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ABSTRACT
VM handoff enables rapid and transparent placement changes
to executing code in edge computing use cases where the
safety and management attributes of VM encapsulation are
important. This versatile primitive offers the functionality of
classic live migration but is highly optimized for the edge.
Over WAN bandwidths ranging from 5 to 25 Mbps, VM
handoff migrates a running 8 GB VM in about a minute,
with a downtime of a few tens of seconds. By dynamically
adapting to varying network bandwidth and processing load,
VM handoff is more than an order of magnitude faster than
live migration at those bandwidths.

1 Introduction
Edge computing involves the execution of untrusted applica-
tion code on computing platforms that are located close to
users, mobile devices, and sensors. We refer to these plat-
forms as cloudlets. A wide range of futuristic use cases that
span low-latency mobile device offload, scalable video ana-
lytics, IoT privacy, and failure resiliency are enabled by edge
computing [37]. For legacy applications, cloudlets can be
used to extend virtual desktop infrastructure (VDI) to mobile
users via a thin client protocol such as VNC [33].

To encapsulate application code for edge computing, mech-
anisms such as Docker are attractive because of their small
memory footprint, rapid launch, and low I/O overhead. How-
ever, safety and management attributes such as platform in-
tegrity, multi-tenant isolation, software compatibility, and
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ease of software provisioning can also be important, as dis-
cussed in Section 2. When these concerns are dominant,
classic virtual machine (VM) encapsulation prevails.

In this paper, we describe a mechanism called VM handoff
that supports agility for cloudlet-based applications. This
refers to rapid reaction when operating conditions change,
thereby rendering suboptimal the current choice of a cloudlet.
There are many edge computing situations in which agility is
valuable. For example, an unexpected flash crowd may over-
load a small cloudlet and make it necessary to temporarily
move some parts of the current workload to another cloudlet
or the cloud. A second example is when advance knowl-
edge is received of impending cloudlet failure due to a site
catastrophe such as rising flood water, a spreading fire, or
approaching enemy: the currently-executing applications can
be moved to a safer cloudlet without disrupting service. Site
failures are more likely at a vulnerable edge location than in
a cloud data center. A third example arises in the context of
a mobile user offloading a stateful latency-sensitive applica-
tion such as wearable cognitive assistance [16]. The user’s
physical movement may increase end-to-end latency to an
unacceptable level. Offloading to a closer cloudlet could fix
this, provided application-specific volatile state is preserved.

VM handoff bears superficial resemblance to live migration
in data centers [8, 27]. However, the turbulent operational
environment of VM handoff is far more challenging than the
benign and stable environment assumed for live migration.
Connectivity between cloudlets is subject to widely-varying
WAN latency, bandwidth, and jitter. In this paper, we use
the range from 5 to 25 Mbps for our experiments, with the
US average broadband Internet connectivity of 13 Mbps in
2015 falling in the middle of this range [2]. This is far from
the 1–40 Gbps, low-latency and low-jitter connectivity that
is typically available within data centers. VM handoff also
differs from live migration in the primary performance metric
of interest. Down time, which refers to the brief period
towards the end when the VM is unresponsive, is the primary
metric in live migration. In contrast, it is total completion
time rather than down time that matters for VM handoff. In
most use cases, prolonged total completion time defeats the
original motivation for triggering the operation. Abe et al [1]

1



SEC ’17, October 12–14, 2017, San Jose / Silicon Valley, CA, USA Ha et al

App1 periodically sends accelerometer readings from a
mobile device to a Linux back-end that performs a
compute-intensive physics simulation [39], and returns
an image to be rendered.
App2 ships an image from a mobile device to a
Windows back-end, where face recognition is
performed [42] and labels corresponding to identified
faces are returned.
App3 [41] is an augmented reality application that ships
an image from a mobile device to a Windows back-end
that identifies landmarks, and returns a modified image
with these annotations.
App4 ships an image from a mobile device to a Linux
back-end that performs object detection [9], and returns
the labels of identified objects.

Figure 1: Offload Benchmark Suite for Edge Computing

have shown that a narrow focus on down time can lead to
excessive total completion time.

The essence of our design is preferential substitution of
cloudlet computation for data transmission volume. VM hand-
off dynamically retunes this balance in the face of frequent
bottleneck shifts between cloudlet processing and network
transmission. Using a parallelized computational pipeline to
maximize throughput, it leverages a variety of data reduction
mechanisms. We develop an analytic model of our pipeline,
and derive an adaptation heuristic that is sensitive to varying
bandwidth and cloudlet load. Our experiments confirm that
VM handoff is agile, and reduces total completion time by
one to two orders of magnitude relative to live migration.

2 VM Encapsulation for Edge Computing
There are opposing tensions in the choice of an encapsulation
mechanism for edge computing. One key consideration is the
memory footprint, launch speed and I/O performance degra-
dation induced by the container. Lightweight mechanisms
such as Docker minimally burden a cloudlet, and hence offer
good scalability and return on hardware investment. Even
lighterweight encapsulation is possible by simply using the
Unix process abstraction as a container.

However, scalability and performance are not the only at-
tributes of interest in edge computing. There are at least four
other important attributes to consider. The first is safety: pro-
tecting the integrity of cloudlet infrastructure from potentially
malicious application software. The second is isolation: hid-
ing the actions of mutually untrusting executions from each
other on a multi-tenant cloudlet. The third is transparency:
the ability to run unmodified application code without re-
compiling or relinking. Transparency lowers the barrier to

entry of cloudlet-based applications because it allows reuse
of existing software for rapid initial deployment and proto-
typing. Refactoring or rewriting the application software to
use lighterweight encapsulation can be done at leisure, after
initial validation of the application in an edge computing con-
text. A huge body of computer vision and machine learning
software thus becomes immediately usable at the edge, close
to sensors and video cameras. Transparency is especially
valuable in use cases such as VDI, where the source code to
legacy software may not be available. A fourth attribute is
deployability: the ability to easily maintain cloudlets in the
field, and to create mobile applications that have a high likeli-
hood of finding a software-compatible cloudlet anywhere in
the world [17]. Lighterweight encapsulation typically comes
at the cost of deployability. A Docker-encapsulated applica-
tion, for example, uses the services of the underlying host
operating system and therefore has to be compatible with it.
Process migration is an example of a lightweight service that
has proven to be brittle and difficult to maintain in the field,
even though there have been many excellent experimental
implementations [4, 14, 30, 48].

For these four attributes, classic VM encapsulation is supe-
rior to lighterweight encapsulation techniques. Clearly, the
optimal choice of encapsulation technique will be context-
specific. It will depend on the importance of these attributes
relative to memory footprint and CPU overhead. A hybrid
approach, such as running many Docker containers within an
outer encapsulating VM, is also possible.

In addition to these four attributes, the attribute of agility
that was introduced in Section 1 is especially relevant. VM
handoff is a mechanism that scores well on all five of these
safety and management attributes for edge computing.

3 Poor Agility of Live Migration
Within a data center, live migration [8, 27] is widely used to
provide the functionality targeted by VM handoff. Its design
is optimized to take full advantage of LANs. Efforts to extend
live migration to work over long distances [3, 26, 47] typically
rely on dedicated high-bandwidth links between end points.
The few works targeting low bandwidth migration [6, 49]
either slow the running VM, or use a post-copy approach
which may result in erratic application performance that is
unacceptable for latency-sensitive use cases.

To illustrate the suboptimal behavior of live migration over
WANs, we briefly preview results from experiments that are
reported later in Section 5.3. Figure 1 describes the bench-
mark suite that is used for all experimental results reported
in this paper. This suite is representative of latency-sensitive
workloads in edge computing. Each application in the suite
runs on an Android mobile device, and offloads computation
in the critical path of user interaction to a VM-encapsulated
application backend on a cloudlet. That VM is configured
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VM Total time Down time Transfer Size
App3 3126s (39%) 7.63s (11%) 3.45 GB (39%)
App4 726s (1%) 1.54s (20%) 0.80 GB (1%)
Average and Relative standard deviation of 3 runs. These
results are extracted as a preview of Figure 7 in Section 5.3
See Figure 7 for full details.

Figure 2: Total Completion Time of Live Migration (10 Mbps)

with an 8 GB disk and 1 GB of memory. The VMM on the
cloudlet is QEMU/KVM 1.1.1 on Ubuntu Linux.

Figure 2 presents the total completion times of live migra-
tion at a bandwidth of 10 Mbps. App4 takes 726 seconds
to complete, which is hardly agile relative to the timeframes
of cloudlet overload and imminent site failures discussed in
Section 1. App3 suffers even worse. It requires a total com-
pletion time of 3126 seconds, with high variance. This is due
to background activity in the Windows 7 guest that modifies
memory fast enough to inordinately prolong live migration.
We show later that VM handoff completes these operations
much faster: 66 seconds and 258 seconds respectively.

The poor agility of live migration for edge computing is
not specific to QEMU/KVM. Abe et al. [1] have shown that
long total completion times are also seen with live migration
implementations on other hypervisors such as Xen, VMware,
and VirtualBox. In principle, one could retune live migration
parameters to eliminate a specific pathological behavior such
as App3 above. However, these parameter settings would have
to be retuned for other workloads and operating conditions.
Classic live migration is a fine mechanism within a bandwidth-
rich data center, but suboptimal across cloudlets.

4 Basic Design and Implementation
VM handoff builds on three simple principles:

• Every non-transfer is a win. Use deduplication, comp-
ression and delta-encoding to ruthlessly eliminate
avoidable transfers.
• Keep the network busy. Network bandwidth is a

precious resource, and should kept at the highest
possible level of utilization.
• Go with the flow. Adapt at fine time granularity to

network bandwidth and cloudlet compute resources.
Figure 3 shows the overall design of VM handoff. Pipelined

processing is used to efficiently find and encode the differ-
ences between current VM state at the source and already-
present VM state at the destination (Section 4.1 and 4.2).
This encoding is then deduplicated and compressed using
multicore-friendly parallel code, and then transferred (Sec-
tion 4.3). We describe these aspects of VM handoff in the
sections below. For dynamic adaptation, the algorithms and
parameters used in these stages are dynamically selected to
match current processing resources and network bandwidth.
We defer discussion of these mechanisms until Section 6.

4.1 Leveraging Base VM Images
VM handoff extends previous work on optimizations for con-
tent similarity on disk [29, 31], memory [15, 43], and rapid
VM provisioning [17]. It leverages the presence of a base
VM at the destination: data blocks already present there do
not have to be transferred. Even a modestly similar VM is
sufficient to provide many matching blocks. A handful of
such base VMs are typically in widespread use at any given
time. It would be straightforward to publish a list of such
base VMs, and to precache all of them on every cloudlet. Our
experiments use Windows 7 and Ubuntu 12.04 as base VM
images. It should be noted that the correctness of VM handoff
is preserved even though its performance will be affected by
the absence of a base VM image at the destination.

4.2 Tracking Changes
To determine which blocks to transmit, we need to track dif-
ferences between a VM instance and its base image. When
a VM instance is launched, we first identify all the blocks
that are different from the base VM. We cache this infor-
mation in case of future launches of same image. It is also
possible to preprocess the image and warm the cache even
before the first launch. To track changes to a running VM
disk state, VM handoff uses the Linux FUSE interface to im-
plement a user-level filesystem on which the VM disk image
is stored. All VM disk accesses pass through the FUSE layer,
which can efficiently and accurately track modified blocks.
A list of modified disk blocks relative to the base image is
maintained, and is immediately available when migration is
triggered. Since FUSE is used only for hooking, it does not
break compatibility with the existing virtual disk image. In
our implementation, we use raw virtual disk format but other
formats can also be supported if needed. Also, as in [28], we
have found that FUSE has minimal impact on virtual disk
accesses, despite the fact that it is on the critical read and
write paths from the VM to its disk.

Tracking VM memory modifications is more difficult. A
FUSE-like approach would incur too much overhead on every
memory write. Instead, we capture the memory snapshot at
migration, and determine the changed blocks in our code. To
get the memory state, we leverage QEMU/KVM’s built-in live
migration mechanism. When we trigger this mechanism, it
marks all VM pages as read-only to trap and track any further
modifications. It then starts a complete transfer of the memory
state. We redirect this transfer to new VM handoff stages
in the processing pipeline. As described in the following
subsections, these stages filter out unmodified pages relative
to the base VM, and then delta-encode, deduplicate, and
compress the remaining data before transmission.

After this initial step, the standard iterative process for
live migration takes over. On each iteration, the modified
pages identified by QEMU/KVM are passed through the
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Figure 3: Overall System Diagram for VM handoff
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Figure 4: Cumulative Reductions in VM State Transfer

delta-encoding, deduplication and compression stages of our
pipeline. During this process, it tries to leverage the base
VM’s memory as much as it can if the base VM’s memory
is found at the destination. To limit repeated transmission of
hot pages, VM handoff regulates the start of these iterations
and limits how many iterations are performed.

4.3 Reducing the Size of Transmitted Data
VM handoff implements a pipeline of processing stages to
shrink data before it reaches the network. The cumulative
reduction achieved by this pipeline can be substantial. For
the four applications listed in Figure 1, the volume of data
transferred is typically reduced to between 1/5 and 1/10 of
the total modified data blocks. Figure 4 presents these results
in more detail, showing the effect of individual stages in the
pipeline. We describe these stages below.

Delta encoding of modified pages and blocks: The streams
of modified disk blocks and all VM memory pages are fed to
two delta encoding stages (Disk diff and Memory diff stages
in Figure 3). The data streams are split into 4KB chunks, and
are compared to the corresponding chunks in the base VM
using their (possibly cached) SHA-256 hash values. Chunks
that are identical to those in the base VM are omitted.

For each modified chunk, we a use binary delta algorithm
to encode the difference between the chunk and its counter-
part in the base VM image. If the encoding is smaller than the
chunk, we transmit the encoding. The idea here is that small

or partial modifications are common, and there may be signif-
icant overlap between the modified and original block when
viewed at fine granularities. VM handoff can dynamically
choose between xdelta3, bsdiff4, or xor to perform
the binary delta encoding, or to skip delta encoding. We paral-
lelize the compute-intensive hash computations and the delta
encoding steps using multiple threads.

Deduplication: The streams of modified disk and memory
chunks, along with the computed hash values, are merged and
passed to the deduplication stage. Multiple copies of the same
data commonly occur in a running VM. For example, the
same data may reside in kernel and user-level buffers, or on
disk and OS page caches. For each modified chunk, we com-
pare the hash value to those of (1) all base VM disk chunks,
(2) all base VM memory chunks, (3) a zero-filled chunk, (4)
all prior chunks seen by this stage. The last is important to
capture multiple copies of new data in the system, in either
disk or memory. This stage filters out the duplicates that are
found, replacing them with pointers to identical chunks in
the base VM image, or that were previously emitted. As the
SHA-256 hash used for matching was already computed in
the previous stage, deduplication reduces to fast hash lookups
operations and can therefore run as a single thread.

Compression: Compression is the final stage of the data re-
duction pipeline. We apply one of several off-the-shelf comp-
ression algorithms, including GZIP (deflate algorithm) [12],
BZIP2 [7], and LZMA [45]. These algorithms vary signif-
icantly in the compression achieved and processing speed.
As compression works best on bulk data, we aggregate the
modified chunk stream into approximately 1 MB segments
before applying compression. We leverage multicore paral-
lelism in this processing-intensive stage by running multiple
instances of the compression algorithms in separate threads,
and sending data segments to them round-robin.

4.4 Pipelined Execution
The data reduction stages described in the preceding sec-
tions ensure that only high-value data reaches the network.
However, because of the processing-intensive nature of these
stages, their serial execution can result in significant delay
before the network receives any data to transmit. The network
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Figure 5: Serial versus Pipelined Data Reduction

is idle during this delay, and this represents a lost opportunity.
Under conditions of low bandwidth, keeping the network
filled with high-value data is crucial to good performance.

VM handoff pipelines the data reduction stages in order to
fill the network as quickly as possible. This has the added
benefit of reducing the amount of memory needed to buffer
the intermediate data generated by the upstream stages, as
they are consumed quickly by downstream stages. Figure 5
illustrates the benefit of VM handoff’s pipelined implemen-
tation. In this example, total migration time is reduced by
36% (from 171.9 s down to 110.2 s).

5 Evaluation of Basic Design
In this section, we evaluate the performance of VM handoff
under stable conditions that do not require dynamic adapta-
tion. We defer evaluation under variable conditions until the
adaptation mechanisms of VM handoff have been presented
in Section 6. We answer the following questions here:

• Is VM handoff able to provide short total migration
time on a slow WAN? (Section 5.2)
• Does VM handoff provide a significant performance

win over live migration? How does it compare with
non-VM approaches such as Docker? (Section 5.3)
• Is VM handoff able to scale well by making good

use of extra cores on a cloudlet? (Section 5.4)

5.1 Experimental Setup
Our experiments emulate WAN-like conditions using the
Linux Traffic Control (tc [25] tool), on physical machines
that are connected by gigabit Ethernet. We configure band-
width in a range from 5 Mbps to 25 Mbps, according to the
average bandwidths observed over the Internet [2, 46], and
use a fixed latency of 50 ms. To control computing resource
availability, we use CPU affinity masks to assign a fixed num-
ber of CPU cores to our system. Our source and destination

cloudlet machines have an Intel® Core™ i7-3770 processor
(3.4 GHz, 4 cores, 8 threads) and 32 GB main memory. To
measure VM down time, we synchronize time between the
source and destination machines using NTP. For difference
encoding, our system selects from xdelta3, bsdiff, xor,
or null. For compression, it uses the gzip, bzip2, or LZMA
algorithms at compression levels 1–9. All experiments use
the benchmark suite in Figure 1, and start with the VM in-
stance already running on the source cloudlet. Since these
experiments focus on the non-adaptive aspects of VM hand-
off, the internal parameter settings remain stable throughout
each experiment. Their initial values are chosen as described
for the adaptive cases of Section 6.

5.2 Performance on WANs
Figure 6 presents the overall performance of VM handoff over
a range of network bandwidths. Total time is the total duration
from the start of VM handoff until the VM resumes on the
destination cloudlet. A user may see degraded application
performance during this period. Down time, which is included
in total time, is the duration for which the VM is suspended.
Even at 5 Mbps, total time is just a few minutes and down
time is just a few tens of seconds for all workloads. These are
consistent with user expectations under such challenging con-
ditions. As WAN bandwidth improves, total time and down
time both shrink. At 15 Mbps using two cores, VM handoff
completes within one minute for all of the workloads except
App3, which is an outlier in terms of size of modified memory
state (over 1 GB, see Figure 4). The other outlier is App1,
whose modified state is too small for effective adaptation.

More bandwidth clearly helps speed up total completion
time. Note, however, that the relationship of completion time
to bandwidth is not a simple linear inverse. Two factors make
it more complex. First, at low bandwidths, slow data transfers
give the VM more time to dirty pages, increasing the total
data volume and hence transfer time. On the other hand, these
quantities are reduced by the fact that VM handoff has more
time to compress data. The relative effects of these opposing
factors can vary greatly across workloads.

5.3 Comparison to Alternatives
What is the agility of VM handoff relative to alternatives?
Figure 7 contrasts VM handoff and QEMU/KVM live mi-
gration (version 1.1.1) between two cloudlets connected by
a 10 Mbps, 50 ms RTT WAN. The WAN is emulated by
Linktropy hardware on a gigabit Ethernet. There is no shared
storage between cloudlets. To ensure a fair comparison, live
migration is configured so that the destination cloudlet already
has a copy of the base VM image into which the application
and its supporting toolchain were installed to construct the
benchmark VM. These “pre-copied” parts of the benchmark
VM state do not have to be transferred by live migration.
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BW 5 Mbps 10 Mbps 15 Mbps 20 Mbps 25 Mbps
Time (s) Total Down Total Down Total Down Total Down Total Down
App 1 25.1 4.0 ( 5%) 24.6 3.2 (29%) 23.9 2.9 (38%) 23.9 3.0 (38%) 24.0 2.9 (43%)
App 2 247.0 24.3 ( 3%) 87.4 15.1 (10%) 60.3 11.4 ( 8%) 46.9 7.0 (14%) 39.3 5.7 (25%)
App 3 494.4 24.0 ( 4%) 257.9 13.7 (25%) 178.2 8.8 (19%) 142.1 7.1 (24%) 121.4 7.8 (22%)
App 4 113.9 15.8 ( 6%) 66.9 7.3 (42%) 52.8 5.3 (12%) 49.1 6.9 (12%) 45.0 7.1 (30%)

(a) 1 CPU core

BW 5 Mbps 10 Mbps 15 Mbps 20 Mbps 25 Mbps
Time (s) Total Down Total Down Total Down Total Down Total Down
App 1 17.3 4.1 ( 6%) 15.7 2.5 ( 4%) 15.6 2.2 (14%) 15.4 2.0 (19%) 15.2 1.9 (20%)
App 2 245.5 26.5 ( 7%) 77.4 14.7 (24%) 48.5 6.7 (15%) 36.1 3.6 (12%) 31.3 4.1 (17%)
App 3 493.4 24.5 (10%) 250.8 12.6 (13%) 170.4 9.0 (17%) 132.3 7.3 (20%) 109.8 6.5 (22%)
App 4 111.6 17.2 ( 7%) 58.6 5.5 ( 5%) 43.6 5.5 (31%) 34.1 2.1 (22%) 30.2 2.1 (26%)

(b) 2 CPU cores

Average of 5 runs and relative standard deviations (RSDs, in parentheses) are reported. For total migration times, the RSDs are
always smaller than 9%, generally under 5%, and omitted for space. For down time, the deviations are relatively high, as this can
be affected by workload at the suspending machine.

Figure 6: Total Completion Time and Down Time of VM handoff on WANs

VM Approach Total Down Transfer
time (s) time (s) size (MB)

App1
VM handoff 16 (3 %) 2.5 (4%) 7
Live Migration 229 (1 %) 2.4 (22 %) 235

App2
VM handoff 77 (4 %) 14.7 (24 %) 84
Live Migration 6243 (68 %) 5.5 (17 %) 6899

App3
VM handoff 251 (1 %) 12.6 (13 %) 276
Live Migration 3126 (39 %) 7.6 (11 %) 3533

App4
VM handoff 59 (1 %) 5.5 (5 %) 61
Live Migration 726 (1 %) 1.5 (20 %) 82

Figure 7: VM handoff vs. KVM/QEMU Live Migration at 10 Mbps

VM Approach Total Down Transfer
time time size

App1 VM handoff 15.7s 2.5s 7.0 MB
Docker 6.9s 6.9s 6.5 MB

App4 VM handoff 58.6s 5.5s 61 MB
Docker 118s 118s 98 MB

Only App1 and App4 are shown because
Docker-CRIU works for only Linux Apps.

Figure 8: VM handoff vs. Docker at 10 Mbps

In other words, the comparison already factors into live mi-
gration a component source of efficiency for VM handoff.
Despite this, live migration performs poorly relative to VM
handoff. For every app in the benchmark suite, VM handoff
improves total completion time by an order of magnitude.

Live migration would perform even worse if the base VM
were not present at the destination. For example, our experi-
ments take over two hours for App4, and two and a half hours
for App3. We omit the detailed results to save space.

How much would lighterweight encapsulation improve
agility? To explore this question, we compare VM hand-
off with Docker [13]. Although Docker does not natively
support migration of a running container, a form of migra-
tion can be achieved with Checkpoint/Restore in Userspace
(CRIU) [10]. This involves suspending the container and
copying memory and disk state to the destination. So, unlike
VM handoff, down time equals total completion time.

Figure 8 compares VM handoff to Docker migration for the
two Linux applications in our benchmark suite (Docker-CRIU
only works for Linux apps). Given the reputation of VM en-
capsulation as being heavyweight and unwieldy, we would
expect the agility of VM handoff to be horrible relative to
Docker migration. In fact, the results are far more reassuring.
For App4, VM handoff is actually twice as fast as Docker.
For App1, the total state is so small that the VM handoff opti-
mizations do not really kick in. Though Docker takes roughly
half the total completion time, its down time is significantly
longer than that of VM handoff.

From the viewpoint of agility, VM encapsulation is thus
surprisingly inexpensive in light of its safety and management
benefits that were discussed in Section 2. The issue of large
memory footprint and CPU overhead continue to be concerns
for VM encapsulation, but agility need not be a concern.
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Figure 9: Processing Scalability of the System

5.4 Multicore Scalability
The pipelining in VM handoff enables good use to be made of
extra cloudlet cores. Figure 9 shows the processing through-
put for different workloads as the number of CPU cores in-
creases. For Apps 2–4, the improvement is almost linear
as we use more cores. For App1, the total volume of data
processed is too small to benefit from multiple cores.

5.5 Importance of Memory State
As mentioned in Section 4.1, VM handoff aggressively lever-
ages available state at the destination cloudlet to minimize
transfer size. Our system can leverage both disk and memory
state at the destination. Disk state clearly helps, but as mem-
ory state is much more volatile and dynamic, how much does
the memory state at the destination cloudlet really help?

When the base VM memory snapshot is available, total
completion time is reduced significantly: 17% (App3 and
App4), 36% (App2) and 40% (App1). This indicates that
there are indeed many identical memory pages between a
running application VM and a freshly-booted VM instance of
its base VM image. Note that the base VM image does not
have to be an exact match. A VM image of a roughly similar
guest operating system is good enough, since it is likely to
contain many similar 4 KB chunks of data.

6 Dynamic Adaptation
Network bandwidth and processing capacity can vary con-
siderably in edge computing, even over timescales of a few
seconds to tens of seconds. Cloudlet load can change due to
new users arriving or departing; available network bandwidth
can change due to competing traffic; and, the compressibility
of VM state can change as its contents change. It is thus
important to dynamically re-optimize the compute-transmit
tradeoff during VM handoff.

The effect of imbalance is visible in the example shown
earlier in Figure 5. Due to the particular choices of algo-
rithms and parameters used, the system is clearly CPU bound:
processing takes 109.6 s (from the start of memory snap-
shotting to the end of compression), while network transfer
only requires 62.3 s. After pipelining, the larger of these two

values determines total completion time. A better choice of
parameters would have selected less aggressive compression
to reduce processing demand, even at the expense of increased
data transfer size and hence longer transmit time.

VM handoff continuously monitors relevant parameters at
the timescale of tens of milliseconds, and uses this informa-
tion to dynamically adapt settings even during the course of a
single migration. We refer to a specific selection of algorithms
and parameters as an operating mode of VM handoff.

6.1 Pipeline Performance Model
To select the right operating mode, we model VM handoff’s
processing pipeline as shown in Figure 10. Each stage in the
pipeline outputs a lossless but smaller version of its input data.
For each stage i, we define:

Pi = processing time, Ri =
output size
input size

at stage i (1)

Because of pipelining, the total migration time is the larger
of the processing time and the network transfer time:

Timeprocessinд =
∑

1≤i≤n
Pi (2)

Timenetwork =
Sizemiдration

Network bandwidth
(3)

(where Sizemiдration = Sizemodified VM × (R1 × · · · × Rn ))

Timemiдration =max (Timeprocessinд ,Timenetwork ) (4)

In the implementation, we use measurable short-term quanti-
ties (processing throughput and network throughput) rather
than parameters that depend on indeterminate information
such as total input size. Total system throughput is then:

Thrusystem =min(Thruprocessinд ,Thrunetwork ) (5)

Thruprocessinд =
1

∑
1≤i≤n Pi

Thrunetwork =
Network Bandwidth

(R1 × · · · × Rn )

(6)

Intuitively, (5) and (6) show that system throughput can be
estimated by measuring processing time (P), current network
bandwidth, and out-in ratio (R).

6.2 Adaptation Heuristic
Based on this model, we develop a heuristic for dynamically
adapting the operating mode to maximize Thrusystem . A

Stage 1 
 

R1, P1 

Stage 2 
 

R2, P2 

Stage n 
 

Rn, Pn 

Network 

Figure 10: Model of VM handoff Pipeline
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Figure 11: Trends of P and R Across Workloads

concern is that the quantities P and R are highly specific to
workload, even at the same compression settings. Figure 11
illustrates this with measured P and R values for varying op-
erating modes of App2 and App4. Each data point is P or R
per block (i.e. modified memory page or disk blocks), for a
particular mode. Ideally, we would like an adaptation mech-
anism that does not require advance profiling of a workload
to determine P and R. A critical insight is that although P
and R can vary significantly across workloads, the ratio of
P (or R) values between different operating modes are rela-
tively stable across workloads. In other words, the operating
mode trends of P and R are workload-independent. From our
measurement, the average correlation values of all pairs of 4
workloads are 0.99 for P and 0.84 for R. From this insight,
the heuristic iterates as follows:

(1) First, measure the current P and R values (Pcurrent
and Rcurrent ) of the ongoing handoff. Also measure
the current network bandwidth by observing the rate
of acknowledgments from the destination cloudlet.

(2) From a lookup table that was constructed offline from
a reference workload (not necessarily the current
workload), find Plookup and Rlookup for proposed
operating mode, M , and then compute these scaling
factors:
ScaleP =

Pcurrent
Plookup

, ScaleR =
Rcurrent
Rlookup

Figure 12: Modified Memory Regions for App4 (Black)

(3) Apply these scaling factors to adjust the measured
P and R values of the ongoing migration. Then, use
(6), to calculate Thruprocessinд and Thrunetwork for
each operating mode being considered.

(4) Using (5), select the operating mode that maximizes
Thrusystem .

This heuristic is reactive to changes in network bandwidth,
cloudlet load, and compressibility of modified VM state. The
adaptation loop is repeated every 100 ms to ensure agility. An
updated operating mode will last for at least 5 s to provide
hysteresis in adaptation.

6.3 Workload Leveling
Guest operating systems often manage memory in a way
that clusters allocations, and therefore modifications. As Fig-
ure 12 illustrates, the set of modified pages for a typical VM
tends to be highly clustered rather than uniformly distributed
over physical memory. Sending this memory snapshot to
our processing pipeline would result in a bursty workload.
This is problematic for two reasons. First, long sequences
of unmodified pages could drain later pipeline stages of use-
ful work and may idle the network, wasting this precious
resource. Long strings of modified pages could result in high
processing loads, requiring lower compression rates to keep
the network fully utilized. Both of these are detrimental.

We address this problem by randomizing the order of page
frames passed to the processing pipeline. Now, even if the
memory snapshot has a long series of unmodified pages at the
beginning of physical memory, all of our pipeline stages will
quickly receive work to do. Neither processing nor network
resources are left idling for long. More importantly, the ratio
of modified and unmodified pages arriving at the processing
pipeline is less bursty.

Figure 13 shows how randomization of page order reduces
the burstiness of processing demand. The spikes correspond
to CPU-bound conditions, causing network underutilization;
while the troughs result in CPU under-utilization due to net-
work bottlenecks. Randomization avoids the extremes and
helps VM handoff to efficiently use both resources. Note that
no adaptation is performed here (i.e., static mode is used), so
the overall average processing times are the same for both
plots. Furthermore, no network transfer is actually performed,
so effects of network bottlenecks are not shown.
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Figure 13: Randomized vs Sequential memory order
(1-second moving average)

6.4 Iterative Transfer for Liveness
VM handoff has to strike a delicate balance between minimiz-
ing service disruption and unacceptably extending completion
time. If total completion time were the sole metric of interest,
the approach of suspending, transferring, and then resuming
the VM would be optimal. Unfortunately, even with all our
optimizations, this is likely to be too disruptive for good user
experience (many minutes or more of cloudlet service outage
on a slow WAN). At the other extreme, if reducing the du-
ration of service disruption were the sole metric of interest,
classic live migration would be optimal. However, as shown
earlier, this may extend total completion time unacceptably.
We achieve balance by using an input queue threshold of
10 MB of modified state to trigger the next iteration, and an it-
eration time of 2 s or less to trigger termination. These values
are based on our empirical observations of VM handoff.

7 Evaluation of Dynamic Adaptation
In this section, we evaluate how well the adaptive mechanisms
of VM handoff respond to dynamically changing conditions
of network bandwidth and cloudlet load. Using the same
experimental setup described in Section 5.1, we answer the
following questions:

• How effective is VM handoff’s dynamic selection of
operating modes? How does this adaptation compare
to the static modes? (Section 7.1)
• How rapidly does VM handoff adapt to changing

conditions? (Section 7.2)

Figure 14: Operating Mode Selection (App4, 1 core)

7.1 Operating Mode Selection
For App4, Figure 14 shows the processing time and compress-
ion ratios of VM handoff as bandwidth varies. “CPU time” is
the absolute CPU usage, in seconds, by VM handoff. “Comp-
ression ratio” is the ratio of the input data size (i.e., modified
VM state) to the output data size (i.e., final data shipped over
the network). When bandwidth is low, more CPU cycles
are used to aggressively compress VM state and thus reduce
the volume of data transmitted. At higher bandwidth, fewer
CPU cycles are consumed so that processing does not become
the bottleneck. The average CPU utilization remains high
(between 80% and 90%) even though absolute CPU usage,
in seconds, drops as the network bandwidth increases. This
confirms that VM handoff successfully balances processing
and transmission, while using all available resources.

This behavior of VM handoff is consistent across all appli-
cations except App1, which has too little modified state for
for adaptation to be effective. Generally, adaptation is more
effective when larger amounts of data are involved. So App2
and App4 with 500–800 MB of modified data show median
improvements, while App3 (> 1.3 GB) and App1 (< 70 MB)
are two extreme ends. Due to space limitations, we only
present the results for App4. To avoid any workload-specific
bias, the adaptation lookup table (mentioned in Section 6.2)
is created using App2, but tested using App4.

Comparison with Static Modes: How effective is adapta-
tion over picking a static configuration? To evaluate this, we
first compare against two operating modes: HIGHEST COM-
PRESSION and FASTEST SPEED. For FASTEST SPEED, each
stage is tuned to use the least processing resources. In HIGH-
EST COMPRESSION, we exhaustively run all the combina-
tions and choose the option that minimizes data transfer size.
Note that the most CPU-intensive mode might not be the
highest compression mode. Some configurations incur high
processing costs, yet only achieve low compression rates.

Figure 15(a) shows that FASTEST SPEED performs best
with high bandwidth, but works poorly with limited band-
width. Except for the highest bandwidth tests, it is network-
bound, so performance scales linearly with bandwidth. In
contrast, HIGHEST COMPRESSION minimizes the migration
time when bandwidth is low, but is worse than the other
approaches at higher bandwidth. This is because its speed
becomes limited by computation, so bandwidth is not fully
utilized, and it is largely unaffected by bandwidth changes.
Unlike the two static cases, adaptation always yields good per-
formance. In the extreme cases such as 5 Mbps and 25 Mbps,
where the static modes have their best performance, the adap-
tation is as good as these modes. In the other conditions, it
outperforms the static modes.

Figure 15(b) shows the total completion time for differ-
ing numbers of CPU cores, with fixed 10 Mbps bandwidth.

9



SEC ’17, October 12–14, 2017, San Jose / Silicon Valley, CA, USA Ha et al

(a) Varying Network Bandwidth (1 CPU core)

(b) Varying CPU Cores (10 Mbps bandwidth)

Figure 15: Adaptation vs Static Modes (App4)

FASTEST SPEED shows constant total completion time re-
gardless of available cores, because it is limited by bandwidth
not processing. HIGHEST COMPRESSION improves as we
assign more CPU cores. Again, adaptation equals or improves
upon the static operating modes in all cases.

Exhaustive Evaluation of Static Modes: We have shown
that adaptation performs better than two distinctive static
modes. Note that it is not trivial to determine a priori whether
either of these static modes, or one from the many different
possible modes, would work well for a particular combina-
tion of workload, bandwidth, and processing resources. For
example, our adaptation heuristic selects 15 different operat-
ing modes for App4 as bandwidth is varied between 5 Mbps
and 30 Mbps. Furthermore, the selections of the best static
operating mode at particular resource levels is unlikely to be
applicable to other workloads, as the processing speed and
compression ratios are likely to be very different.

In spite of this, suppose we could somehow find the best
operating mode for the workload and resource conditions.
How well does our adaptation mechanism compare to this
optimal static operating mode? To answer this question, we
exhaustively measure the total migration times for all pos-
sible operating modes. Figure 16 compares the best static
operating mode with adaptation for App4 at varying network
bandwidth. To compare adaptation results with the top tier
of static operating modes, we also present the 10th percentile
performance among the static modes for each condition. The
adaptation results are nearly as good as the best static mode
for each case. Specifically, adaptation almost always ranks

BW (mbps) Approach Total time Down time
5 Adaptation 113.9s (3 %) 15.8s ( 6 %)

Best static 111.5s (1 %) 15.9s (12 %)
Top 10% 128.3s (2 %) 20.7s ( 9 %)

10 Adaptation 66.9s (6 %) 7.3s (42 %)
Best static 62.0s (1 %) 5.0s (11 %)

Top 10% 72.1s (1 %) 4.8s ( 3 %)
20 Adaptation 49.1s (8 %) 6.9s (12 %)

Best static 45.5s (3 %) 8.1s (15 %)
Top 10% 48.5s (1 %) 4.9s (11 %)

30 Adaptation 37.0s (4 %) 2.6s (47 %)
Best static 34.3s (2 %) 2.1s ( 8 %)

Top 10% 48.5s (1 %) 4.8s ( 3 %)

Relative standard deviation in parentheses

Figure 16: Adaptation vs Static Mode for App4 (1 core)
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Figure 17: Adaptation Trace (App4, 5 Mbps and 1 CPU)
within the top 10 among the 108 possible operating modes.
This confirms the efficacy of adaptation in VM handoff.

7.2 Dynamics of Adaptation
VM handoff uses dynamic adaptation to adjust operating
modes as conditions change. To evaluate this process, we
study traces of execution under static and dynamic conditions.

Adapting to Available Resources: Figure 17(a) is an exe-
cution trace of VM handoff, showing various throughputs
achieved at different points in the system. Output throughput
is the actual rate of data output generated by the processing
pipeline to the network (solid blue line). Ideally, this line
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should stay right at the available bandwidth level, which indi-
cates that the system is fully utilizing the network resource.
If the rate stays above the available bandwidth level for a
long time, the output queues will fill up and the processing
stages will stall. If it drops below that level, the system is
CPU bound and cannot fully utilize the network. The figure
shows that the output rate closely tracks bandwidth (5 Mbps).

The second curve in the figure represents the potential out-
put rate (blue dashed line). This shows what the output rate
would be given at the current operating mode of the pipeline
stages, if it were not limited by the network bandwidth. When
using more expensive compression, the potential output rate
drops. This curve stays above the bandwidth line (so we do
not underutilize the network), but as low as possible, indicat-
ing the system is using the most aggressive data reduction
without being CPU-bound.

The final curve is input throughput, which is the actual rate
at which the modified memory and disk state emitted by a VM
is consumed by the pipeline (thick red line). This determines
how fast the migration completes, and it depends on the actual
output rate and the data compression. The system maximizes
this metric, given the network and processing constraints.

The vertical dashed lines in the trace indicate the points at
which the current operating mode is adjusted. As described
in Section 6, the system bases the decision on measurements
of P and R values (depicted in Figure 17(b)) made every
100 ms. A decision is made every 5 seconds to let the effects
of changing modes propagate through the system before the
next decision point. In Figure 17(a), our heuristic updates the
operating mode 3 times during the migration.

During the first 10 seconds, we observe high peaks of input
and output throughput because the empty network buffers
in the kernel and our pipeline absorb large volumes of data
without hitting the network. Thus, the transient behavior is
not limited by the network bottleneck. However, once the
buffers fill, the system immediately adapts to this constraint.

The first decision, which occurs at approximately 10 sec-
onds, changes the compression algorithm from its starting
mode (GZIP level 1) to a much more compressive mode
(LZMA level 5), adapting to low bandwidth. The effects
of the mode change are evident in the traces of P and R
(Figure 17(b)), where processing time per block suddenly
increases, and the out-in ratio drops after switching to the
more expensive, but more compressive algorithm. In general,
when the potential output is very high (with excess processing
resources), the operating mode is shifted to a more aggressive
technique that reduces the potential output rate closer to the
bandwidth level, while increasing the actual input rate. VM
handoff manages to find a good operating mode at this first
decision point; the following two changes are only minor
updates to the compression level.

(a) App4: 5 Mbps→ 35 Mbps at 20 s
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(b) App3: 5 Mbps→ 35 Mbps at 20 s→ 5 Mbps at 100 s

Figure 18: Adaptation for Network Bandwidth

Adapting to Changing Conditions: Finally, we evaluate
VM handoff in a case where conditions change during migra-
tion. Figure 18(a) shows a system throughput trace for App4,
where network bandwidth is initially 5 Mbps, but increases to
35 Mbps at 20 seconds. VM handoff reacts quickly to ensure
that a good operating mode is used throughout the trace. At
the first decision point (vertical dashed line), the mechanism
selects high processing, high compression settings (LZMA,
level 9) to deal with the very low network bandwidth. The
output rate is limited by network, but the input rate is kept
higher due to the greater level of compression. When the
bandwidth increases at 20 s, VM handoff switches to the most
lightweight operating mode (GZIP, level 1, No diff) to avoid
being processing bound. The other mode changes are minor.

We also evaluate with App3, which provides longer migra-
tion times and allows us to test multiple bandwidth changes.
In this case, bandwidth starts at 5 Mbps, then increases to
35 Mbps at 50 seconds, and finally reverts back to 5 Mbps
at 100 seconds. Figure 18(b) shows how the various system
throughputs change over time. As for the App4 trace, at the
first decision point, VM handoff selects high processing, high
compression settings (LZMA, level 9) to deal with the very
low network bandwidth. At 58 s, a major decision is made to
switch back to GZIP compression to avoid being processing
bound (as potential output is below the new network through-
put). After a few minor mode changes, the system settles on a
mode that fully utilizes the higher bandwidth (GZIP, level 7).
Finally, a few seconds after bandwidth drops at time 100, VM
handoff again switches to high compression (LZMA, level 9).
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Total time (s) Downtime (s)
Live Migration 1 Gbps 946.4 (0 %) 0.2 (52%)

VM handoff 1 Gbps 87.8 (24 %) 6.6 (20 %)
100 Mbps 111.0 (29 %) 7.4 (20 %)

25 Mbps 101.8 (3 %) 10.8 (4 %)
20 Mbps 114.6 (2 %) 13.2 (6 %)
15 Mbps 584.8 (7 %) 16.2 (5 %)
10 Mbps 656.4 (1 %) 21.4 (10 %)

Average of 5 runs, with RSD in parentheses.
Windows 7 guest OS, 32 GB disk image, 1 GB memory
Added latency: 0 for 1 Gbps; 25 ms for 100 Mbps; 50 ms for
all other bandwidths

Figure 19: VM handoff for WAN VDI

The other mode changes are minor changes in compression
level, which do not significantly affect P or R. Throughout the
trace, the system manages to keep output throughput close to
the network bandwidth, and potential output rate not much
higher, thus maximally using processing resources.

When the network bandwidth changes, no single static
mode can do well — the ones that work well at high network
bandwidth are ill-suited for low bandwidth, and vice versa.
We verify that by comparing our result with all possible static
operating modes under these varying network conditions. For
the App3 experiment, the best static operating mode com-
pletes VM handoff in 282 s, which is 31 s slower than our
dynamic adaptation result of 251 s.

VM handoff adaptation also works well as the available
number of CPU cores changes (e.g. due to load), and out-
performs the best static operating mode. Details of the study
have been omitted for space reasons.

8 Legacy Applications
Our experimental results until now have focused on forward-
looking applications such as augmented reality and wearable
cognitive assistance. The benchmark suite in Figure 1 is rep-
resentative of the backends of such applications, and the asso-
ciated VM images are relatively small. However, VM handoff
can also be useful for VDI-based legacy applications. A user
could crisply interact with his virtual desktop on a nearby
cloudlet via a remote desktop protocol such as VNC [33].
When the user travels to distant locations, VM handoff can
ensure that his virtual desktop “follows him around” from
cloudlet to cloudlet. It could also move the desktop to a
cloudlet on an aircraft while it is tethered on the ground, and
then allow the user to continue working during flight even
without Internet connectivity.

To explore how well VM handoff works for VDI use cases,
we installed Windows 7 as the guest OS in a VM with a 32
GB disk and 1 GB memory. At 1 Gbps, Figure 19 shows that
live migration takes over 15 minutes to complete. This is due
to background activity from Windows Update that dirties a

considerable amount of memory state, thereby prolonging
live migration. During this entire period, the remote user
will continue interacting with the (presumably suboptimal)
source cloudlet and thus suffer poor user experience. By
design, live migration has very low down time (barely 200
milliseconds in this case). However, this does not translate
into a significant improvement in user experience in the VDI
context. A user would much rather reduce the 15-minute
period of poor interactive experience, even at the cost of a few
seconds of down time. Figure 19 confirms that this is indeed
the case with VM handoff. At 1 Gbps, the total time is close
to 1.5 minutes which is an order of magnitude shorter than the
15 minutes for live migration. As bandwidth drops, total time
rises but remains under two minutes even down to 20 Mbps.
The increase in down time is modest, just under 15 seconds.
Even at 10 Mbps, the total time of just over ten minutes is
well below the 15-minute figure for live migration at 1 Gbps.
The down time of just over 20 seconds is acceptable for VDI.

9 Related Work
The use of VM encapsulation to move live execution state
across machines was introduced in 2002 in the context of
Internet Suspend/Resume [22]. That work, as well as oth-
ers [35, 44], used what is now known as a stop-and-copy
approach that requires a VM instance to be suspended during
transfer. Augmented with partial demand fetch and other op-
timizations, this approach has been applied to VDI use cases
in projects such as Internet Suspend/Resume [21, 38] and the
Collective [34, 36].

Live migration, where a VM instance is moved without
disrupting its execution, was first introduced in 2005 [8, 27]
and has since undergone many refinements and optimiza-
tions [5, 11]. It has always been viewed as a technique for
the stable and bandwidth-rich environment of a data center.
Even refinements to span dispersed data centers have assumed
high-bandwidth data paths. These approaches are character-
ized as pre-copy approaches since control is not transferred
to the destination until all VM state has been copied there.
The opposite approach is post-copy migration, where VMs
are resumed on their destination first, and then their state is
retrieved [6, 19, 20, 23, 47]. Hybrid approaches utilizing pre-
copy and post-copy have also been proposed [24]. Finally,
various optimizations to migration have been proposed, in-
cluding page compression [18, 40] and guest throttling [6, 26].
Approaches such as VM distribution networks [29, 31, 32]
have also been proposed. Enlightened post-copy has been pro-
posed as an approach that leverages higher-level knowledge
from within the guest environment [1].

Unfortunately, post-copy approaches incur unpredictable
delays when missing state is accessed by the VM, and has to
be fetched from the source. This makes post-copy approaches
unacceptable for low-latency applications such as augmented
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reality, where edge computing offers the promise of low av-
erage latency as well as low jitter. VM handoff therefore
preserves the pre-copy approach of classic live migration
while extensively optimizing its implementation for WANs
and the unique challenges of edge computing.

10 Conclusion
As edge computing gains momentum, there is growing debate
on the form of encapsulation to used for application code that
is executed on cloudlets. Considerations of small memory
footprint, rapid launch, and low I/O overhead suggest that
lightweight encapsulations such as Docker are a natural fit for
edge computing. However, as the early sections of this paper
have discussed, these are not the only attributes of importance
in edge computing. Safety and management attributes such as
platform integrity, multi-tenant isolation, software compatibil-
ity, and ease of software provisioning can also be important
in many edge computing use cases. When those concerns are
dominant, classic VM encapsulation is superior.

An agile edge computing system reacts rapidly when op-
erating conditions change. When agility is important, this
paper shows that the large size of VM images need not be
a deterrent to their use. We have presented the design, im-
plementation and evaluation of VM handoff, a mechanism
that preserves the many attractive properties of classic live
migration for data centers while optimizing for the turbulent
operational environment of edge computing. Rather than re-
quiring bandwidths in the 1-40 Gbps typical of data centers,
VM handoff operates successfully at WAN bandwidths as
low as 5-25 Mbps. VM handoff achieves this improvement
through preferential substitution of cloudlet computation for
data transmission volume. It dynamically retunes this balance
in the face of frequent bottleneck shifts betweeen cloudlet
processing and network transmission. It uses a parallelized
computational pipeline to achieve maximal throughput while
leveraging a variety of data reduction mechanisms. Our ex-
perimental results validate the efficacy of these mechanisms.
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