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Abstract—With the Internet of Things, sensors are becoming
ever more ubiquitous, but interacting with them continues
to present numerous challenges, particularly for applications
running on resource-constrained devices like smartphones. The
SOUL abstractions in this paper address two issues faced
by such applications: (1) access to sensors with the levels of
convenience needed for their ubiquitous, dynamic use, and only
by parties authorized to do so, and (2) scalability in sensor
access, given today’s multitude of sensors. Toward this end,
SOUL, first, introduces a new abstraction for the applications to
transparently and uniformly access both on-device and ambient
sensors with associated actuators. Second, potentially expensive
sensor-related processing needs not just occur on smartphones,
but can also leverage edge- and remote-cloud resources. Finally,
SOUL provides access control methods that permit users to easily
define access permissions for sensors, which leverages users’
social ties and captures the context in which access requests
are made. SOUL demonstrates that the applications on Android
platforms can scale the use of 100s of sensors with performance
and energy efficiency.

I. INTRODUCTION

Recent high-end smartphones have more than 10 embedded
sensors, and there are already 6 sensors on average in roughly
30 to 40% of today’s mobile phones [1], [2]. A similar trend
is seen for emergent wearable devices. Mirroring the growth
in device-level sensors, there is also an increasing presence of
sensors in users’ external environments like homes, cars, or
entertainment. Tesla’s Model S, for example, has 12 sensors,
and Google’s driverless car is known to use at least 6 sensors
just for its obstacle detection unit. Smart homes can have
1000s of sensors for providing home security, automation, and
entertainment [3].

This paper addresses the challenges faced by mobile ap-
plications (apps) that seek to leverage and use the dynamic
sets of sensors present on mobile devices and in the envi-
ronments where they operate. The issues faced by such apps
are (i) the diverse nature of sensors, reflected in the need to
use per-sensor protocols for interacting with them; (ii) the
computational and data management challenges in interacting
with sensors, particularly for applications running on resource-
constrained end devices like smartphones; (iii) the dynamic
nature of sensor presence because users move in and out of
their proximity and run applications requiring their dynamic
access; and (iv) the access privilege of sensor-collected data
that possibly include sensitive data of users.

In order for such apps to efficiently interact with and
manage the dynamic sets of currently accessible sensors with
the associated actuators and software services, SOUL (Sensors
Of Ubiquitous Life)
• externalizes sensor & actuator interactions and process-

ing from the resource-constrained device to edge- and
remote-cloud resources, to leverage their computational and
storage abilities for running the complex sensor processing
functionality;

• automates reconfiguration of these interactions when
better-matched sensors and actuators become physically
available;

• supports existing sensor-based applications allowing
them to use SOUL’s capabilities without requiring modi-
fications to their code; and

• authorizes sensor access at runtime to gain protected
and dynamic access for applications to sensors controlled
by certain end users.
The functionalities listed above are obtained via the SOUL

aggregate abstraction, which is a single point of access to
sensors as well as actuators, and software services for the
apps. This abstraction is realized by leveraging edge cloud
infrastructure–in our case, the PCLOUD [4] system–to ef-
ficiently run SOUL aggregate functionality. The outcome is
that with SOUL, computationally or storage-intensive data
management and processing tasks for sensors can be exter-
nalized from the smartphones to run anywhere in the edge or
remote cloud. For such actions, sensor and resource accesses
are guided by dynamic access permissions.

Key to SOUL’s aggregate abstraction is the insight that
sensors along with actuators and services can efficiently be
virtualized by the capabilities from edge clouds to create
a new high-level abstraction so as to provide apps with a
consistent and convenient access to them. Apps interact with
such an abstraction presented as a single point of access for
various sensor-related resources. SOUL manages the diverse
nature and dynamic presence of current physical sensors and
virtualizes them in the exactly same way that Android provides
apps with sensors. In doing so, SOUL can supports the existing
applications without requiring them to be reprogrammed.
While SOUL transparently supports existing apps, new apps
with the SOUL API can fully utilize SOUL’s features. For
example, SOUL’s automated reconfiguration actions can shield
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apps from the need to understand what physical sensors are
currently accessible. Further, the apps do not need to run
processing raw data of sensors on resource- and energy-
constrained smartphones. Instead, resources from edge and
remote clouds can be leveraged to carry out these computation-
ally expensive tasks, and SOUL can run the potentially costly
tasks required for sensor interaction on behalf of smartphones.
Finally, with the enormous number of sensors with which
the apps can interact, SOUL helps users easily set up access
privileges for their own sensors when users share their sensors
with others. Ensuring safe and secure sharing in SOUL can
be achieved by the different access privileges granted to
individual sensors.

The evaluations in this paper show with SOUL, a single app
can interact with 100s of physical sensors alongside associated
actuators and services while minimizing the impact on a
device’s battery life and performance. An app from Google
Play Store see reductions of up to 95.4% in access latencies for
on-device sensors compared with Android sensor framework.

The remainder of the paper is organized as follows. The cur-
rent usage of sensors in mobile apps is explained in Section II.
SOUL-enabled use cases are shown in Section III. The design
and implementation of SOUL appear in Sections IV, and V,
respectively. Experimental results are in Section VI. Related
work is in Sections VII. Section VIII describes conclusions
and future work.

II. SENSOR USE IN MOBILE APPS

With the advent of a world of a trillion sensors and
mobile devices, a new class of applications has been predicted
to emerge, providing end users with personalized services
based on the precise capture of their current contexts and
intents. Those apps, however, must actively interact with the
numerous sensors present on mobile devices and in their
current environments. Unfortunately, today’s reality is that
most mobile apps use only a few physical sensors, despite
the fact that the devices hosting such apps are themselves
sensor-rich. Estimates [1], [2] are that apps using at least one
sensor in Android devices are just 0.5% of all available apps in
2012. This section describes more precisely the current status
of how apps interact with sensors, enhanced with our own
comprehensive study of current apps’ sensor use.

A. Background
Android provides apps with the Android sensor framework

in the android.hardware package, which is a principal means
for apps to access raw data from on-device sensors. With the
Android sensor API, applications must manually interact and
explicitly deal with individual sensor’s operations including
availability check. What aggravates the situation is that in
Android, sensor availability and operation methods quietly
vary, depending upon manufacturers, device models from the
same manufactures, and even on Android versions installed in
the same device. Thus, complexity in sensor use goes beyond
apps’ innate functionality, which is one of our motivations. We
next delve more deeply into the mobile app ecosystem and its

TABLE I: The most commonly used sensors.

Sensor Permission Counts(top100, 5K) Counts(750K)

accelerometer 66 13192
compass 15 2391
proximity 8 432
gyroscope 6 1211

current use of on-device and ambient sensors.

B. Mobile App Analysis
1) Methodology

We created a set of tools inspired by recent studies( [5], [6],
[7]) to automatically download and analyze nearly one million
apps from the Google Play Store. Those tools scrutinize apps’
bytecodes and manifest files to see how such apps behave on
the Android platform. Our initial study used the top 100 apps
in each category on the Google Play Store, resulting in a total
of 5,000 apps (on May 20, 2015). We then expanded it to
almost all free apps in the Store (750K out of the entire 1.2
million apps on May 20, 2015).
2) Sensor Usage in Current Apps

For the top 100 apps (in each category of Google Play
Store), 81 out of 5000 (1.62%) use at least one sensor. This
constitutes only a small increase over the previous estimate of
0.5% reported in 2012. Our more extensive survey of 750K
apps does not show any notable differences from the top 100
apps, with 1.92% of those apps using at least one sensor.
Further, for apps using sensors, most of them (84%) only
use a single sensor despite the multiple on-device sensors
available to apps. In addition, for both cases (top100, 750K),
the accelerometer is the most commonly used sensor, followed
by the compass (see Tables I).
3) Discussion of Study Outcomes

Evident from the statistics reported above is the fallacy of
recent predictions that mobile devices will naturally become
hubs in a sensor-rich world. While it remains unclear why
today’s apps do not actively leverage even the potential utility
of the sensors on their own devices, the industry have raised
issues ([1], [2], [8], [9]) regarding this matter as follows: (i)
device manufacturers may define different ways of accessing
the same sensor, sometimes even for different generations of
the same products, and (ii) app developers seeking to use
sensors have to handle different sensor vendors and their
diverse products. Consequently, (i) and (ii) cause apps that
seek backward compatibility to forgo using such sensors.

SOUL reacts to those issues by improving ease of use for
on-device and nearby sensors as follows: (i) tackling fragmen-
tation via a common sensor API (Section V), with backward
compatibility, (ii) providing dynamic, protected access to the
sensors present in a device’s current external environment
(Section IV-B1).

III. SOUL SENSOR APPLICATIONS

This section describes (1) how SOUL supports and aug-
ments existing apps as well as Android internal services in
their sensor use, and (2) how it presents opportunities for new
kinds of apps that easily interact with sensors and use nearby
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and cloud resources to process their data.

A. Supporting Existing Apps
New and additional sensors can be used without modifying

existing app, whether those sensors are embedded in the
Android device or are accessible remotely.
1) Augmenting Existing Apps & Services

SOUL assists apps by automatic reconfiguration of the
mapping between new physical sensors and actuators in a
certain SOUL aggregate used by these apps. In fact, this func-
tionality is available even to Android system services like its
notification service as well as apps. We demonstrate the utility
of this functionality with a the novel SOUL service termed
‘Everything Follows Me’ as an Android system service (a
daemon in Unix-like system), which hooks up all interactions
between Android system services and apps to create a SOUL
aggregate. Along with SOUL’s reconfiguration feature, this
service can offer a continuous media app experience even in
the case that a user’s context (i.e., location) is changed without
the app having to keep track of it.The actuators of the media
app consists of an adjacent loudspeaker and screen like those
present in a home media system and an LED indicator built
via an Intel Galileo board to forward all notifications emitted
by the Android notification service.

The Spotify [10] app, with the ‘Everything Follows Me’ ser-
vice, interacts with end users via whatever display screen and
speakers are close to the user’s current location. In addition,
the user need not be concerned about missing out on other
important Android notifications since the ‘Everything Follow
me’ service serves for Android internal notification service,
e.g., to notify the user about an incoming text messages via
the LED also present in each room. SOUL enables Spotify
to interact with edge-cloud-controlled sensors and actuators
without requiring the app to be modified. In other words,
forwarding is done both for the display/sound used by Spotify
and for notifications.

B. Prototype SOUL Applications
We now presents how SOUL creates opportunities for new

kinds of apps that easily interact with sensors and use edge-
and remote-cloud resources to efficiently process their data.
1) PoD: Processing on Demand

An important property of the SOUL is its ability to use
nearby and cloud resources for potentially expensive sensor
processing activities. Raw sensor data must typically be pro-
cessed for meaningful use by apps, but such processing can be
expensive, quickly draining a device’s battery or exceeding its
processing abilities. To address this, the SOUL API permits
apps to encapsulate their sensor processing code into Javascript
as a part of SOUL aggregates. Since it is the SOUL aggregate
running these code, they can be run anywhere. i.e., not just
as the code embedded in the app, but as the code running
on any of the edge-cloud resources available to SOUL. We
demonstrate this functionality with an app deploying a Kalman
filter [11] to produce a statistically best estimate of sensor data:
the app creates its SOUL aggregate with the filter code and
executes the aggregate on edge-cloud resources.

2) Composing SOUL Aggregates
A common app need is to combine and make use of multiple

sensors/actuators in a uniform way to realize some desired
app-level functionality. This motivates the ‘sensor/actuator
groups’ in SOUL aggregates, where each aggregate can group
and operate on multiple such groups. We demonstrate this
functionality with an app that permits end users to check the
current time on their smartphone, but without turning on the
smartphone’s battery-consuming screen. This ‘Don’t turn on
the screen’ app uses a SOUL aggregate with access to a home
and smartphone camera , and a phone’s speaker, along with
a finger-gesture recognition software service running on the
edge cloud: if the home camera sees the user approaching the
smartphone, the camera triggers a camera on the smartphone
to check if the user does with two fingers. Two-finger gesture
is interpreted as a desire to check time vs. the user grasping the
entire phone, and the response is the phone’s speaker stating
the current time, without unlocking and activating the screen,
thus conserving phone power. Once the app defines this SOUL
aggregate via the SOUL Activity class, SOUL operates the
aggregate without app’s interventions.
3) Comprehensive Health Aggregate

A future SOUL app could implement a ‘health aggregate’.
This app would allow mobile devices to become hubs for
health-related information about the device owner [12], [13].
For example, it could collect data such as blood sugar level
measured by wearable devices (e.g., health bracelets), or from
an exercise bike used by the owner in a gym. Analytic services,
part of the SOUL aggregate, would immediately raise alarms
if unusual readings are detected from the SOUL aggregate’s
virtual sensors. In addition, they can interact with a cloud-
resident service to compute long term health statistics, and
implement a dashboard. We offer this application example
to show the capabilities of multiple SOUL aggregates, and
exercising SOUL’s dynamic authorization service (e.g., when
accessing the health club bicycle sensors); all driven by the
SOUL engine.

IV. SOUL DESIGN

SOUL consists of two main building blocks: (1) the SOUL
Core built on the edge clouds, which processes sensor-
related operations requested by the SOUL Engine, and (2)
the SOUL Engine on user’s device managing all sensor-
related operations required by apps as a part of the Android
platform. Connections between the two are enabled by SOUL
Streams. The current SOUL is built on the PCLOUD edge-
cloud infrastructure, and includes SOUL’s sensor datastore,
access control methods, and resource management.

Apps use SOUL functionality to access sensor data, control
sensors and actuators, and to run software services via the
SOUL’s aggregate abstraction. Specifically, with the aggregate
abstraction, the apps can create consistent points of access
regardless of where components encapsulated in a certain
aggregate are physically located. Figure 1 overviews SOUL’s
design, described in more detail next.
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Fig. 1: SOUL Design

A. Design Principles
This section presents design principles for the SOUL mid-

dleware. The SOUL Core and Engine continue to guide more
detailed architecture design and implementation on Android
and PCLOUD .
1) Logical Decoupling

SOUL virtualizes the physical sensors, actuators and ser-
vices to combine them into a single aggregate. Uniform APIs
for such an aggregate can replace the custom APIs offered
by specific physical sensors, actuators, and services. SOUL
aggregate also provides flexibility for exactly crafting the ab-
stractions desired by apps. For instance, for sensor processing
requiring both current and past sensor data [14], with SOUL,
sensor data can first be placed into a sensor storage service,
the Sensor Datastore, and SOUL aggregates obtain data from
that storage service rather than from physical sensors. Such
intermediate sensor data storage permits data regularization
and/or time series-based data use [15] and construction of
entirely new sensor types from several physical sensors [16].
2) Flexible Service Execution

Ample previous work demonstrating the need for flexi-
bility in sensor data processing ranges from early results
on runtime adaptation for sensor processing( [17], [18]) to
recent work on novel edge cloud functionality [14] and on
cloud offloading [19]. Leveraging such results and akin to
first storing sensor data in a storage service before delivering
it to apps, SOUL offers flexibility in where an aggregate
performs its sensor processing: on the sensor itself, on the
platform running the app, or on cloud processing resources.
SOUL obtains such functionality by interacting with edge
cloud infrastructures( [4], [20], [21], [22]), via its translation
layer shown in Figure 1. We currently use PCLOUD [4] as
an edge-cloud infrastructure, but translation layers for others
are straightforward to implement.
3) Compatibility with Existing Android Apps

Apps currently using device-level sensors should be able to
continue to run, interacting with SOUL without the need to

modify their codes. SOUL addresses this issue by exporting
illusions of the physical sensors with which the apps interact.
The apps should be able to access such illusions by Android
Sensor Framework. This differentiates SOUL from previous
work supporting only new applications written for their new
APIs such as GSN [15] and RTDroid [23].

B. SOUL Core
The SOUL Core is comprised of three modules interfaced

with the underlying edge cloud. The first is the reference
monitor enables dynamic permissions to sensor data based on
fine-grained access control policies by collaborating with the
policy generator. Second, the Sensor Datastore interacts with
physical sensors to collect and store their data into an underly-
ing time-series database. Lastly, the resource manager makes
decisions concerning the offloading of sensor management and
processing from resource-poor devices to the edge or remote
cloud. As PCLOUD natively supports sandboxing methods, it
can better control the execution of app-provided, potentially
complex and time-consuming sensor processing codes on local
or remote resources in a secure way.
1) Reference Monitor

SOUL enforces access permissions to ambient or nearby
sensors when apps use sensors. For instance, a ‘digital neigh-
borhood watch’ app like the one described in [4], which
will need access not only to a single home’s sensors like
home cameras, smoke detectors, and intrusion sensors, but
also to those in or around other homes in the neighborhood,
to implement safety and notification functions for homeowners
and other authorized personnel.

Mitigating privacy and security risks should be prioritized
when apps access sensors because sensors often collect very
sensitive and private data. On the other hand, sharing sensor
data is also inevitable [24] to maximize benefit to users. To
reconcile those conflicts, SOUL assists users to easily set
up their own access control policy via its reference monitor
along with policy generator. The reference monitor enforces
fine-grained access policy for each invoked sensor while the
policy generator provides the sensor owners with an easy
way to construct such policies. The access control policies
are realized with following design goals in mind. (i) SOUL
aggregates can export only and precisely the data needed by
an app ( [25], [26]); (ii) sensor owners can define fine-grain
permissions for apps to use certain SOUL aggregates [27];
and (iii) SOUL assists owners in creating access policies
with automation support that leverages their social network
services; and finally, (iv) a sandboxing mechanism is used to
safely execute app-provided codes on remote resources that
process sensor data [28].

Access controls driven by the reference monitor begin with
mutual authentication activities between two principals, i.e., a
user running an app and the owner of sensors that the app tries
to access. In SOUL, those activities involve a Facebook-based
app installed by the user on her Facebook account and a trust
key server. After authentication, for every request to a sensor,
the reference monitor should check its access permissions and
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provide the sensor access only if it is permitted. To do so,
SOUL uses discretionary access control [29], implemented
via cryptographically protected capabilities for all sensors.
The access rules, i.e., policies, realized in this fashion are
formulated by resource owners to control who (i.e., some
principal) is authorized to access certain operations associated
with the sensors in question. There are explicit operations
for creating policies, granting and revoking access rights, and
restricting delegation. An example is the glance operation in
SOUL as dynamic methods for access control, thus enabling
such apps to address the security and privacy issues arising
for shared sensing (and sensor processing).
Glance. Access controls can be used to permit or disable
sensor access, but by controlling which app can use which
operations on resources managed by SOUL, it becomes pos-
sible to make finer grain decisions that can mitigate the risks
to privacy inherent in permitting others to view data from
personal sensors. SOUL handles this via the two distinct
operations, read vs. glance, which export different granularity
of data to different invokers. That is, if an app without proper
privileges invokes a read on a sensor, that access will not be
granted, but the app may succeed with its glance requests. The
same app with glance from different users will see different
set of data from the same sensor (e.g., only overall trends vs.
detailed sensor data).
2) Policy Generator

While fine-grain protection is important, it is difficult to
formulate and express such protection policies in environments
targeted by SOUL [27]. We address this issue by providing to
resource owners a runtime policy generator for access per-
missions, leveraging the wealth of information about potential
principals available on social networks and data about the
current context in which the request is made [30]. SOUL
assumes that the owners are willing to share their resources
with those who are closed to them in the real world. In
Sociology, such people are referred to as having a strong
social tie with the owners [31]. This tie, however, is hard
to measure in the real world to construct access policies.
Hence, the policy generator leverages recent studies proposing
certain models [32] for predicting such social ties from the
interactions observed in an Social Network Service (SNS) like
Facebook. For the relationships that are unable to be captured
by the SNS, it refers to the context in which a request is
made. The SNS information helps the service predict the real
strength of social ties, and the context information captures the
situation that goes beyond social ties, which means that their
complementary nature can lead to a more accurate policy. The
owners can accept or customize given polices to make their
own ones.
Social Network Service. Recent studies [32], [33] present
models that predict actual social relationships, social ties, from
the interactions between participants observed in SNS. Such
models derive predictive variables from SNS and then use
them to estimate the strength of social ties in the real world.
SOUL adopts this approach by (i) periodically inspecting
users’ SNS interactions and then (ii) using these observations

to predict their social ties to other individuals with which they
interacts. This prediction, then, is the basis for constructing a
set of templates for access permissions to the their resources.
Users can use these templates for making final decisions about
granting access permissions.
Context Information. An SNS can capture many, but not all
social relationships relevant to access to SOUL aggregates.
Additional information of value for deciding on access per-
missions include the context in which access requests are
made and the intent behind making those requests [34]. A user
may be visiting a gym, for instance, wishing a trainer to have
temporary access to her/his personal health sensor. In SOUL,
such context information [35] is captured with SOUL-specific
data that can include access to the user’s online calendar (e.g.,
gym appointments), SNS events, and physical sensors like the
user’s GPS location via a smartphone [30], [36].
3) Sensor Datastore

As stated earlier, sensor data is first placed into the store,
then pre-processed to provide apps with different ways to
access and use that data. In particular, upon an app’s access to
some sensor, the sensor datastore constructs a SOUL stream
to transfer sensor data (in the form of SOUL aggregates)
from the SOUL Engine to the SOUL Core that ultimately,
provides sensor data to apps. By doing so, the SOUL allows
apps to combine multiple sensors as well as actuators into
a higher-level abstraction, to make it easy for apps to scale
in terms of the numbers of sensors with which they interact
and in terms of the degrees of required sensor processing.
For example, if an application desires a time-series sensor, the
store manager reads the corresponding sensor data and bundles
time stamps with that data. It can then make available to the
app an appropriate new kind of a sensor (e.g., sensor data
along with time stamps). The datastore includes the following
operations.
GroupBy. The datastore offers the app with the groupBy
operation to group individual sensors based on app-desired
properties. Typical properties used in groupBy are those based
on sensor location, type, etc. The outcome is that apps interact
with a single point of control, for any such set of sensors with
associated actuators and services, thus making it easy for an
app to see and control them.
Filter. With filter, apps can receive only the data that meets
their criteria, expressed e.g., as time windows or sampling
rates.
Bundle. The bundle operation can provide additional metadata
like time stamps and sensor locations, to enable apps to
utilize the sensor data without additional, extraneous sensor
or datastore interactions. Applications are also able to define
a new type of metadata bundling the existing ones to reduce
effort on creating and managing them by the applications.
Reconfigure. If an initial configuration of a SOUL aggregate
must be changed because, say, a user moves to a new location,
newly available sensors may be seamlessly added to the ag-
gregate and others may be removed. The reconfigure operation
shields apps from such dynamics in the environments in which
they operate, resulting in seamless SOUL use across changes
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in time, location, or even with physical sensor failure.
4) Remote Sensor Management & Processing

The descriptions above make clear that SOUL aggregates
may require a wide array of services that implement the
rich sensor data processing methods needed by applications.
There are two ways to implement such services: (i) by
utilizing services already present in the edge cloud [4], or
(ii) by dynamically extending a SOUL aggregate via app-
defined methods in JavasScript for processing the data from
sensors in the aggregate. Section III-B1 describes it in more
details. To enrich sensor processing by leveraging edge cloud’s
capabilities, SOUL permits dynamic extension to allow apps
to run their own post processing algorithms on top of PCLOUD
resources, termed Processing on Demand, and at its execution
time, it sandboxes such codes for safe execution [28] where
the resources allocated for those services and sandboxes are
controlled by PCloud’s underlying mechanism.

C. SOUL Engine
SOUL’s realization in Android, the SOUL Engine, interacts

with apps via SOUL APIs. Invocations of Engine APIs trigger
additional important functionality in cooperation with the
SOUL Core on edge clouds as follows: (i) Access control–
the Engine initiates a process for each app’s degrees of access
to desired sensors. (ii) Orchestrated data movement at the
granularity of a SOUL aggregate, it creates SOUL Streams
that ultimately link SOUL to apps. (iii) Externalization–it runs
the Processing-on-Demand (PoD) functions needed to interact
with edge clouds, when present. If no edge cloud is available,
the Engine runs the app’s SOUL aggregates on available local
resources on the device. (iv) Runtime mapping–SOUL permits
automated methods to map physical sensors, actuators and
services to SOUL aggregates with runtime remapping based on
changes in user context. This eliminates app’ burden required
to explicitly track and response such changes in real time.
1) Discovering Edge Clouds for SOUL Engine

For access to edge cloud resources, SOUL seeks to discover
an edge cloud whenever the user unlocks the screen on her
Android device. To reduce overheads, our current implemen-
tation limits the frequency of such discovery actions to once
every five minutes. Unlocking the screen triggers an interaction
with a directory service located on a remote cloud (currently,
an Amazon EC2 node) that returns to the device a set of
edge clouds available to the user in her current environment.
Which resources are returned depends on user context and her
social relationships or more generally, on the access controls
associated with the user requesting an access to a sensor. The
reference monitor implements these access controls.
2) SOUL Streams

Apps should be able to use SOUL aggregates for sensors
much like current Android apps use ones on a device, thus
preserving the Android sensor programming model. To do so,
SOUL streams are placed below the layer implementing the
Android sensor programming model. Upon a request from
an app, a SOUL stream is created to connect the Engine
with the SOUL core. It attempts to meet Android-defined

constraints on desired sensor data rates and delays, and within
those constraints, it also seeks to obtain improved performance
by optimizing this stream using sensor data batching. The
outcome is that battery-operated mobile devices are shielded
from some of the potential overheads of using physical sensors
(e.g., battery drain discussed in Section VI-B); instead, these
overheads are shifted to the SOUL engine’s resources running
the datastore on an edge cloud.
3) Programming Model – SOUL Activities

The SOUL Activity class is a Java abstract class for apps
to use SOUL aggregates, for example, to define its SOUL
aggregates–via its compose method, and to finalize SOUL
aggregate processing–via its trigger method. The remapping
method can define the SOUL aggregates that need to dynam-
ically remap their sensors and actuators to newly available
physical ones without additional app intervention. The SOUL
Activity class complies with the current sensor APIs of An-
droid because it is implemented as a wrapper of Android’s sen-
sor framework, SensorEventListener. Its detail appears in the
SOUL source code available at https://github.com/gtpcloud/
SOUL.git.

V. SELECT IMPLEMENTATION DETAIL

To realize the design principles of SOUL, our implemen-
tation must be (i) backwards compatible–allowing existing
apps to continue to interact with their sensors as well as
virtual sensors in SOUL; (ii) transparent–permitting the use
of sensors regardless of their physical location; (iii) portable–
allowing SOUL aggregates to run on any of the variety of
edge cloud infrastructures; and (iv) controlled–enforcing well-
defined access controls for the invokers of SOUL aggregates.

We obtain these properties as follows. First, SOUL ag-
gregates provide legacy apps with the aforementioned sensor
illusions. To do so, such apps can still benefit from being able
to use both on-device and ambient sensors. Second, logically
decoupled sensors enable apps to construct entirely new types
of sensors from physical ones. Third, we demonstrate porta-
bility by realizing SOUL on diverse devices (Galaxy Prevail,
S3, S4, Tab 3, and Nexus 4, 7), and by providing the edge
cloud translation layer with which SOUL services can run
on the PCLOUD or elsewhere (e.g., Cloudlet [21]). Finally,
controlling sensor use is ensured by an access control service
in SOUL.

A. SOUL Core on Edge Clouds
The SOUL Core implements its sensor datastore, access

control mechanism backed by the reference monitor along
with the policy generator, and resource manager to take sensor
management followed by sensor-data processing from mobile
devices on top of an edge cloud. The SOUL Core is built on
PCLOUD to access distributed resources including computing
capabilities, sensors, and actuators via a clean and high-level
abstraction.
1) Edge Cloud Translation Layer

The edge cloud translation layer allows SOUL to use
a different edge cloud infrastructure other than the current
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PCLOUD . Since the translation layer hides complexity in the
underlying system, the type of underlying edge infrastructure
(i.e., Docker vs. QEMU in cloudlet) is not relevant when
integrating with SOUL.

For instance, the SOUL Core would run on top of Cloudlets
with cognitive services [37] via the translation layer, and
the datastore would easily replace its backend DB, currently
OpenTSDB with BOLT [38].

The translation layer also provides the single point of
contact needed for initiating and finalizing SOUL execution,
on the device or elsewhere. The PCLOUD infrastructure with
the layer provides the sandboxed environments–on ambient de-
vices and/or the remote cloud–for running individual services
of SOUL.
2) Access Control to Mitigate Privacy Risks

To mitigate privacy and security concerns when users share
sensors, the reference monitor in SOUL enforces access con-
trol policies, which are inherent to how SOUL aggregates
are used. Access controls enforced by the reference monitor
begin with mutual authentication activities between the mobile
device user and any other users (e.g., the sensor owner) with
whom she might want to interact. In our implementation, those
activities involve a Facebook-based app installed by the user
on her Facebook account and a server acting as a Certificate
Authority (CA) with an X.509-based public key infrastructure.

The reference monitor determines what access policies (if
any) exist for the user, i.e., the invoker of a specific resource.
This determination is carried out by the policy generator,
which (i) looks up the social ties shown in Facebook between
the user (i.e., the invoker) and the other person involved
(e.g., the sensor owner),and (ii) checks for additional context
information available for that user. An example of such context
is an event, noted in the user’s event calendar, where the user
is a scheduled participant in a shared meeting with the owner.

The generated policy, i.e., the access policy to be applied,
then, is based on social tie (e.g., how well do I know the
owner?) and on context (e.g., are we both attending the same
scheduled event?). The policy determined in this fashion is
enforced with every access by the invoker to the resources of
an edge cloud. The outcome is fine-grained access control in
which different access policies are enforced for every invoker.
Policy enforcement is efficient, as the reference monitor issues
an access token to the invoker based on a given policy, and
then, every resource request uses that access token when
interacting with access control (which checks the token). An
additional optimization implemented in the current system
skips such explicit checks for new requests made by a user
for the same resource within 1 minute of previous requests.

The current implementation uses social tie prediction vari-
ables proposed by [32], but we can easily append others. For
the policy generator to create policy templates from those vari-
ables, we cluster the friends of the user, who owns sensors, on
Facebook into different groups using the Jenks algorithm [39].
Each group is mapped to a different policy template, and these
groupings (and policy template) are presented to the owner
as assistance in access control policy. Context is managed

similarly: the policy generator again defines a suitable policy
template and makes it available for inspection and possible
modification by the owner. To capture where a request is made,
the current SOUL engine on mobile devices should report
its location from a GPS sensor on devices when it requests
to connect an edge cloud belonging to others. Beyond using
location data, current apps with SOUL use context determined
by event pages on Facebook and the Google Calendar. An
access token resulting from this context information, which
is called a guest token, is required to renew every 2 hours.
Further, while such context can be checked rapidly, estimation
of social ties from prediction variables is slow, in part because
it must walk through and collect all social traces on the
owner’s Facebook account (to understand the owner’s ties to
other users). As a result, the policy generator only periodically
updates its social tie estimates, according to settings controlled
by the owner, but captures context information immediately
and on demand. User-defined policies are stored locally.
Access Control via glanceSensor: As discussed in Sec-
tion IV-B1, when a mobile app invokes the openSensor call
to access shared sensors, the reference monitor returns a
capability token to the app, which indicates ‘no access’,
‘glance’, or ‘read’. ‘No access’ simply rejects such an access.
The read capability allows the app to use the SOUL engine
API, getSensor operation to fully customize requests (e.g., the
time windows, filters, and resolution for data). glanceSensor
with the glace capability is a very limited version of the
getSensor call, which can see only the sensor data that meets
the conditions imposed by the owner-defined policy.
3) Sensor Management and Processing

To permit post-processing methods for sensor data to run
anywhere, on the mobile device and/or on remote resources,
the resource manager in the SOUL core can draw on PCLOUD
resources to offload such processing on demand. Toward this
end, an app defines a Processing-on-Demand (PoD) instance,
consisting of algorithm written in JavaScript and metadata
defining PoD inputs and outputs. To run PoD code, the
resource manager uses sandboxes on PCLOUD resources to
better isolate and control their activities. The sandbox’s run-
time executes PoD code and communicates with the datastore
to get and put appropriate sensor data. Processing results are
again delivered to the app in form of a SOUL aggregate. SOUL
relies on a virtual machine created by the Xen hypervisor for
its PoD. PCLOUD controls the lifecycle of each sandbox from
its creation to termination.
4) Sensor Datastore

The SOUL Datastore uses OpenTSDB [40] as its underlying
backend database. More important, however, are its actions
manipulating sensor data including batching and reconfigura-
tion as follows.
Reconfiguration. The reconfiguration service implemented by
the SOUL engine (i) detects changes in the user’s context,
whereupon (ii) it triggers remapping between sensor streams
and corresponding virtual sensors. Specifically, the current
implementation detects a location change, whereupon the
reconfiguration service sends a reconfiguration request to the
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Fig. 2: SOUL’s implementation in Android. The colored boxes
indicate SOUL’s modules added to Android.

SOUL Core. This gives rise to a new sensor stream and
ultimately, to different virtual sensor data exposed to the app.
The outcome is a complete elimination of app involvement
when user context is changed.
Batching. To efficiently transport sensor data across the net-
work, rather than sending individual sensor records, data is
batched based on two criteria: (i) the app-defined sampling rate
constitutes a constraint applied to SOUL’s batching method,
and (ii) MTU determines batch size under that constraint,
where batch size simply represents the number of records
packed into a single batch. In this fashion, SOUL adheres to
common Android practice, yet obtains improved performance
compared to per record network transfers.

B. SOUL Engine
The sensor framework in Android can be divided into three

layers: (i) Java layer, (ii) system layer, and (iii) HAL. The
Java layer interacts with apps, the system layer controls built-
in sensors via HAL, and finally, HAL talks to the kernel-
space device drivers. To transparently support existing apps,
SOUL’s implementation operates at all three layers, and for
remote ambient sensors, SOUL does not make any assumption
regarding how they connects to a device. SOUL’s per-layer
functionality is outlined next.
1) Hardware Abstraction Layer Approach

Android’s HAL mandates that when Android introduces a
new sensor type that can replace an OEM-define sensor type,
the OEM must use the official sensor type and stringType
on versions of the HAL [41]. Therefore, HAL is a seem-
ingly attractive layer for implementing SOUL-like solutions.
Unfortunately, there are several drawbacks. First, HAL itself
has become blackbox in most Android devices, except for a
handful of Google reference devices. This is because device
manufacturers do not publish their HAL source codes. Second,
HAL no longer provides an abstraction of all sensors on
a devices because of fragmentation in the Android sensor
ecosystem. As a result, apps must manually interact with
all individual sensors, resulting in lack of portability and
unnecessary overhead.
2) Java-layer approach

Recent work [42], [43] use the Java application layer in An-
droid to export physically attached (e.g., via USB connections)
or Bluetooth-connected external sensors. This may help apps

Name Hardware/Role

Camera Nodes Exynos 5420 and AMD E450
Speaker, Monitor A/B at room A/B respectively

EC2 m3.large (Cloud resource)
PCloud Resources Intel i5, i7 & Core Duo

User’s Device Galaxy S4 with Kitkat(CM11)

TABLE II: SOUL Testbed Setting

access on- and off-device sensors, but they must use such new
SDKs, without support for the existing apps.
3) Multi-layer Approach in SOUL

Lessons from the above approaches lead us to a multi-layer
approach that spans Android’s system service and application
framework, shown in Figure 2. This multi-layer approach
supports legacy apps and permits new apps written in our
API to fully leverage SOUL. We use (i) sensor list, (ii) sensor
events, and (iii) data about receivers in each layer of the sensor
framework.
getSensorList in the system layer (JNI): Each Android device
creates a ‘list’ of its native sensors at boot time. Utilizing this
list, we load both native and dummy sensors into SensorDevice
at boot time, later and on demand replacing those dummy
sensors with SOUL-aggregate-based illusions of sensors.
SensorEvent in the system layer (Java): In Android, apps
using on-device sensors need to implement SensorEventLis-
tener to create SensorEventConnection and enable hardware
sensors.Since SOUL bypasses the opaque event-related part
in HAL, we require a mechanism to generate events to trigger
SensorEventConnection on behalf of HAL. Our implementa-
tion uses any existing sensor (currently a light sensor) as an
event ‘generator’ for the rate at which the fastest sensor is
updated. This allows us to avoid modifying the HAL, yet still
substitute the data in each event with the virtualized sensor
data without additional overhead.
Receiver in the HAL layer: The SOUL Core on the receiver
maintains a queue of Device Handler Number (DHN)s indi-
cating the next sensors to be batched. Upon receiving sensor
data from the SOUL Engine, in the handleEvent method it
substitutes the data in events generated by the light sensor
with incoming data. In this method, we compare DHNs of
batched events and virtual sensorś DHN, and then request an
update via updateSensor(DHN) or updateSensorGroup, which
provides a SensorGroup granularity update. Upon update, the
SensorManager notifies registered listeners to handle a new
SensorEvent via the onSensorChanged method in the listener.
The result is a low-latency SensorGroup granularity update
(shown in Section VI-B).

VI. EXPERIMENTAL EVALUATION

A. Evaluation Setup
SOUL is evaluated with micro benchmarks and with the

prototype apps discussed in Section III-A. Table II describes
our testbed. For evaluations, we set up two different physical
spaces, named Room A and Room B, which are equipped with
sensors, actuators, and a monitor and speaker.
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Fig. 3: Measuring elapsed time per layer. SM J and SM S
denote the SensorManager in the Java (JNI) and the system
layer, respectively.

B. Micro Benchmarks
1) Overhead

The overheads of reading SOUL aggregates (vs. physi-
cal sensors) are evaluated with the temperature sensor in a
Samsung Galaxy S4 (GS4). We use a Google Play Store
app, Sensor Readout without any modification of the app to
show SOUL’s backward compatibility. In unmodified Android,
such an access begins with the SensorManager, followed by
HAL and device drivers called SSP in Linux Kernel. SOUL
bypasses the HAL/SSP layer, so that the SensorManager
directly communicates with SOUL. Figure 3 depicts the entry
and exit points of each layer for measurement.

In Figure 4 and Figure 5, an interesting result is that
even when first storing sensor data in the datastore and then
retrieving it via the network, the app-experienced delay in
SOUL is much less than that of the unmodified HAL. Even the
case that SOUL core is on the remote EC2 and the device is on
the relatively slow 3G connection (labeled as EC2-HSPA+),
SOUL shows better response time than the HAL. Figure 4
clearly shows that the time taken in the HAL is dominant in
unmodified Android (99.8% of total time). This result suggests
that the current Android sensor HAL potentially raises huge
overheads when apps access sensors. However, the limited
access to the sensor HAL source code makes it very hard
for us to investigate this overhead further. The HAL delivers
sensor reading data to apps at only four fixed intervals, which
suggests a lack of guarantee in data freshness. The proximity
sensor, for instance, is known to emit a new value every 0.1
seconds or less, but HAL only updates this value to apps every
0.5 seconds. When an edge device reports a sensor data to the
SOUL Core, the datastore follows a conventional time-series
database model to avoid information getting outdated. This
also improves overall latency when moving data from SOUL
to a device. In contrast, the HAL provides the same coarse-
grained delay intervals to all apps.

With SOUL, most time is spent in the network shown in
Figure 5, consequently, with nearby resources (PCloud) ac-
cessed via the 802.11g wireless LAN (WLAN) showing better
performance than when using a remote cloud (EC2) accessed
via T-Mobile’s 3G connection(HSPA+). In Figure 6,the latency
can change greatly if SOUL runs on the remote cloud (EC2)
with the 3G network (HSPA+). Hence, it is desired that SOUL-
like services run on edge-cloud resources with local network
connections.

Fig. 4: Elapsed time:Each layer.

Fig. 5: Elapsed time: On the network vs. inside Android.

Fig. 6: The cumulative distribution functions of latencies based
on resource locations and connections

2) Scalability for Sensor Use
Scalability is evaluated in terms of power consumption

when a test app is running. We measured it on a GS4 with
an increasing number of sensors that the test app uses (up to
100). Power consumption is measured with a Smart Power me-
ter [44]. To see the performance overhead when apps accesses
sensors, we build another test app just reading physical sensors
embedded in the device without doing any post processing. As
in Figure 7, just reading five physical sensors is consuming a
significant amount of CPU performance(from 20%(baseline)
to 64%(Android, 5 Sensors)) resulting in dramatic increasing
of CPU frequency from 600MHz to 1.6GHz. These changes
generated by the Android sensor framework can hardly be
justified when an app interacts with multiple sensors in term
of battery life. In addition to Figure 7, Figure 8(a) indicates
almost constant power consumption in the SOUL case, even
with increasing numbers of sensors up to 100, with the
SOUL aggregate consuming less power than when a single
sensor is accessed in unmodified Android (Ref in the figure).
Latency improvements are due in part because of the ‘batch’
optimization (see Section IV-B3). Figure 8(b) shows ‘batch’ing
gains of up to 88% in terms of latency, which results from
the optimized batch_size when the Datastore constructs
a sensor stream. Note that batch_size are constrained by
both end user app requirements, a delay value, and the network
MTU.

C. Access Control – Dynamic Authorization
To evaluate performance of our access control method, a

sample Facebook account is used to measure social ties from
2675 postings with 3458 comments and 2270 likes. For the
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Fig. 7: The CPU overhead in Android vs. SOUL

Fig. 8: (a) Power consumption as the number of sensors in-
creases, and (b) Average latency seen by the app with batching.
The Ref shows the result from one sensor in unmodified
Android.

Fig. 9: Evaluation of social tie model

authentication purpose, our trust key server is deployed at an
Amazon EC2 m3.medium instance.

Figure 9 shows the strengths of those ties and the clustering
of the groups for access policy templates based on those ties.
In this case, this account has 121 friends on Facebook, and
the policy generator sorts them into three groups based on the
strength of the tie. If someone falls into a proper group, the
policy generator suggests a policy generated from template
policies to the account user, and then the user may accept,
customize or reject it.

Table III shows how quickly a policy is offered by the
policy generator. The social-tie based policy is created very
quickly because the policy generator caches the estimation
results from the model at a local edge cloud, which means the
policy generator in SOUL does not evaluate the model every
time a request comes because its execution time is too long to
use it in realtime. With the test settings, it takes 453 minutes
since evaluating every single social interactions on Facebook
to accurately generate these policies is a demanding task, its
weekly recomputed results are cached and reused, with the
assumption that social ties are unlikely to change over that
time period.

To measure the overhead of a policy enforcement by the ref-
erence monitor, we build an Android app using SOUL, which
simply tries to create and access an aggregate with a different
ownership. Once an access to the aggregate is granted, the app

TABLE III: The elapsed time to create a policy

Source Time in milliseconds

Social Tie-based 6
Context-based
– Facebook Event 123
– Google Calendar 90

TABLE IV: The elapsed time for access control

Tasks Time in ms

Mutual authentication 54.8
Access invocation
– (a) Request an access 8.5
– (b) Read a value 20.3
– (c) Finalize the acess 9.7

tries to read values from the sensor. In Table IV, other than
20.3 ms (Read a value) is additional processing time for access
control conducted by SOUL. Mutual authentication happens
just once, and if the app reads more data, this overhead can
easily be amortized.

D. Supporting Existing Apps
Backward compatibility is evaluated by comparing sensor

accesses by unmodified apps with those using SOUL. Recall
that even unmodified apps can benefit from SOUL’s ability
to provide access to both on-device and remote sensors via
SOUL aggregates. We verify the backward compatibility of
the SOUL abstractions by checking whether the existing
apps in the Google Play Store can transparently access the
physical sensors they already use, via illusions given by SOUL
aggregates, an implicit bonus of such compatibility being that
such sensors can be local or remote. Figure 10 is a screenshot
of the Sensor Readout app able to transparently interact with
on-device–the first three–and remote sensors.

E. Augmenting Existing Apps
The ‘Everything Follows Me’ service described in Sec-

tion III-A1 provides a seamless media experience when run-
ning the Spotify app. In this evaluation, Android notifications
also work with the this service to deliver notifications to
the nearest user-visible LED. The ‘blackout’ time is 1918.3
milliseconds for the Spotify app and 10.9 milliseconds for
Android notifications. This time is the elapsed time between
the moment that the SOUL’s reconfiguration notifies the user’s
context change to the service after detecting the change of the
user’s location, and the moment that the services automatically
remaps to available resources in the new location. This remap-
ping happens without user or app’s intervention and for an
unmodified Spotify app and the Android notification service.

F. Processing on Demand
We use the Kalman filter to evaluate SOUL’s PoD feature.

Our test app creates a PoD instance with this Kalman filter
source code written in JavaScript and then SOUL runs the PoD
instance on a sandbox on the SOUL Core. We also run the
same code on the device itself to make a comparison. Figure 12
(a) shows that it takes 1.69 seconds when such injected filter
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Fig. 10: A Screenshot of the Sensor Readout App

code runs in a SOUL sandbox, including all network times,
while it takes 17.64 seconds for the same filter processing to
run on the device. There are associated gains in energy effi-
ciency on the GS4, shown in Figure 12 (b). We counts machine
cycles for each case. the filter runs 26,158,422,002 cycles on
the device whereas 39,541,615 cycles (0.15% compared with
the cycles on the device) on the SOUL sandbox. Reductions in
elapsed time and improved energy efficiency are explained by
the number of CPU-core frequency changes in Figure 12 (a),
which indicates that on-device processing operates all CPU
cores up to their maximum frequency (1.6GHz) for almost
half of the processing time, which is very high compared to
the SOUL case. Table V breaks the execution time into each
task when its PoD instance runs on a sandbox on PCLOUD .

G. Composing SOUL aggregates
The ‘Don’t turn on the screen’ app defines its gesture

aggregate consisting of an ambient and smartphone’s camera,
and its proximity sensor as its aggregate. The aggregate also
includes phone’s speaker as an actuator, and the gesture
recognition service from PCLOUD for its post processing. The
recognition service runs on nearby resources, or on the remote
EC2, based on a decision made by the underlying PCLOUD .
The end user’s request–a report on the current time–is satisfied
via the phone’s speaker. Results are obtained by checking the
current time every second for ten seconds, by either turning
on the screen or via this app. We measure the elapsed time
from the moment that the finger detection service is run to the
moment that the current time is reported, when the recognition
service is run on local edge cloud devices or the remote cloud.
Using local resources on PCloud results in a latency of about
97.4ms while latency with the EC2 remote cloud is 294.5ms
as shown in Figure 11 (a). This result suggests that latency-
sensitive apps may need to run on the edge clouds as long as
the edge provides enough resources to process app’s workload.
We also compare the power and energy consumption of the
device running this app vs. simply activating the screen and
permitting the user to see the time. Figure 11 (b) clearly shows
that this app’s avoidance of the screen dramatically reduces the
device’s energy consumption, by up to 46%.

H. Discussion
In addition to the apps demonstrating SOUL’s utility and

the versatile nature of SOUL aggregates and their use, the
experimental evaluations show that offloading sensor data

(a) Response time to state the current time

(b) The speaking and screen consume 22.14 and 40.94 mWH,
respectively. Each circle shows the moment that a user ac-
knowledges the current time.

Fig. 11: Results of the Don’t turn on the screen app

(a) The elapsed time and CPU frequency changes

(b) Comparison of power consumption

Fig. 12: Results of the app with a Kalman filter

processing (e.g., PoD) from the mobile device has advantages
not only in performance and/or energy consumption, but also
in the delays seen by end users, particularly when PoD can
use nearby computing resources vs. the remote cloud. It also
presents opportunities for creating advanced functionality, like
the gesture aggregate in Section VI-G by SOUL. Furthermore,
with SOUL, even unmodified apps can transparently use
ambient sensors. Lastly, SOUL helps create new opportunities
for innovative sensing, including via sensor composition and
the ability to run potentially complex processing methods on
resources beyond a single device.
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TABLE V: PoD–Elapsed Time per task with 95% interval

Task microsec. 95%

PoD on PCLOUD 946385
– (a) Access to Datastore 18780 6708
– (b) Access Control 1530 539
– (c) Execution in Sandbox 925065 6320

Android Stack 44013 1462

Sensor stream over Network 28824 791

VII. RELATED WORK

Edge Cloud Infrastructures. SOUL can be built on any edge
cloud infrastructures that include [4], [20], [21], [45]. In fact,
the SOUL approach is somewhat similar to recent work like
BOLT [38] and Gabriel [37], both of which extend underlying
cloud infrastructures with new functionalities.
Sensors in Android. The Android sensor framework has
recently included a Sensor Hub [46] component. This is an
evolution of the original software abstraction, to a dedicated
low-power companion microprocessor which records and pre-
processes sensor data instead of the power-hungry application
processor. This approach reduces power consumption, but does
not address all the solutions provided by SOUL because the
microprocessor is not capable of the full range of real-time
data processing algorithms required by applications. Recent
work [23], [42], [43], [47] has suggested extensions for
access to off-device sensors. ODK [42] proposes a mechanism
using Kernel-level device drivers to access external sensors
physically connected via USB or Bluetooth. BraceForce [43]
and RTdroid [23] also do so, but because they introduce
custom SDKs for interacting with external sensors, they do not
support legacy apps written with the standard Android SDK. In
addition, access control in RTDroid [23] is similar to what is
provided by SOUL, but without SOUL’s policy level support.
Similar to SOUL, Metis [48] opportunistically offloads sensing
tasks to fixed sensors, yet does not support virtual sensor
fusions, or actuator controls as SOUL Core and GroupBy
operation do. Seemon [49] introduces energy-efficient context
monitoring query like SOUL batching operation but lacks
offloading mechanisms to leverage nearby processing power.
Programming Models. MiLAN [50] allows applications to
define QoS properties for their sensing requirements, based
on which it decides on suitable network and sensors con-
figurations. Such techniques may be useful to further extend
SOUL’s policies that allocate appropriate edge, remote, and
device-level resources to SOUL aggregates.

TeenyLIME [51] proposes a high level abstraction for data
sharing among one-hop neighboring devices, but unlike SOUL
aggregates, it does not fully leverage all available ambient and
cloud resources. SOUL and GSN [15] share the motivation of
virtualized sensors, but while GSN focuses on an infrastructure
for sensor network deployment and distributed query process-
ing, SOUL provides to mobile apps new functionality that
permits them to transparently and uniformly access sensors,
actuators, and services.

Similar to SOUL, MobileHub [52] proposes automatic
rewriting mechanisms for mobile apps to leverage sensor hub
on mobile devices. However, it relies on physically present
sensors whereas SOUL interpolates virtual sensors as well.

Recent RFC 7252, 7390, and 7641 propose the sensor-
oriented protocol and group-granularity operands like SOUL
GroupBy. However, the proposed group operation, that re-
quires continuous searching for all nodes or using infinite
hierarchical naming, imposes a large overhead, whereas SOUL
avoids these burdens by providing generic interfaces and even
potential extension by developers.

OpenIoT [53] is a middleware for virtual sensor. It, however,
does not incoperate the most sensor-rich device, mobile device,
and lacks access control models.
Access Control and Privacy in Sensing. SenSocial [54]
combines user activities on such services with sensing the
physical context, using the user’s mobile devices in a privacy-
conserving manner. Hence, applications can easily capture
both user context and sensed data. SOUL adopts elements of
this approach. The anonymity mechanisms in [55], [26] could
be used to implement enriched SOUL’s ‘glance’ calls, or one
could use the access control-based privacy mechanism in [35].
Liu [25] suggests a new abstraction for trusted sensors with
virtualization and hardware support. Obscuring data as done in
statistical databases could be used to improve the Datastore.

VIII. CONCLUSIONS AND FUTURE WORK

SOUL addresses issues with sensors and sensor processing
ecosystem using the capabilities of edge clouds. First, it shields
applications from today’s diverse sensors and vendor-specific
interfaces, thus making it easier for apps to scale their sensor
use. Second, SOUL’s ability to perform sensor processing on
external resources, make possible complex sensor processing
and integration activities not limited by an individual smart-
phone’s resource constraints. Last, apps must dynamically
acquire the rights to access and interact with sensors. Thus,
SOUL provides apps with required runtime permissions.

A possible future work will demonstrate the portability to
other edge cloud systems and explore a seamless hand-off
when mobile devices move around.
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