
FemtoClouds: Leveraging Mobile Devices to
Provide Cloud Service at the Edge

Karim Habak*, Mostafa Ammar*, Khaled A. Harras†, Ellen Zegura*

*School of Computer Science, College of Computing, Georgia Institute of Technology
†Computer Science Department, School of Computer Science, Carnegie Mellon University

Emails: *{karim.habak, ammar, ewz}@cc.gatech.edu, †kharras@cs.cmu.edu

Abstract—Mobile devices are becoming increasingly capable
computing platforms with significant processor power and mem-
ory. However, mobile compute capabilities are often underuti-
lized. In this paper we consider how a collection of co-located
devices can be orchestrated to provide a cloud service at the
edge. Scenarios with co-located devices include, but are not
limited to, passengers with mobile devices using public transit
services, students in classrooms and groups of people sitting
in a coffee shop. To this end, we propose the femtocloud
system which provides a dynamic, self-configuring and multi-
device mobile cloud out of a cluster of mobile devices. We
present the femtocloud system architecture designed to enable
multiple mobile devices to be configured into a coordinated cloud
computing service despite churn in mobile device participation.
We develop a prototype of our femtocloud system and use it in
addition to simulations to evaluate the performance of the system
showing its efficiency and ability to leverage the available devices’
compute capacity. We contribute to a line of research on small,
local and possibly private clouds.

I. INTRODUCTION

Since the 2002 paper by Balan et al. making a case for mo-
bile devices to cyberforage by finding surrogate (i.e., helper)
servers in the environment [1] the research community has
explored various forms of interaction between mobile devices
and fixed, higher capacity infrastructure, including the cloud.
The motivation for this exploration has been and remains as
articulated by Satyanarayanan[14], namely that mobile devices
are resource constrained in comparison with servers, and that
users desire high performance applications regardless of the
device used to experience the application. By offloading some
computation to more powerful servers, mobile devices can
offer a user experience beyond what local capabilities can
support. Further, offloading may allow mobile devices to save
power and extend time between charges.
In addition to questions of performance speedup, energy

savings and cost, the key questions for an offloading system
design are: where is the higher performance capacity, who
provides it, and how does it fit into a larger computing ecosys-
tem? In traditional cloud computing, the higher performance
capacity is located in data centers reached via the Internet and
provided by companies that charge for transient server use.
Traditional cloud computing can offer essentially unlimited
compute capacity, but at the price of latency and bandwidth
limitations between the mobile device and the servers in large
data centers. In response to these limitations, the Cloudlet
system moves computation closer to mobile devices, creating

a two-tier architecture where a mobile device can offload
to a nearby, less capable server, at low latency and high
bandwidth, rather than (or as a complement to) offloading to
the cloud [15]. In the cloudlet vision, these nearby servers
would be located in public and commercial spaces where
people congregate, such as coffee shops and airport waiting
areas [15]. One could imagine a third-party provider owning
and operating these cloudlets for profit.
We make two observations about the target environment for

cloudlets that motivate our work. First, while the gap between
truly mobile devices (handhelds, wearable) and high capacity
servers remains [5], mobile devices have grown increasingly
powerful, especially when laptops are included. Second, from
an architectural perspective, it is possible to refactor the
cloudlet into a controller – responsible for receiving tasks,
scheduling their computation, and returning results – and a
compute cluster responsible for performing the computation.
Putting these two observations together motivates our research
questions: when and how can user devices be combined with
a controller to form a deconstructed cloudlet or “femtocloud”?
And why would that be preferred over a traditional cloudlet?
As a start, configuring a useful femtocloud requires a

collection of nearby devices with sufficient idle capacity and
sufficient stability to form a compute cluster. It is natural to
consider settings where people congregate for time periods,
often with personal devices, such as coffee shops, classrooms
or theaters, and public transportation. These example settings
share additional properties that help make femtoclouds feasi-
ble:

• There is a natural owner of the setting who may have
a business interest in providing (or contracting for) the
controller that makes the femtocloud work, whether a
coffee shop owner, a university, a theater owner, or a
public transport provider.

• Each setting has semantics that suggest forms of stability
and, importantly, predictability in the duration of time
that a given device is available for use in the femtocloud.
A classroom has pre-determined time periods of use
– during a scheduled class – and predetermined times
when the occupancy will experience most turnover. Public
transportation offers only fixed chances for occupancy
change, based on bus or train stops. A coffee shop is more
complicated from a stability and predictability standpoint;
for now, we simply observe that coffee shop patrons fall
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Fig. 1. Mobile cluster stability spectrum.

into at least two classes – those who stand in line, make
a purchase, and leave immediately, and those who linger.

• There is a potential to build trust based on in-person,
social relationships. Coffee shop patrons, students at a
university, and public transport riders are typically repeat
customers with a relationship of some form to the owner
of the setting. Repeat participation also provides the
potential to learn about devices and device owners in
ways that can optimize femtocloud usage.

• There is a natural form of payment to those who par-
ticipate, associated with the setting, such as coffee shop
credit, university currency credit, or public transportation
credit. While other forms of compensation for device use
are certainly possible, these options connect the place
where the device is used to the compensation in ways
that may be attractive to device owners and the setting
owner.

The second property turns out to be critical for scoping
our work and for operating a femtocloud. We can situate
femtoclouds relative to other approaches to use mobile devices
to provide a compute service, by examining the stability and
predictability along a spectrum as shown in Figure 1. At one
end of the spectrum are extremely stable and deliberately
configured clusters such as proposed in the Mont-Blanc project
(www.montblanc-project.eu) where, motivated by energy con-
siderations, a large number of mobile CPUs are configured
in a single chassis. Our settings of interest – a coffee shop,
public transit and theater/classroom – fall in the middle of the
spectrum. At the other end of the spectrum are highly mobile
and unpredictable devices that are used opportunistically as
they are encountered (e.g., over time [17], [18], [11]).

It is natural to ask what advantages a femtocloud might have
in comparison to a cloudlet. We identify three possibilities.
First, by tapping the compute resources in a setting of mobile
devices who are offloading computation, femtoclouds have
a natural scaling property not enjoyed by a cloudlet, which
must be provisioned ahead of time. The more devices in the
setting, the more potential for those devices to have tasks
they want to offload, but also the more potential exists for
idle resources to use in serving offloaded tasks. Second, a
femtocloud confines the controlled, owned infrastructure to
just the controller, producing a capability much closer to
a co-operative or community-based computing service that
does not rely heavily on a corporate service. Finally, and
philosophically, femtoclouds push the cyberforaging vision
a step further to rely on infrastructure only for control and

coordination, but not for compute cycles.
In this paper we develop and evaluate the femtocloud sys-

tem. We begin in Section II with the architecture, identifying
functionality to be realized in the controller and in the mobile
devices, and information to communicate within and between
the two. We identify a critical and obvious problem that must
be solved at the controller, namely the scheduling of tasks
onto mobile devices where the transmission of data and receipt
of results all happens over a shared wireless channel. We
formalize the scheduling problem and then develop several
algorithms in Section III. We evaluate the system in Section
IV using simulations, including those driven by measurements
of device dynamics in different settings. We also describe and
report briefly on a prototype built on Android. We end the
paper with Related Work and Conclusions.

II. THE FEMTOCLOUD SYSTEM

The femtocloud computing service executes a variety of
tasks that arrive at the control device. The femtocloud client
service, running on the mobile devices, estimates the compu-
tational capability of the mobile device, and uses it along with
user input to determine the computational capacity available
for sharing. This client leverages device sensors, user input,
and utilization history, to build and maintain a user profile.
Afterwards, the service shares the available information with
the control device, which is then responsible for estimating the
user presence time and configuring the participating mobile
devices as a cloud offering compute as a service.
In this section, we present the details of the femtocloud

system. We start with listing our assumptions followed by
the detailed description of our architecture depicted in Figure
2. Afterwards, we present the implementation details of our
prototype.

A. Assumptions

We assume that some users will have the femtocloud client
service installed on their mobile devices, and that they are
willing to share a portion of their computational capabilities as
a result of different incentives ranging from their willingness
to share resources (as in SETI or BOINC) to direct financial
gains. We acknowledge that such incentive mechanism is
essential specially for users with battery operated devices. We
assume that a femtocloud controller is responsible for deciding
which mobile devices will be added to the compute cluster in
the current environment.
We assume a general task arrival model where tasks can

arrive individually or in batches following any task arrival
distribution. Each of these tasks is a compute intensive tasks
that has its own computation requirements, input data size,
and output data size. We assume that a task assigned to a
mobile device needs to be completed and the results returned
to the control device before the mobile device leaves the
cluster. Otherwise, the task is aborted and may need to be
re-assigned and restarted. Based on these task parameters as
well as the availability of mobile devices, the controller builds
a task execution schedule and assigns each task to a mobile
device to optimize the metric of interest.
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Fig. 2. The femtocloud system architecture

B. System Architecture

The mobile device functions are performed in the following
modules:
User Interface Module: This module obtains user prefer-

ences, resource sharing policies and personal profile sharing
policy. For instance, the user can configure this module to
share up to certain percentage of his mobile device capabil-
ities, or contribute to femtocloud only if the battery level is
above certain threshold. They also define policies that dictates
whether they are willing to join a femtocloud or not. These
policies are defined by many factors such as available battery
level, time, environment type, etc.
Capability Estimation Module: This module estimates the

computational capabilities of the mobile device including the
number of cores in the device and the available computational
capacity. Such computation capacity varies based on the
system load and whether the device running a power savings
mode. The computational capacity estimate is shared with the
control device. Since the estimate may change over time, this
module periodically sends updated estimates to the control
device.
User Profiling Module: This module gather data about the

user preferences and behavior in different scenarios to be used
for determining his presence time while joining femtocloud.
This module opportunistically mines the gathered data and
build a profile. This module only share the profile with the
controller in user accepted granularity to maintain user privacy.
The control device functions are performed by the following

modules:
Execution Prediction Module: In order to efficiently dis-

tribute tasks across different processing nodes, the controller
should know the execution load introduced by each of these
tasks. To achieve this goal, we rely on the original task source
to provide the controller with this information. However, if
the source does not provide such information, the control
device carries the responsibility of connecting to an execution
estimation service to acquire it. Such estimation may be done
using the Mantis system [9].
Presence Time Prediction Module: This module is respon-

sible for predicting the presence time for femtocloud users. It
gathers environment specific data to build a generic user profile
based on the collective behaviors of the users. This profile is
used to estimate the presence time for new users as well as

updating the estimates over time. It also uses specific user
profile, if shared, along with this generic profile to determines
his presence time.
Task Assignment and Scheduling Module: This module

uses the information acquired by the previous modules to
iteratively assign tasks to their executing devices.
The control device collaborates with the mobile devices in

the cluster to perform functions implemented in the following
modules which are instantiated in both types of device.
Local Connectivity Estimation Module: This module esti-

mates the available bandwidth between the control device and
each computing mobile device. Since these devices are directly
connected and relatively static in most of the scenarios, many
techniques can be used to estimate the available bandwidth.
Our approach is to use the wireless signal strength to get the
initial estimate of the bandwidth and then monitor the actual
achievable bandwidth while assigning tasks and/or gathering
results to update such estimate.
Discovery Module: This module discovers the available mo-

bile devices that have the femtocloud client service installed.
Once a mobile device becomes ready to join a cluster, it sends
a registration packet to the control device. This registration
packet can includes an initial estimate of the compute capac-
ity based previous contribution to the femtocloud system in
similar context and user profile information to be used for
determining his presence time. We also use periodic heartbeats
to keep track of the devices in the cluster and gather more
updated information about their shared computational capacity.

C. Implementation

To assess the feasibility of femtocloud and evaluate it, we
implement a femtocloud prototype in Android.
We implement the control device to hold the responsibility

of providing an interface to the task originators and to manage
the mobile devices inside the cloud. The interface to the task
originators enables them to send the code for the desired
computation coupled with their input data and to receive
the results once they become available. The control device
works in collaboration with the femtocloud client service
installed in the mobile devices to acquire information about the
device characteristics and user profiles. The service uses such
information to assign task to devices according to a heuristic
which will be described in the next section. To minimize the
communication overhead and enhance performance we first
use persistent TCP connections between each mobile device
and the control device to avoid the delays introduced by the
protocol’s handshaking and slow start mechanisms. We also
allow the control device to act as a WiFi hotspot allowing the
mobile devices to connect to it using infrastructure mode.
Note that there is no contention for the communication

channel between the control device and the mobile devices
in the cluster due to our scheduling technique. For communi-
cation from the mobile devices to the control device there will
be two types: 1) short notifications and alerts that are allowed
at any time and may contend for the channel, and 2) possibly
longer communication needed to return computation results to
the controller which are scheduled by the control device.

11



4

We implement the femtocloud client service as an Android
application that allows the user to enter preferences and re-
source sharing policies. Once a user accepts to share a portion
of the mobile device’s resources and select the granularity of
sharing his profile with the controller, it connects to the WiFi
network offered by the controller. Upon successful connection,
this service holds the responsibility of estimating the mobile
device capabilities and sharing them with the controlling
device. In addition, it works in collaboration with the control
device to estimate the available bandwidth between the mobile
device and the control device as well as the user presence time.
More importantly, it carries the responsibility of executing
tasks assigned to it by the controller. Upon completing the
execution of a task, the client service stores the results, notifies
the control device regarding the availability of such results, and
starts executing other assigned tasks, if any. Finally, once it
receives a request for the results from the controller, it sends
the available results to the controller, deletes them and erases
any stored state information about the task.

III. FEMTOCLOUD SCHEDULING PROBLEM

The scheduling algorithm that runs at the controller is
critical to the performance of the system. The scheduler must
assign tasks to available devices to maximize the metric of
interest, while managing device churn. The task assignment
problem differs from standard parallel task assignment because
sending and receiving tasks takes place over a shared wireless
channel and because we assume that if a device departs
prior to completing and delivering its task result, the task
must be reassigned and restarted from the beginning. These
two constraints place a priority on getting tasks assigned
quickly, executed well within estimates of device persistence,
and results returned quickly to the controller. While other
metrics are possible, we focus on maximizing the “useful
computation”, defined as total computation completed by the
system.
We begin by formulating the problem as an optimization

problem, assuming perfect knowledge of device capabilities
(computation and bandwidth) and departure time. We then
describe a greedy heuristic based on insights gained by solving
the optimization problem on small instances.

A. Scheduling as Optimization

Table I summarizes the system parameters and notation used
in the optimization. We assume the scheduler must distribute
a batch of n tasks across the available mobile devices and
gather their results. We assume that our cluster consists of m
mobile devices with users willing to share their computation
capabilities. Let Ck denote the shared computation capability

of the kth mobile device, Bk denote the available communi-
cation bandwidth between this device and the controller, and
T d
k denote the departure time of this device. For each of the

n tasks, Ei denotes the execution load introduced by task i,
Ii denotes the size of the code and its inputs, and Ri denotes
the size of results of the same task.
Our goal is to determine a complete task-execution sched-

ule. For each task, the scheduler determines which device to

TABLE I
LIST OF SYMBOLS USED

Symbol Description

Bk The available bandwidth at the kth device
Ck The shared processing capacity of

the kth device

T d
k

The departure time of the kth device

Ei The execution load of the ith task
Ii The size of the transferable input data and

executable code of the ith task

Ri The size of the results of the ith task

xik Equals 1 if the ith task is assigned to the

kth device and equals 0 otherwise
n Number of tasks waiting for assignment
m Number of devices in the cluster

assign the task to, when to send the task to the device, and
when to schedule the return of the result. The overall objective
of the task-execution scheduler is to maximize the overall
cluster’s useful computations:

Maximize C =
∑

i

Ei

∑

k

xik (1)

where C is the completed computational load and Ei is the

execution load introduced by the ith task.
The decision variables are: (1) xik, ∀i, k where xi,k equals

1 if task i is assigned to device k and equals 0 otherwise.
(2) The times of assigning a task to a processor, executing
it, and sending its results to the controller. Therefore, solving
this optimization produces not only a task assignment table
but also a complete schedule for task transmission, execution
and results transmission.
The following constraints must be satisfied (we omit the

mathematical formulation of these constraints due to space
constraints):

1) Each task should be assigned to at most one mobile
device.

2) To ensure the schedule correctness, each task should be
assigned enough time to completely send its code and
input data before beginning execution. It should also
be assigned enough time to completely execute at the
mobile device as well as sufficient time send its results
to the controller.

3) To ensure the usefulness of the task computations, all the
results of the tasks assigned to a mobile device should
be sent and stored at the controller prior to the departure
of the device.

4) To maximize the task results availability, tasks that are
assigned to the same processor/device should not be
concurrently executed.

5) To avoid any delay introduced by wireless media con-
tention, the scheduler should not allow simultaneous use
of the wireless channel to send different tasks to their
executing nodes and to receive finished tasks results.

Generally, this task assignment problem is a mixed 0-1
integer programming problem that can be shown to be NP-
Complete. However, this problem definition guides us towards
developing heuristics for task assignment and gathering of
results.
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B. Heuristics

Task Assignment Heuristics: To provide an efficient solution
for our task assignment problem, we adopt an iterative greedy
approach to assigning tasks to mobile devices. Our approach
is based on three key ideas: (1) To maximize the efficiency
of utilizing the communication channel, tasks with higher
computational requirement per unit data transfer ( Ei

Ii+Ri
) are

prioritized. This approach increases the efficiency of using
the mobile devices because it increases the probability of
keeping device CPUs busy with tasks that require a lot of
compute power while buffering new tasks at the controller. (2)
To maximize the useful computation and increase processor
utilization, the task is assigned to the mobile device that
enables getting its results earlier regardless of the time taken
to send the results of previously assigned tasks as long as (i)
it will be able to send the results before leaving the cluster
and (ii) it maintains the feasibility of receiving the results of
the previously assigned tasks. (3) To maximize the amount of
tasks executed by the cluster, the controller assigns as many
tasks as it possibly can before a results gathering event is
triggered by our results gathering heuristics.
Results Gathering Heuristics: Determining when to start
gathering the available results from the devices is a very
important question. Premature gathering of results wastes an
opportunity of sending more tasks to the executing nodes and
increasing computational throughput. Late gathering, however,
risks wasting a portion of the results and having to reassign
some incomplete tasks, which decreases the computational
throughput. Therefore, we adopt two mechanisms while gath-
ering results: (1) essential gathering mechanism and (2) early
gathering mechanism.
The essential gathering mechanism clusters the results that

have to be transmitted together and sends them in the following
case:

Tremaining < (1 + α)Tneeded

where Tremaining is the remaining time before the deadline,

Tneeded is the needed time to completely send these results
to the controller, and α is a safety factor determined by the
controller based on how accurate its estimates are about the
available bandwidths and the departure times. We highlight
that once the essential gathering event is triggered, we use
“earliest deadline first” heuristic to gather the clustered results.
The early gathering mechanism utilizes the network in case

of the absence of feasible assignment of new tasks to obtain
the results. This approach keeps gathering one-task result at a
time from the available results with the soonest deadline, until
a new task arrival occurs or a change of the system status and
parameters takes place.

IV. EVALUATION

In this section we evaluate the performance of the Femto-
Cloud system, We start by describing our experimental setup
followed by presenting and analyzing our results.

A. Experimental Setup

To have a realistic performance evaluation, we start by
identifying the available capacity in real mobile devices,

Devices Computation Capacity
Galaxy S5 3.3 MFLOPS

Nexus 7 [2012] 7.1 MFLOPS
Nexus 7 [2013] 8.5 MFLOPS
Nexus 10 [2013] 10.7 MFLOPS

TABLE II
EXPERIMENTAL DEVICE’S CHARACTERISTICS.Parameter Values

Chess input size (MBytes) [0.5, 2, 16]
Average user arrival rate (user/min) [2, 8]
Average user presence time (min) [0.25, 2, 5]

Average device’s available bandwidth (Mbps) 20
Average presence error ratio (%) [-50, 0.0, 50]

TABLE III
EXPERIMENTAL PARAMETERS. THE UNDERLINED VALUES ARE THE

DEFAULTS.

and the compute requirements of real applications. First, we
conduct a measurement study running a matrix multiplication
application, we develop, with different preset computational
loads (MFLOPs) on a set of mobile devices. We summarize
the results of this study in in Table II, which shows the
average background thread capacity for the mobile devices.
We conduct another measurement study to determine the
compute resource usage of different real applications. Table IV
summarizes this study and shows the compute resource usage
of the following three applications: (1) Chess game in high
difficulty mode, (2) a video game called Angry Bird Space,
and (3) Object recognition in a video feed (Video Processing).
In our evaluation, we use the results of these studies coupled
with a newly defined compute intensive application.
Tables II, IV, and III summarize our experimental param-

eters. Throughout our evaluation, we use a Poisson arrival
process to model the arrival of new users as well as the arrival
of new tasks. We use the following performance metrics:

• Computational Throughput: This is the average amount
of useful computations finished by our femtocloud per
second (MFLOPS).

• Compute Resource Utilization: This is the average
utilization of the compute resources in our cluster. To
calculate this utilization, we only consider useful compu-
tations, which belong to tasks completed by femtocloud.

• Network utilization: This is the average busy time of
the network for sending tasks or receiving results.

Overall, we conduct two different sets of experiments. The
first set of experiments (Section IV-B) aims for understanding
the effect of different environmental parameters on the per-
formance of femtocloud. In these experiments, we simulated
different environments and studied the effect of different
parameters in the performance of femtocloud. The second set
of experiments (Section IV-C) sheds light on the performance
of our developed prototype.

B. Femtocloud Simulation Results

In this section, we study the impact of changing different
environmental parameters on the performance of femtocloud.
We start by studying the impact of user arrival rate and
presence time followed by the true effect of stability in the
system. We also study the impact of changing task charac-
teristics and robustness to estimation errors. In a subset of
these experiments, we compare femtocloud against a presence
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Task Type Input Computation Output arrival rate
Chess 2 MBytes 10 MFLOPs 0.2 MBytes 1 task/sec

Video Game 0.2 MBytes 30 MFLOPs 2 MBytes 2 task/sec
Video Processing 3.125 MBytes 60 MFLOPs 1 MBytes 1 task/sec
Compute Intensive 8 MBytes 100 MFLOPs 0.5 MBytes 0.5 task/sec

TABLE IV
EXPERIMENTAL TASKS CHARACTERISTICS AND EVALUATION PARAMETERS.
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(a) Computational Throughput (b) Network Utilization (c) Computational Resource Utilization
Figure 3: Impact of changing device arrival rate and presence time.

time oblivious scheduler (PreOb). Such scheduler uses the
same task assignment heuristic used by femtocloud but without
taking the presence time of a device into account. Due to its
unawareness of the presence time, it requests the results from
the device one they become available.
Impact of changing user arrival rate and presence time:
Figure 3 shows the effect of changing the average user pres-
ence time and the average user arrival rate on the performance
of femtocloud. Figure 3 (a) shows that the increase in the
presence time or the user arrival rate, significantly enhances
the performance and increases the femtocloud’s computational
throughput. This increased computational throughput saturates
for large values of the arrival rate or the presence time. To
explain the reason behind this saturation, we refer to Figure 3
(b), which clearly shows that the network utilization increases
as more tasks get assigned to our devices until it becomes
highly utilized and unable to support more task assignments.
Figure 3 (c) shows that the devices’ utilization decreases

with the increase of the presence time or the arrival rate.
This decrease is due to having a lot of available devices in
the system which enables distributing the load on them and
minimizing their utilization and overhead.
Stability Impact: Guided by the derivations we draw from
Figure 3(c), it is critical to understand the true impact of
the increased user presence on the system independent of
the changes to the available compute resources. Therefore we
construct an experiment in which we fix all the parameters
in the system except the presence time of the devices. In
this experiment we have three devices (a Nexus 10 and 2
Nexus 7 devices) and we change the average user presence
time from 15 sec to 1 hour. To isolate the effect of presence
time, once a device leaves our cluster an identical copy
arrives and joins the cluster. Figure 4 shows the results of
these experiments and compares femtcloud to the presence
time Oblivious scheduler (PreOb). Figure 4 (a) and Figure 4
(c) shows that with the increase of the presence time, both

algorithms utilizes the stability to gain more performance.
femtocloud’s awareness of the presence time enabled it to
achieve higher performance than PreOb for low presence time
values. Figure 4(b) shows that the femtocloud’s increased
performance comes with lower network utilization. The main
reason is that without the knowledge of the presence time,
PreOb assigns tasks to devices that may not be able to execute
them and, thus, it may have to reassign them again to another
device. This behavior keeps the network unnecessary busy.
Figure 4 (b) also shows that with the increase of presence
time femtocloud becomes able to execute tasks that require
high compute resource and low network usage. Therefore, the
more stable the devices in the femtocloud the less it consumes
from the network resources.

Task characteristics impact: To study the impact of changing
the task characteristics, we conduct an experiment that has
only single type of tasks (Chess). While maintaining the
average computational requirements and average output size
as constants, we vary the input size from 0.5 MBytes to
16MBytes. Figure 5 shows the impact of increasing the task
input size on the performance of femtocloud. It is clear that
with the increase of the input size, the task characteristics
moves from being CPU bounded, which enables increasing
the compute resource utilization, to be fully Network bounded.
Therefore the compute resource utilization decreases and the
network utilization increases.

Robustness to estimation errors: To measure the impact of
errors in estimating the presence time of the user on the
system, we conduct an experiment in which we introduce
an Gaussian error and changed the mean from -50% of the
presence time to +50% of the presence time. Figure 6 shows
that when the error mean is 0, femtocloud is able to achieve
the highest utilization of the available devices. When the error
is negative, we have a conservative estimate about the presence
time which limits femtocloud usage of a device, which leads
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Figure 4: Stability impact.
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Figure 5: Task characteristics impact.

to decreasing the compute and network utilization. When the
error is positive the computational utilization degrades because
femtocloud fails to gather all the executed task results. Note
that our early gathering heuristic is responsible for minimizing
this effect. Figure 6 (b) shows that the network utilization
keeps increasing because femtocloud keeps assigning tasks
more and more tasks while moving from a conservative
estimate to a less conservative one. Further more, when the
error becomes positive, the network utilization will further
increase due to reassigning tasks after a device leaves without
sending their results.

C. Femtocloud Prototype Evaluation

In this section, we discuss the results we gathered while
using our prototype. In our experiment, we use three devices,
a Galaxy S5 running Android 4.4.4 in addition to a Nexus
10[2013] and a Nexus 7[2013] tablets running Android 5.0.2.
In this experiment, we compare the performance of femtocloud
to an oracle which assumes accurate knowledge of all connec-
tivity and execution time for every task on every device. Since
this oracle is impossible, we gather measurements from all the
devices and use after the fact analysis get the results.
In our experiment, we compare the achieved compute

throughput by the oracle and femtocloud under two scenarios:
(1) Full presence scenario, and (2) Emulated arrival/departure
scenario. In the first scenario, we assume that the three devices
existed during the whole period of experiment (1 hour).
The main goal of this scenario is comparing the maximum
achievable performance of femtocloud to the one achieved
by the oracle. In the second scenario, we emulate average
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Figure 6: Robustness to estimation errors.

Scenario Oracle femtocloud
Full presence 16.54 MFLOPS 14.23 MFLOPS

Emulated arrival/departure 10.31 MFLOPS 8.86 MFLOPS

TABLE V
PROTOTYPE PERFORMANCE MEASUREMENTS

presence time of two minutes for each device. We emulated
the arrival of new devices by returning the device to the
cluster after average of one minute from its last departure.
Table V summarizes these experiment results and shows
that femtocloud achieved more than 85% of what the oracle
achieved in both scenarios.

V. RELATED WORK

We focus our discussion of related work primarily on
systems and architectures to realize offloading of computation
from mobile devices. We then briefly mention key supporting
technologies.

Early research efforts on offloading computation from mo-
bile devices focused on offloading to the cloud, as exempli-
fied by the MAUI [4], CloneCloud [3], and COSMOS[16]
systems. MAUI’s primary consideration was to reduce energy
consumption at the mobile device, and its primary focus was
on enabling fine-grained code offload without placing too
much burden on application developers by taking advantage
of managed code environments. CloneCloud similarly aimed
for ease in enabling mobile applications to offload execu-
tion without adaptation, using static and dynamic profiling.
COSMOS, however, focused achieving significant execution
speedup while maintaining efficient resource allocation and
management using elastic clouds. These systems demonstrated
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combined energy savings and execution speedup for applica-
tions with appropriate properties.

During a similar time period, Satyanarayanan and col-
leagues proposed Cloudlets, introducing a middle tier be-
tween mobile devices and the traditional cloud [15]. The
driving insight behind cloudlets was that the bandwidth and
latency to the traditional cloud would be limiting for certain
applications, and thus proximity of resources for offloading
was critical. Building on this work, those researchers have
recently proposed just-in-time provisioning of these cloudlets
for dynamic virtual machine creation so that mobile tasks
can be more easily offloaded and executed [8]. Cisco’s fog
computing architecture bears similarities to cloudlets, from the
vision to “extend the cloud computing paradigm to the edge
of the network” to the introduction of a layer between data
centers and end devices [2]. Cisco positions fog computing
as especially suitable for the Internet of Things, where end
devices will include a wide variety of sensors and embedded
systems in need of infrastructure support, in addition to user
devices.

As explained earlier, our femtocloud architecture can be
viewed as a re-factoring of the cloudlet architecture into a
controller and compute resources, that need not be realized
in the same box but instead can leverage idle cycles on local
devices. Hints in this direction can be found in Nishio et al.
where a “local cloud” is constructed of mobile devices, one
of which is elected as a resource coordinator [13]. That work,
however, focuses less on architecture and system design and
more on developing a unifying utility function that allows
an optimization framework for resource sharing under the
assumption that the nodes in the local cloud are stable,
experiencing no churn.

More generally, our work fits into the class of cooperation-
based architectures for mobile cloud computing, as identified
by Guan et al. in their survey of mobile cloud computing re-
search [7]. Extreme forms of cooperation, without a controller,
map to one end of the spectrum that femtoclouds lie upon, as
illustrated earlier. These extreme approaches include systems
such as Serendipity [17], Mobile Device Clouds [11], [10] and
Hyrax [18].

None of these systems would be possible without significant
effort and advances in areas that address key questions of
what to offload and how to offload, a division of concerns
nicely articulated in Gordon et al. in their work on OS support
for offloading [6]. By no means an exhaustive list, these
technologies include application profiling, code partitioning,
energy and computation estimation, thread migration, virtual
machine synchronization, safety and security while running on
unmanaged machines.

VI. CONCLUSION

In this paper, we presented the femtocloud system that
we developed to leverage mobile devices to provide cloud
services at the edge. This system falls in the middle of the
stability spectrum of such clustered systems and is considered
an essential step towards opportunistic computing[12]. We

presented the design and architecture of the system. We
identified the task scheduling problem as an important part
of the design of such a system and developed an optimiza-
tion framework that led us to scalable heuristic solution
to the problem. Our evaluation demonstrated the potential
for femtocloud clustering to provide a meaningful compute
resource at the edge. Finally, we plan to extend this work
by (1) enabling our task assignment problem to take mobile
devices’ energy consumption into account, (2) designing a
suitable user incentive system to be used in our femtoclouds,
(3) deploying our system in various environments, and (4)
conducting thorough evaluation of FemtoCloud in each of
these environments.
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