. Bebis, R. Miller. On-road vehicle detection: A review.

IEEE TPAMI, 28(5), 694–711, 2006.
[50] Yellow cab of san francisco, location dataset. http://cabspotting.org/.
[51] G. Toulminet, M. Bertozzi, S. Mousset, A. Bensrhair, A. Broggi.

Vehicle detection by means of stereo vision-based obstacles features
extraction and monocular pattern analysis. IEEE Transactions on
Image Processing, 15(8), 2364–2375, 2006.

[52] N. True. Vacant parking space detection in static images. University of
California, San Diego, 2007.

[53] R. Y. Tsai. A versatile camera calibration technique for high-accuracy
3d machine vision metrology using off-the-shelf tv cameras and lenses.
IEEE Journal of Robotics and Automation, 3(4), 323–344, 1987.

[54] S. Tuohy, D. O’Cualain, E. Jones, M. Glavin. Distance determination
for an automobile environment using inverse perspective mapping in
opencv. Proc. ISSC, 2010.

[55] R. Urtasun, D. J. Fleet, P. Fua. 3d people tracking with gaussian
process dynamical models. IEEE Conf. CVPR, vol. 1, 238–245, 2006.

[56] P. Viola, M. Jones. Rapid object detection using a boosted cascade of
simple features. Proc. of IEEE Conf. CVPR, vol. 1, I–511. IEEE, 2001.

[57] C. Wah. Parking space vacancy monitoring. Projects in Vision and
Learning, 2009.

[58] A. Wedel, U. Franke, J. Klappstein, T. Brox, D. Cremers. Realtime
depth estimation and obstacle detection from monocular video.
Pattern Recognition, 475–484. Springer, 2006.

[59] T. A. Williamson. A high-performance stereo vision system for
obstacle detection. Ph.D. thesis, Carnegie Mellon, 1998.

[60] B. Wu, R. Nevatia. Detection and tracking of multiple, partially
occluded humans by bayesian combination of edgelet based part
detectors. International Journal of Computer Vision, 75(2), 247–266,
2007.

[61] C.-W. You, N. D. Lane, et al. Carsafe app: alerting drowsy and
distracted drivers using dual cameras on smartphones. MobySys,
13–26. ACM, 2013.

[62] Z. Zhang. A flexible new technique for camera calibration. IEEE
TPAMI, 22(11), 1330–1334, 2000.

14

