
IONN: Incremental O�loading of Neural Network Computations
from Mobile Devices to Edge Servers

Hyuk-Jin Jeong
Seoul National University

Seoul, South Korea
jinevening@snu.ac.kr

Hyeon-Jae Lee
Seoul National University

Seoul, South Korea
thlhjq@snu.ac.kr

Chang Hyun Shin
Seoul National University

Seoul, South Korea
schyun9212@snu.ac.kr

Soo-Mook Moon
Seoul National University

Seoul, South Korea
smoon@snu.ac.kr

ABSTRACT
Current wisdom to run computation-intensive deep neural network
(DNN) on resource-constrained mobile devices is allowing the mo-
bile clients to make DNN queries to central cloud servers, where
the corresponding DNN models are pre-installed. Unfortunately,
this centralized, cloud-based DNN o�oading is not appropriate for
emerging decentralized cloud infrastructures (e.g., cloudlet, edge/fog
servers), where the client may send computation requests to any
nearby server located at the edge of the network. To use such a
generic edge server for DNN execution, the client should �rst up-
load its DNN model to the server, yet it can seriously delay query
processing due to long uploading time. This paper proposes IONN
(Incremental O�oading of Neural Network), a partitioning-based
DNN o�oading technique for edge computing. IONN divides a
client’s DNN model into a few partitions and uploads them to the
edge server one by one. The server incrementally builds the DNN
model as each DNN partition arrives, allowing the client to start of-
�oading partial DNN execution even before the entire DNN model
is uploaded. To decide the best DNN partitions and the uploading
order, IONN uses a novel graph-based algorithm. Our experiments
show that IONN signi�cantly improves query performance in real-
istic hardware con�gurations and network conditions.

CCS CONCEPTS
• Human-centered computing → Mobile computing; • Com-
putingmethodologies→Distributed computingmethodolo-
gies; Neural networks;

KEYWORDS
Mobile computing, edge computing, computation o�oading, neural
network, cyber foraging

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-6011-1/18/10. . . $15.00
https://doi.org/10.1145/3267809.3267828

ACM Reference Format:
Hyuk-Jin Jeong, Hyeon-Jae Lee, Chang Hyun Shin, and Soo-Mook Moon.
2018. IONN: Incremental O�oading of Neural Network Computations from
Mobile Devices to Edge Servers. In Proceedings of SoCC ’18: ACM Symposium
on Cloud Computing, Carlsbad, CA, USA, October 11–13, 2018 (SoCC ’18),
11 pages.
https://doi.org/10.1145/3267809.3267828

1 INTRODUCTION
In recent years, Deep Neural Network (DNN) has shown remarkable
achievements in the �eld of computer vision [22], natural language
processing [35], speech recognition [11] and arti�cial intelligence
[34]. Owing to the success of DNN, new applications using DNN
are becoming increasingly popular in mobile devices. However,
DNN is known to be extremely computation-intensive, such that
a mobile device with limited hardware has di�culties in running
the DNN computations by itself. Some mobile devices may handle
DNN computations with specialized hardware (e.g., GPU, ASIC)
[25] [4], but this is not a general option for today’s low-powered,
compact mobile devices (e.g., wearables or IoT devices).

Current wisdom to run DNN applications on such resource-
constrained devices is to o�oad DNN computations to central cloud
servers. For example, mobile clients can send their machine learning
(ML) queries (requests for execution) to the clouds of commercial
ML services [26] [2] [10]. These services often provide servers
where pre-trained DNNmodels or client’s DNNmodels are installed
in advance, so that the servers can execute the models on behalf of
the client. More recently, there have been research e�orts that install
the same DNN models at the client as well as at the server, and
execute the models partly by the client and partly by the server to
trade-o� accuracy/resource usage [14] or to improve performance/
energy savings [20]. Both approaches require the pre-installation
of DNN models at the dedicated servers.

Unfortunately, the previous approaches are not appropriate for
the generic use of decentralized cloud infrastructures (e.g., cloudlet
[33], fog nodes [3], edge servers [32]), where the client can send
its ML queries to any nearby generic servers located at the edge
of the network (referred to as cyber foraging [31]). In this edge
computing environment, it is not realistic to pre-install DNNmodels
at the servers for use by the client, since we cannot know which
servers will be used at runtime, especially when the client is on
the move. Rather, on-demand installation by uploading the client’s

401

SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA Hyuk-Jin Jeong, Hyeon-Jae Lee, Chang Hyun Shin, and Soo-Mook Moon

DNNmodel to the server would be more practical. A critical issue of
the on-demand DNN installation is that the overhead of uploading
the DNN model is non-trivial, making the client wait for a long
time to use the edge server (see Section 2).

To solve this issue, we propose a new o�oading approach, In-
cremental O�oading of Neural Network (IONN). IONN divides a
client’s DNNmodel into several partitions and determines the order
of uploading them to the server. The client uploads the partitions
to the server one by one, instead of sending the entire DNN model
at once. The server incrementally builds the DNN model as each
DNN partition arrives, allowing the client to start o�oading of
DNN execution even before the entire DNN model is uploaded.
That is, when there is a DNN query, the server will execute those
partitions uploaded so far, while the client will execute the rest of
the partitions, allowing collaborative execution. This incremental,
partial DNN o�oading enables mobile clients to use edge servers
more quickly, improving the query performance.

As far as we know, IONN is the �rst work on partitioning-based
DNN o�oading in the context of cyber foraging. To decide the
best DNN partitions and the uploading order, we introduce a novel
heuristic algorithm based on graph data structure, which expresses
the process of collaborative DNN execution. In the proposed graph,
IONN derives the �rst DNN partition to upload by using a shortest
path algorithm, which is expected to get the best query performance
initially. To derive the next DNN partition to upload, IONN updates
the edgeweights of the graph and searches for the new shortest path.
By repeating this process, IONN can derive a complete uploading
plan for the DNN partitions, which ensures that the DNN query
performance increases as more partitions are uploaded to the server
and eventually converges to the best performance, expected to
achieve with collaborative DNN execution.

We implemented IONN based on ca�e DNN framework [19]. Ex-
perimental results show that IONN promptly improves DNN query
performance by o�oading partial DNN execution. Also, IONN pro-
cesses more DNN queries while uploading the DNN model, making
the embedded client consume energy more e�ciently, compared
to the simple all-at-once approach (i.e., uploading the entire DNN
model at once).

The rest of this paper is organized as follows. Section 2 illustrates
how much overhead is involved in uploading a DNN model for
edge computing. In section 3, we brie�y review DNN and previous
approaches to DNN o�oading. In section 4, we explain how IONN
works. Section 5 depicts our partitioning algorithm in detail. We
evaluate our work in section 6 and show related works in section 7.
Finally, we conclude in section 8.

2 MOTIVATION
In this section, we describe a motivating example where the over-
head of uploading a DNN model obstructs the use of decentralized
cloud servers (throughout this paper, we will refer to the decentral-
ized cloud servers as edge servers).

Scenario: A man with poor eyesight wears smart glasses (with-
out powerful GPU) and rides the subway. In the crowded subway
station, he can get help from his smart glasses to identify objects
around him. Fortunately, edge servers are deployed over the station

Client

Cloud Server1.3 sec/query
(ARM CPU)

Edge Server

0.001 sec/query
(NVIDIA GPU)

0.001 sec/query
(NVIDIA GPU)

Uploading AlexNet takes
~24 seconds in

80 Mbps Wireless network

Subway station

Figure 1: Example scenario of using remote servers to of-
�oad DNN computation for image recognition.

(like Wi-Fi Hotspots), so the smart glasses can use them to accel-
erate the object recognition service by o�oading complex DNN
computations to a nearby server.

The above scenario is a typical case ofmobile cognitive assistance
[12]. The cognitive assistance on the smart glasses can help the
user by whispering the name of objects seen on the camera. For
this, it will perform image recognition on the video frames by using
DNNs [22] [29]. We performed a quick experiment to check the
feasibility of using edge servers for this scenario, based on realistic
hardware and network conditions.

Our client device is an embedded board Odroid XU4 [30] with an
ARM big.LITTLE CPU (2.0GHz/1.5GHz 4 cores) and 2GB memory.
Our edge server has an x86 CPU (3.6GHz 4 cores), GTX 1080 Ti GPU,
and 32GB memory. We assumed that the client is connected to Wi-
Fi with a strong signal, whose bandwidth is measured to be about 80
Mbps. We experimented with AlexNet [22], a representative DNN
for image recognition.

Figure 1 shows the result. Local execution on the smart glasses
takes 1.3 seconds to handle one DNN query to recognize an image.
Although the CPU on our client board is competitive (the same one
used in Samsung Galaxy S5 smartphone), 1.3 seconds per query
seems to be barely usable, especially when our smart glasses must
recognize several images per second.

If we employ the edge server for o�oading DNN queries, one
query will take about ⇠1 ms for execution, which would make a
real-time service. However, the DNN model should be available at
the edge server in advance to make the edge server ready to execute
the queries.

A popular technique to use a random edge server is VM (virtual
machine)-based provisioning, where amobile client uploads a service
program and its execution environment, encapsulated with VM,
to the edge server (or the edge server can download them from
the cloud), so that the server can run the service program [32];
some recent studies have proposed using a lightweight container
technology instead of VM [23] [27]. If we use these techniques for
the purpose of DNN o�oading, we would need to upload a VM (or
a container) image that includes a DNN model, a DNN framework,
and other libraries from the client to the edge server. However,
today’s commercial DNN framework, such as ca�e [19], tensor�ow

402

IONN: Incremental O�loading of Neural Network Computations SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA

[8], or pytorch [28], requires a substantial space (more than 3 GB)1,
so it is not realistic to upload such an image on demand at runtime.
Rather, it is more reasonable for a VM (or a container) image for the
DNN framework to be pre-installed at the edge server in advance,
so the client uploads only the client’s DNNmodel to the edge server
on demand.

To check the overhead of uploading a DNN model, we measured
the time to transmit the DNN model through wireless network. It
takes about 24 seconds to upload the AlexNet model, meaning that
the smart glasses should execute the queries locally for 24 seconds
before using the edge server, thus no improvement in the meantime.
Of course, worse network conditions would further increase the
uploading time.

If we used a central cloud server with the same hardware where
the user’s DNN model is installed in advance, we would have ob-
tained the same DNN execution time, yet with a longer network
latency. For example, if we access a cloud server in our local region
(East Asia) [10], the network latency would be about 60 ms, com-
pared to 1 ms of our edge server due to multi-hop transmission.
Also, it is known that the multi-hop transmission to distant cloud
datacenters causes high jitters, which may hurt the real-time user
experience [32].

Although edge servers are attractive alternatives for running
DNN queries, our experimental result indicates that users should
wait quite a while to use an edge server due to the time to upload
a DNN model. Especially, a highly-mobile user, who can leave the
service area of an edge server shortly, will su�er heavily from the
problem; if the client moves to another location before it completes
uploading its DNN, the client will waste its battery for network
transmission but never use the edge server. To solve this issue,
we propose IONN, which allows the client to o�oad partial DNN
execution to the server while the DNN model is being uploaded.

3 BACKGROUND
Before explaining IONN, we brie�y review a DNN and its variant,
Convolutional Neural Network (CNN), typically used for image pro-
cessing. We also describe some previous approaches to o�oading
DNN computations to remote servers.

3.1 Deep Neural Network
Deep neural network (DNN) can be viewed as a directed graph
whose nodes are layers. Each layer in DNN performs its opera-
tion on the input matrices and passes the output matrices to the
next layer (in other words, each layer is executed). Some layers
just perform the same operations with �xed parameters, but the
others contain trainable parameters. The trainable parameters are
iteratively updated according to learning algorithms using training
data (training). After trained, the DNN model can be deployed as a
�le and used to infer outputs for new input data (inference). DNN
frameworks, such as ca�e [19], can load a pre-trained DNN from
the model �le and perform inference for new data by executing
the DNN. In this paper, we focus on o�oading computations for

1Wemeasured the size of a docker image for each DNN framework (GPU-version) from
dockerhub, which contains all libraries to run the framework as well as the framework
itself.

inference, because training requires much more resources than in-
ference, hence typically performed on powerful cloud datacenters.

A CNN is a DNN that includes convolution layers, widely used
to classify an image into one of pre-determined classes. The image
classi�cation in the CNN commonly proceeds as follows. When
an image is given to the CNN, the CNN extracts features from the
image using convolution (conv) layers and pooling (pool) layers.
The conv/pool layers can be placed in series [22] or in parallel [36]
[15]. Using the features, a fully-connected (fc) layer calculates the
scores of each output class, and a softmax layer normalizes the
scores. The normalized scores are interpreted as the possibilities of
each output class where the input image belongs. There are many
other types of layers (e.g., about 50 types of layers are currently
implemented in ca�e [19]), but explaining all of them is beyond the
scope of this paper.

3.2 O�loading of DNN Computations
Many cloud providers are o�ering machine learning (ML) services
[26] [2] [10], which perform computation-intensive ML algorithms
(including DNN) on behalf of clients. They often provide an appli-
cation programming interface (API) to app developers so that the
developers can implement ML applications using the API. Typically,
the API allows a user to make a request (query) for DNN compu-
tation by simply sending an input matrix to the service provider’s
clouds where DNN models are pre-installed. The server in the
clouds executes the corresponding DNN model in response to the
query and sends the result back to the client. Unfortunately, this
centralized, cloud-only approach is not appropriate for our scenario
of the generic use of edge servers since pre-installing DNN models
at the edge servers is not straightforward.

Recent studies have proposed to execute DNN using both the
client and the server [20] [14]. NeuroSurgeon is the latest work on
the collaborative DNN execution using a DNN partitioning scheme
[20]. NeuroSurgeon creates a prediction model for DNN, which
estimates the execution time and the energy consumption for each
layer, by performing regression analysis using the DNN execution
pro�les. Using the prediction model and the runtime information,
NeuroSurgeon dynamically partitions a DNN into the front part
and the rear part. The client executes the front part and sends its
output matrices to the server. The server runs the rear part with the
delivered matrices and sends the new output matrices back to the
client. To decide the partitioning point, NeuroSurgeon estimates the
expected query execution time for every possible partitioning point
and �nds the best one. Their experiments show that collaborative
DNN execution between the client and the server improves the
performance, compared to the server-only approach.

Although collaborative DNN execution in NeuroSurgeon was ef-
fective, it is still based on the cloud servers where the DNNmodel is
pre-installed, thus not well suited for our edge computing scenario;
it does not upload the DNN model nor its partitioning algorithm
considers the uploading overhead. However, collaborative execu-
tion gives a useful insight for the DNN edge computing. That is, we
can partition the DNN model and upload each partition incremen-
tally, so that the client and the server can execute the partitions
collaboratively, even before the whole model is uploaded. Start-
ing from this insight, we designed the incremental o�oading of

403

SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA Hyuk-Jin Jeong, Hyeon-Jae Lee, Chang Hyun Shin, and Soo-Mook Moon

Figure 2: Overall architecture of IONN.

DNN execution with a new, more elaborate and �exible partitioning
algorithm.

4 IONN FOR DNN EDGE COMPUTING
In this section, we introduce IONN, an o�oading system using
edge servers for DNN computations. Figure 2 illustrates the overall
architecture of IONN, working in two phases. In the install phase,
IONN collects the execution pro�les of DNN layers. In the runtime
phase, IONN creates an uploading plan that determines the DNN
partitions and their uploading order, using the pro�le information
collected in the install phase and the dynamic network status. Ac-
cording to the uploading plan, the client asynchronously uploads
the DNN partitions to the server using a background thread. When
a new DNN query is raised, IONN will execute it collaboratively
by the client and by the server, even before the uploading of the
partitions completes. We explain both phases more in detail below.

Install Phase (Client) - Whenever a DNN application is in-
stalled on the mobile device, IONN Client runs the DNN models
used in the application and records the execution time of each DNN
layer in a �le called DNN execution pro�le (lower left of Figure 2).
The DNN execution pro�le will be used by the partitioning engine
at runtime to create an uploading plan.

Install Phase (Server) - An edge server cannot know which
DNNmodels to execute in the future, so it is infeasible for the server
to collect the DNN execution pro�les as the client does. Instead,
when installing IONN Server on the edge server, we create prediction
functions for DNN layers, which can estimate the time for the server
to execute a DNN layer according to the type and the parameters
of the layer. The prediction functions will be shipped to the client
at runtime when the client enters its service area and used for the
client to partition a DNN. To create the prediction functions, IONN
Server performs linear regression on the execution data of DNN
layers gathered by running diverse DNNmodels with di�erent layer
parameters (lower right of Figure 2), as NeuroSurgeon does [20]. We
used regression functions listed in [20] to estimate the prediction
functions. For the layers not mentioned in [20], we performed linear
regression using the input size as the model variable.

Runtime phase - Runtime phase starts when a mobile client
enters the service area of an edge server. When a client establishes
a connection with an edge server, the edge server transmits its
prediction functions to the client. Since the size of the prediction
functions is small (hundreds of bytes for 11 types of layers in our

Figure 3: Asynchronous DNN uploading and collaborative
DNN execution in DNN Execution Runtime.

prototype), the network overhead for sending them is negligible.
After the client receives the prediction functions, the partitioning
engine in the client creates an uploading plan using our graph-based
partitioning algorithm (explained in the next section). DNN execu-
tion Runtime uploads the DNN partitions to the server according to
the plan and performs collaborative DNN execution in response to
DNN queries. Figure 3 depicts how DNN Execution Runtime works
in more detail. Since DNN Execution Runtime uploads DNN parti-
tions and executes DNN queries concurrently, we need two threads:
one for uploading and the other for execution.

The uploading thread in the client starts to run as soon as the
partitioning engine creates an uploading plan, which is a list of
DNN partitions, each of which is composed of DNN layers. First,
the uploading thread sends the �rst DNN partition in the list to the
server. The server builds a DNN model with the delivered DNN
partition and sends an acknowledgement message (ACK) for the
partition back to the client. Then, the uploading thread in the client
sends the next partition to the server. This uploading process repeats
until the last DNN partition is uploaded to the server.

The execution thread executes a DNN query in accordance with
the current status of DNN partitions uploaded so far. The client
is aware of which partitions have been uploaded to the server by
checking if the ACK of each DNN partition arrived. We refer to the
partitions currently uploaded to the server as uploaded partitions,
as opposed to the local partitions. When a DNN query is raised, the
execution thread executes the local partitions until just before the
uploaded partitions and sends the result (i.e., the input matrices of
the uploaded partitions) to the server, along with the indices of the
DNN layers in the uploaded partitions. The server executes DNN
layers whose indices are the ones delivered from the client and
sends the result (i.e., the output matrices of the uploaded partitions)
back to the client. The client and the server continue to execute the
DNN partitions in this way, until the execution reaches the output
layer.

5 DNN PARTITIONING
In this section, we explain how our partitioning engine creates an
uploading plan. Our partitioning algorithm tries to upload those
DNN layers, needed to be at the server to achieve the best expected
query performance, as early as possible. However, we do not up-
load those layers all at once, but one partition at a time, so that if
a query is raised during uploading, the uploaded layers so far will
be executed at the server for collaborative execution. For this, the
algorithm partitions the DNN layers considering both the perfor-
mance bene�t and the uploading overhead of each layer, so that

404

IONN: Incremental O�loading of Neural Network Computations SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA

Figure 4: Example of NN execution graph whose edge
weights indicate the execution time of each execution step.

the computation-intensive layers will be uploaded earlier. To derive
such an uploading plan, we build a graph-based DNN execution
model, named NN execution graph, and create DNN partitions by
iteratively �nding the fastest execution path on the graph.

5.1 Neural Network (NN) Execution Graph
NN execution graph expresses the collaborative execution paths
by the client and the server for a DNN query at the layer level.
Figure 4 illustrates an NN execution graph created from a DNN
composed of three layers. Each layer is converted into three nodes
(layer A: 1, 2, 3, layer B: 4, 5, 6, layer C: 7, 8, 9). Nodes in the left
side (0, 1, 4, 7, 10) belong to the client, and nodes in the right side
(2, 3, 5, 6, 8, 9) belong to the server. Edges between the client nodes
(e.g., 1!4) indicate local execution, and edges between the server
nodes in the same layer (e.g., 2!3) indicate server-side execution
plus the uploading of the layer. Edges between a client node and a
server node (e.g., 1!2 or 3!4) represent the transmissions of input
or output matrices over the network. Each edge is added with a
weight to depict the corresponding overhead. Some edges have zero
weight (e.g., 0!1 or 3!5) since no computation or transmission
overhead is involved. The client sets up the edge weights as follows.
The client can get its local layer execution time from the DNN
execution pro�le and estimate the server’s layer execution time
using prediction functions. Also, the data and layer transmission
time can be calculated by dividing the size of transmitted data by
the current network speed.

We can express the execution path of a DNN query as the path
on the graph. Let us assume a DNN query is raised with an input
data (node 0!1). If layer A is executed at the client, execution �ow
will directly go to layer B (node 1!4). Or if the client o�oads the
execution of the layer A to the server, then execution �ow will go
to node 2, and then 3. If the next layer (layer B) is also executed at
the server, execution �ow will go from node 3 to node 5. Or, if the

layer B is executed at the client, execution �ow will go to node 4.
In this way, we can express the execution path of a DNN query in
the graph, and a path from an input (node 0) to an output (node
10) indicates the execution path to run the whole DNN layers. For
example, a path 0-1-4-5-6-7-10 in Figure 4 means the client executes
the layer A, o�oads the layer B, and continues to execute the layer
C.

The sum of edge weights on a path from the input to the output
indicates the estimated query execution time of the execution path
plus the time to upload the DNN layers executed at the server. For
instance, the sum of edge weights on the path 0-1-4-5-6-7-10 in
Figure 4 is the sum of the time to execute layer A and C at the client,
the time to execute layer B at the server, the time to transmit the
feature data, and the time to upload the layer B. So, if we compute
the shortest path on the NN execution graph, the path will tell
which layers should be initially uploaded to the server to minimize
query execution time.

5.2 Partitioning Algorithm
Our DNN partitioning problem is to decide which layers to include
in the uploading partitions, and in what order to upload them, to
minimize the query execution time. Unfortunately, it is impossible
to �nd an optimal solution unless we fully know the future occur-
rence of queries; we need to know how soon the next query will
occur to decide an optimal amount of DNN partitions to upload
now (e.g., if the next query comes late, we would better upload a
large partition, but if it comes soon, we would better upload a small
partition quickly). Since it is hard to predict the client’s future query
pattern, we propose a heuristic algorithm that can work irrespective
of the pattern, based on two rules. First, we prefer uploading DNN
layers whose performance bene�t is high and whose uploading
overhead is low. This will make the server quickly build a partial
DNN with high expected speedup, thus improving the query per-
formance rather early. Second, we do not send unnecessary DNN
layers, those that do not result in any performance increase, to
reduce the cost associated in o�oading them.

Our algorithm is based on the shortest path in the NN execution
graph. As mentioned above, the shortest path on the NN execution
graph represents the fastest execution path for a DNN query in the
initial state (i.e., no DNN layers are uploaded). On the other hand, if
we set the layer upload time of all DNN layers in the graph to zero,
the graph will represent the situation where the whole DNN model
is uploaded to the server, which is the optimal state for o�oading
DNN execution. If we compute the shortest path of such a graph, it
will be the execution path with the best query performance we can
achieve with collaborative execution; it is not necessarily a path
that executes all layers at the server (i.e., o�oading the entire DNN)
since some layers might better be executed at the client due to
the high data transmission overhead. To eventually reach the best
performance, we create an uploading plan by iteratively computing
the shortest path in the NN execution graph, while changing the
edge weights of the graph from the initial state to the optimal state.

Algorithm 1 describes our DNN partitioning algorithm that com-
putes an uploading plan, a list of DNN partitions named partitions,
which is an empty list initially (line 2). We �rst build an NN execu-
tion graph using the DNN model description, the DNN execution

405

SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA Hyuk-Jin Jeong, Hyeon-Jae Lee, Chang Hyun Shin, and Soo-Mook Moon

Algorithm 1 DNN Partitioning Algorithm
Input: DNN model description, DNN execution pro�le, predic-

tion functions, network speed, K (positive number less
than 1)
Output: Uploading plan (a list of DNN partitions)

1: procedure P�����������
2: partitions [] ;
3: n 0;
4: Create NN execution graph using input parameters;
5: while Kn � 0.01 do . Until layer upload time be-

comes ⇡ 0
6: Search for the shortest path in the NN execution

graph;
7: Create a DNN partition and add it to partitions;
8: Update the edge weights of the NN execution graph

by multiplying K to layer upload time;
9: n n + 1;
10: return partitions

pro�le, the prediction functions, and the current network speed
(line 4). Next, we search for the shortest path from the input to
the output in the NN execution graph (line 6). We identify those
layers whose server-side nodes are included in the shortest path,
create a DNN partition composed of those layers, and add it to
partitions (line 7). Since the shortest path is computed based on
the edge weights including both the layer execution time and the
layer upload time, the DNN partition would include DNN layers
with high expected speedup but short upload time, satisfying our
�rst rule. We can use a shortest path algorithm for DAG using
topological sorting, whose time complexity is O(n) (n : the number
of layers) [9]. Next, we reduce the layer upload time by multiplying
K (positive number less than 1) (line 8) and search for the new
shortest path in the updated graph (line 6). The new shortest path
is likely to include more server-side nodes than the previous one
due to the reduction of the server-side edge weights. We create the
next DNN partition with the layers whose server-side nodes are
newly included in the new shortest path. We repeat this process
until the edge weights for the layer upload time become almost
zero (line 5), which is nearly the optimal state for o�oading. Hence,
the query performance becomes the best performance after the last
partition is uploaded, satisfying our second rule. The output of the
algorithm is a list of DNN partitions, and the client will upload the
partitions in the list from the �rst to the last.

Figure 5 illustrates our partitioning algorithm with an example
DNN composed of four layers (A⇠D).We �rst build anNN execution
graph for the initial state as explained in section 5.1. In the �rst
iteration, we search for the shortest path from an input to an output
in the graph (depicted in red arrows) and create a DNN partition
[B] since only the layer B is in the server-side. Next, we multiply
K (0.5 in this example) to the layer upload time and search for the
new shortest path in the next iteration. We create the second DNN
partition [A,C], since the server-side nodes of A and C are newly
included in the shortest path. In the third iteration, the shortest
path is the same as before although the layer upload time is reduced
by half, thus no DNN partition is newly created. In fact, layer D
will never be uploaded, because the shortest path will not include

Figure 5: Illustration of our DNN partitioning algorithm.

the server-side nodes of the layer D even when the layer upload
time reaches zero. This means the layer D would better be executed
at the client for the best query performance. So, our algorithm
generates an uploading plan, partitions=[[B], [A,C]]. The uploading
thread will upload the layer B �rst, then the layers A and C. In this
way, we can quickly upload a computation-intensive layer (B) and
ultimately achieve the best query performance by uploading three
layers (A, B, C) as needed. We could also save the client’s energy
consumption by not uploading the layer D.

We can adjust the granularity of DNN partitions by changing
the value of K. If the value of K is small, the weight for the layer
upload time will decrease sharply in each iteration. This will let the
partitioning algorithm �nish within a small number of iterations,
therefore making a few, large DNN partitions. On the other hand, a
large K will lead to many iterations and create many, small DNN
partitions. We evaluate the impact of K values in Section 6.

Note that our algorithm assumes that edge servers have plenty of
network/computing resources, so contention for shared edge server
resources between multiple clients is negligible. The partitioning
algorithm with multiple clients under limited edge server resources
is left for future work.

5.3 Handling DNNs with Multiple Paths
There is an issue in our partitioning algorithm to handle DNNs
with multiple paths. Figure 6 (a) illustrates the problematic situation
where our algorithm does not work. The example NN has a layer
whose output is delivered to three layers, and the outputs of the
three layers are concatenated and given as the input of the next
layer (left in Figure 6 (a)). If we convert the layers one by one as we
did in Figure 4, then the NN execution graph will be created as the
right of Figure 6 (a). In this graph, the shortest path from an input
to an output will include just one layer among the three layers in
the middle, missing the execution of the rest two layers. This will
derive a wrong uploading plan based on incomplete execution path.

To solve this problem, we build NN execution graph as if the
original NN does not have multiple paths, as shown in Figure 6
(b). First, we �nd dominators of the output layer, which are layers
that must be included in the path from the input to the output
[1]. Next, we build NN execution graph as if layers in between
two neighboring dominators (layers between A and B) and the
latter dominator (B) are just one layer. The edge weights of the
combined layers are shown in the right side of Figure 6 (b). Since

406

IONN: Incremental O�loading of Neural Network Computations SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA

Figure 6: (a): Conversion of a DNN with multiple paths. (b):
Building NN execution graph as if the DNN does not have
multiple paths.

there are no paths bypassing the dominators (due to the de�nition
of dominators), the path from the input to the output will not miss
any layer execution.

6 EVALUATION
In this section, we evaluate IONN in terms of the query performance
and the mobile device’s energy consumption.

6.1 Experimental Environment
We implemented IONN on ca�e DNN framework [19] using a net-
work library boost.asio. We used the same client device and the
edge server as those used in the experiment in Section 2. The client
was connected to our lab Wi-Fi which has a bandwidth of about
80 Mbps. The server was connected to the internet with Ethernet.
We made a cognitive assistance scenario similar to the example in
Section 2. We assumed the client repeatedly raises a DNN query for
image classi�cation after pre-processing an incoming video frame
for 0.5 second, i.e., pre-processing (0.5 sec)! DNN execution!
pre-processing (0.5 sec)! DNN execution!... We experimented
with �ve CNNs ranging from a small DNN (MobileNet) used in mo-
bile devices to larger DNNs. Table 1 shows the size of DNN models
and the number of layers after each DNN model is loaded on the
ca�e framework. We compared IONN with the local execution, and
the all-at-once execution where the client uploads the entire DNN
model and then o�oads DNN queries to the server; DNN queries
raised during uploading are executed at the client.

6.2 DNN Query Performance
Figure 7 shows the execution time of DNN queries in three cases:
IONN (K=0.1), IONN (K=0.5), all_at_once, compared to local. The X
value of each data point is the time when a DNN query is raised.
Y value is the time spent to execute the DNN query. It should be
noted that the number of executed queries (the number of data
points) di�ers for each case; more queries are executed if the query

Name Size
(MB)

Number
of layers Reference

AlexNet 233 24 [22]
Inception 129 312 [37]
ResNet 98 245 [15]

GoogleNet 27 152 [36]
MobileNet 16 110 [16]

Table 1: DNNs For Evaluation

Name All_at_once IONN
(K=0.1)

IONN
(K=0.5)

AlexNet 28.7 30.3 30.7
Inception 16.4 16.7 16.8
ResNet 12.1 12.6 13.0

GoogleNet 3.9 3.9 4.4
MobileNet 2.3 2.5 2.8

Table 2: Uploading Completion Time (second)

execution time is shorter. All_at_once starts to o�oad the DNN
execution only after the whole DNN is uploaded, so its query per-
formance is low (same as local) until the uploading is over. On
the other hand, IONN (both K=0.5 and K=0.1) o�oads partial DNN
execution before the uploading is over, so the query performance
is much better while uploading the DNN model. Also, we observed
the query execution time of both IONN s rapidly decreases after
a few queries and eventually reaches the minimal, which is the
same execution time of all_at_once when the uploading is over.
This implies that IONN can quickly o�oad computation-intensive
layers and eventually achieve the best performance.

Figure 7 also shows the impact of the K value on the granular-
ity of DNN partitions (i.e., number/size of DNN partitions) and
the query performance. As expected, IONN (K=0.5) created more
partitions than IONN (K=0.1) (except for AlexNet), so its average
size of the partition was smaller. Since smaller DNN partitions can
be uploaded to the server more quickly, the query performance
of IONN (K=0.5) will improve earlier than IONN (K=0.1). This is
the reason why K=0.5 performed better than K=0.1 in the 3rd and
4th queries of ResNet; the large second partition of K=0.1 was still
being uploaded, while the small second partition of K=0.5 had been
already uploaded. A similar result can be observed in the 2nd query
of Inception, GoogleNet, and MobileNet.

Another expected impact of K value is network overhead to
handle multiple DNN partitions. The larger K value will create
more, smaller partitions, and the total time to upload a DNN model
will increase due to the handling of more ACK messages. Table 2
shows the impact of the network overhead on the time to upload
the whole DNN layers. As expected, the uploading completion time
of each DNN model is longer when the number of DNN partitions
is larger (All_at_once < IONN (K=0.1)  IONN (K=0.5)). But the
di�erence of the uploading completion time is small, meaning that
the overhead of uploading multiple partitions is insigni�cant.

407

SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA Hyuk-Jin Jeong, Hyeon-Jae Lee, Chang Hyun Shin, and Soo-Mook Moon

Figure 7: Execution time of DNN queries and the size of each DNN partition in our benchmark DNNs.

We observed that the query execution time in IONN sometimes
increases during the uploading of the DNN layers, as at 10⇠30
second in AlexNet and 8⇠16 second in Inception. This phenomenon
appears to be due to the transmission of the last DNN partition,
which is much larger than other partitions, interfering severely
with the transmission of feature data. Nonetheless, the performance
bene�t of o�oading is even higher than the interference overhead,
so the overall query execution time of IONN is much shorter than
that of all_at_once.

6.3 Accuracy of Prediction Functions
Our uploading plan is created using prediction functions for the
server’s layer execution time, so the accuracy of the prediction
functions will a�ect the preciseness of the edge weights in the NN
execution graph, thus the �nal uploading plan. We evaluated the
accuracy of the prediction functions as follows. We compared the
uploading plan generated from our predicted layer execution time,
with the uploading plan generated from the real layer execution
time gathered by recording the time on the server. The uploading
plans from both con�gurations were the same; the number of parti-
tions and the layers included in each partition were the same. This
means that our prediction functions are good enough for IONN

to generate an accurate uploading plan under real hardware and
network conditions.

For a statistical analysis, we calculated the coe�cient of de-
termination (R2)2 and the root mean square error (RMSE) of the
prediction functions after the regression. Table 3 shows the result.
The R2 values of all layers, except the conv layer, are close to 1,
which means that the prediction functions are suitable for estimat-
ing the layer execution time. Although the prediction function for
the conv layer has low R2 value (0.428), the �nal uploading plan
generated by using the prediction function was the same as the
one using the real data. This is because the server’s execution time
is much smaller than the client’s execution time, so the error of
the predicted server’s execution time has little e�ect on the �nal
uploading plan. The RMSE in Table 3 backs up the statement. The
RMSE of the conv layer is 0.025 ms, which is negligible compared to
the client’s conv layer execution time (about tens of milliseconds),
so the �nal uploading plan would be hardly a�ected by the error of
the predicted server’s execution time.

2The coe�cient of determination is the proportion of variation in the dependent
variable which is explained by the independent variables. This value can be used to
measure the accuracy of a prediction model. R2 can take 0 as minimum (bad model),
and 1 as maximum (good model).

408

IONN: Incremental O�loading of Neural Network Computations SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA

Layer
Type R2 RMSE

(ms)
Layer
Type R2 RMSE

(ms)
Conv 0.428 0.025 FC 0.997 1.291
ReLU 0.999 0.001 Softmax 1.000 0.256
Pooling 0.853 0.002 BatchNorm 0.953 0.004
LRN 1.000 0.009 Scale 0.953 0.002

Concat 1.000 0.018 Eltwise 0.991 0.002

Table 3: R2 and RMSE of Prediction Functions

Figure 8: Execution time of DNN queries and the size of each
DNN partition in our benchmark DNNs.

6.4 Energy Consumption
We measured the energy consumption of our client board using
SmartPower2 [30] until the client �nishes uploading its DNNmodel
to the server (e.g., 0⇠30.5 seconds for IONN in AlexNet in Figure 7).
Figure 8 shows the result. In all benchmarks, IONN and all_at_once
consumed a similar amount of energy (overall, IONN consumed
slightly less energy than all_at_once, but the di�erence is insigni�-
cant). This implies the overhead of incremental o�oading (e.g., ACK
messages, a longer uploading time) is not burdensome for mobile
devices. Figure 8 also shows the number of queries executed during
the uploading. IONN executed more queries than all_at_once in all
benchmarks except MobileNet, showing higher throughput. These
results imply that IONN improves query performance without in-
creasing energy consumption compared to all_at_once.

7 RELATEDWORK
IONN is built upon previous studies in computation o�oading,
especially based on cyber foraging, an o�oading technique where a
mobile device o�oads computations to nearby servers [31]. Cloudlet
is a decentralized cloud server proposed to realize the cyber foraging
with cloud infrastructure [33]. A widely-used solution for leverag-
ing the cloudlet is to customize the cloudlet at runtime according
to the client’s purpose by using VM (Virtual Machine) technology
[33]. A mobile client sends a VM image, where back-end software
is installed, to the cloudlet. The cloudlet creates a VM instance from
the VM image and lets the instance serve the front-end software in
the client. Our approach focuses on o�oading DNN execution and
the overhead of uploading a DNN model, hence orthogonal to the
VM-based customization. In fact, both IONN and the customization
scheme can be used simultaneously (e.g., we can customize an edge

server with a VM image that contains IONN software and then
perform incremental o�oading).

Extensive researches have been performed on computation of-
�oading using a partitioning scheme. MAUI [6] partitions the appli-
cation execution using static program analysis as well as dynamic
pro�ling, which is a method widely used by other researchers [21]
[5]. Lei Yang et al. [39] proposed a partitioning algorithm for re-
ducing the latency of mobile cloud applications under multi-user
environments. They model an application as a sequence of modules
and determines where to execute each module (client or server)
by solving a recursive formula. The shortest path algorithm used
in IONN is similar to the recursive algorithm proposed in [39], al-
though IONN treats DNN structure which is more complex than the
sequence of modules, requiring handling of multiple paths (section
5.3). Also, [39] does not consider the uploading overhead.

Recently, more DNN-focused o�oading approaches have been
studied. MCDNN o�oads DNN execution for streaming data in
multi-programming environments [14]. MCDNN creates variants
of a DNN model and chooses DNN models among them for a given
task to satisfy resource/cost constraints with maximal accuracy.
MCDNN assumes the same DNN models are pre-installed at the
client and the server, which is di�erent from our edge scenario that
uploads DNN models at runtime. Also, MCDNN does not focus on
DNN partitioning.

As far as we know, NeuroSurgeon explained in Section 3.B is the
�rst work on DNN partitioning [20]. However, it allows only �xed,
two-way partitioning (front layers by the client and rear layers
by the server), while IONN can make a more �exible partitioning
(e.g., front layers by the client, middle by the server, and rear by
the client), depending on the computation power of server/client
and the transmission overhead of layers/feature data. As MCDNN,
NeuroSurgeon also requires the server to store the DNN model in
advance, which is di�erent from IONN.

Machine learning researchers are actively developing techniques
that reduce the amount of computation and the size of DNN mod-
els to run DNNs on mobile devices. MobileNet [16] decreases the
amount of convolution computation by replacing point-wise con-
volution to depth-wise separable convolution. SqueezeNet [18] is
a small DNN (⇠4.8 MB) designed to have few model parameters
with an accuracy similar to AlexNet (⇠233 MB). Applied with DNN
compression techniques [13], the size of SqueezeNet drops to 0.47
MB [18]. If a mobile user wants to o�oad the execution of such a
tiny DNN, the bene�t of IONN would be insigni�cant, because the
whole DNN model might be uploaded soon. However, DNNs for
complex tasks still have complicated structure and a large model
size. For example, SENet [17], one of the winners of ILSVRC 2017,
consists of more than 900 layers and has a model size of ⇠440 MB.
Also, emerging end-to-end DNN architecture, which performs an
entire process to solve a cognitive [24] or generative task [7] [38] in
a single DNN, might lead to the increase of the DNN model size. It
would be di�cult to run such a large DNNmodel on mobile devices.
IONN is a feasible solution for o�oading large, complex DNNs
in mobile applications, because incremental o�oading results in
high performance bene�ts even during the uploading stage of DNN
models.

409

SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA Hyuk-Jin Jeong, Hyeon-Jae Lee, Chang Hyun Shin, and Soo-Mook Moon

8 SUMMARY AND FUTUREWORK
This paper proposes IONN, a novel DNN o�oading technique for
edge computing. IONN partitions the DNN layers and incremen-
tally uploads the partitions to allow collaborative execution by the
client and the edge server even before the entire DNN model is
uploaded. Experimental results show that IONN improves both
the query performance and the energy consumption during DNN
model uploading, compared to a simple all-at-once approach.

Using IONN, we can build DNN-centric edge servers where a
mobile client can o�oad its custom DNN computations without a
long waiting time. Since DNN is the de-facto standard for many cog-
nitive tasks (e.g., object detection, speech recognition) these days,
we believe DNN-centric edge servers have a potential to become
the frontier of cloud computing infrastructure to handle cognitive
computations of end devices (e.g., IoT, wearables). To make our idea
more practical, we will extend IONN in several directions. First, we
will explore a more realistic situation where a client moves around
multiple edge servers and freely changes the servers. In such a
case, the seamless hando� of DNN services would be crucial for
user experience. Also, we will study an advanced DNN partitioning
algorithm to handle the case where multiple mobile clients simulta-
neously o�oad DNN execution to edge servers. Finally, we plan to
extend IONN to support more diverse DNNs, (e.g., RNN or CRNN)
and other DNN computations (e.g., DNN training) as well.

ACKNOWLEDGMENTS
Thisworkwas supported by Basic Science Research Program through
the National Research Foundation (NRF) of Korea funded by the
Ministry of Science, ICT& Future Planning (NRF-2017R1A2B2005562).

REFERENCES
[1] Alfred V Aho, Ravi Sethi, and Je�rey D Ullman. 1986. Compilers, Principles,

Techniques. Addison Wesley 7, 8 (1986), 9.
[2] Alchemy API. 2009. IBM Alchemy API. (2009). Retrieved April 23, 2018 from

https://www.ibm.com/watson/alchemy-api.html
[3] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. 2012. Fog

computing and its role in the internet of things. In Proceedings of the �rst edition
of the MCC workshop on Mobile cloud computing. ACM, 13–16.

[4] Yu-Hsin Chen, Tushar Krishna, Joel S Emer, and Vivienne Sze. 2017. Eyeriss:
An energy-e�cient recon�gurable accelerator for deep convolutional neural
networks. IEEE Journal of Solid-State Circuits 52, 1 (2017), 127–138.

[5] Byung-Gon Chun, Sunghwan Ihm, Petros Maniatis, Mayur Naik, and Ashwin
Patti. 2011. Clonecloud: elastic execution between mobile device and cloud. In
Proceedings of the sixth conference on Computer systems. ACM, 301–314.

[6] Eduardo Cuervo, Aruna Balasubramanian, Dae-ki Cho, Alec Wolman, Stefan
Saroiu, Ranveer Chandra, and Paramvir Bahl. 2010. MAUI: making smartphones
last longer with code o�oad. In Proceedings of the 8th international conference on
Mobile systems, applications, and services. ACM, 49–62.

[7] Pengfei Dou, Shishir K. Shah, and Ioannis A. Kakadiaris. 2017. End-to-end 3D
face reconstruction with deep neural networks. CoRR abs/1704.05020 (2017).
arXiv:1704.05020 http://arxiv.org/abs/1704.05020

[8] Martín Abadi et al. 2016. TensorFlow: Large-Scale Machine Learning on Het-
erogeneous Distributed Systems. CoRR abs/1603.04467 (2016). arXiv:1603.04467
http://arxiv.org/abs/1603.04467

[9] Michael T. Goodrich. 1996. ICS 161: Design and Analysis of Algorithms Lecture
notes. (1996). Retrieved April 23, 2018 from https://www.ics.uci.edu/~eppstein/
161/960208.html

[10] Google. 2008. Google Cloud Platform. (2008). Retrieved April 23, 2018 from
https://cloud.google.com

[11] Alex Graves, Abdel-rahman Mohamed, and Geo�rey Hinton. 2013. Speech
recognition with deep recurrent neural networks. In Acoustics, speech and signal
processing (icassp), 2013 ieee international conference on. IEEE, 6645–6649.

[12] Kiryong Ha, Zhuo Chen, Wenlu Hu, Wolfgang Richter, Padmanabhan Pillai,
and Mahadev Satyanarayanan. 2014. Towards wearable cognitive assistance.

In Proceedings of the 12th annual international conference on Mobile systems,
applications, and services. ACM, 68–81.

[13] Song Han, Huizi Mao, and William J. Dally. 2015. Deep Compression: Compress-
ing Deep Neural Network with Pruning, Trained Quantization and Hu�man
Coding. CoRR abs/1510.00149 (2015). arXiv:1510.00149 http://arxiv.org/abs/1510.
00149

[14] Seungyeop Han, Haichen Shen, Matthai Philipose, Sharad Agarwal, AlecWolman,
and Arvind Krishnamurthy. 2016. Mcdnn: An approximation-based execution
framework for deep stream processing under resource constraints. In Proceedings
of the 14th Annual International Conference on Mobile Systems, Applications, and
Services. ACM, 123–136.

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[16] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017. MobileNets:
E�cient Convolutional Neural Networks for Mobile Vision Applications. CoRR
abs/1704.04861 (2017). arXiv:1704.04861 http://arxiv.org/abs/1704.04861

[17] Jie Hu, Li Shen, and Gang Sun. 2017. Squeeze-and-Excitation Networks. CoRR
abs/1709.01507 (2017). arXiv:1709.01507 http://arxiv.org/abs/1709.01507

[18] Forrest N. Iandola, Matthew W. Moskewicz, Khalid Ashraf, Song Han, William J.
Dally, and Kurt Keutzer. 2016. SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and <1MB model size. CoRR abs/1602.07360 (2016). arXiv:1602.07360
http://arxiv.org/abs/1602.07360

[19] Yangqing Jia, Evan Shelhamer, Je� Donahue, Sergey Karayev, Jonathan Long,
Ross Girshick, Sergio Guadarrama, and Trevor Darrell. 2014. Ca�e: Convolu-
tional architecture for fast feature embedding. In Proceedings of the 22nd ACM
international conference on Multimedia. ACM, 675–678.

[20] Yiping Kang, Johann Hauswald, Cao Gao, Austin Rovinski, Trevor Mudge, Jason
Mars, and Lingjia Tang. 2017. Neurosurgeon: Collaborative intelligence between
the cloud and mobile edge. In Proceedings of the Twenty-Second International
Conference on Architectural Support for Programming Languages and Operating
Systems. ACM, 615–629.

[21] Sokol Kosta, Andrius Aucinas, Pan Hui, Richard Mortier, and Xinwen Zhang.
2012. Thinkair: Dynamic resource allocation and parallel execution in the cloud
for mobile code o�oading. In Infocom, 2012 Proceedings IEEE. IEEE, 945–953.

[22] Alex Krizhevsky, Ilya Sutskever, and Geo�rey E. Hinton. 2012. ImageNet Classi-
�cation with Deep Convolutional Neural Networks. In Proceedings of the 25th
International Conference on Neural Information Processing Systems - Volume 1
(NIPS’12). Curran Associates Inc., USA, 1097–1105. http://dl.acm.org/citation.
cfm?id=2999134.2999257

[23] Andrew Machen, Shiqiang Wang, Kin K. Leung, Bong Jun Ko, and Theodoros
Salonidis. 2018. Live Service Migration in Mobile Edge Clouds. Wireless Commun.
25, 1 (Feb. 2018), 140–147. https://doi.org/10.1109/MWC.2017.1700011

[24] Yajie Miao, Mohammad Gowayyed, and Florian Metze. 2015. EESEN: End-to-End
Speech Recognition using Deep RNN Models and WFST-based Decoding. CoRR
abs/1507.08240 (2015). arXiv:1507.08240 http://arxiv.org/abs/1507.08240

[25] NVIDIA. 2008. NVIDIA Tegra. (2008). Retrieved April 23, 2018 from https:
//www.nvidia.com/object/tegra.html

[26] Hewlett Packard. 2013. HP Haven. (2013). Retrieved April 23, 2018 from
https://www.havenondemand.com

[27] C. Pahl and B. Lee. 2015. Containers and Clusters for Edge Cloud Architectures –
A Technology Review. In 2015 3rd International Conference on Future Internet of
Things and Cloud. 379–386. https://doi.org/10.1109/FiCloud.2015.35

[28] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.
2017. Automatic di�erentiation in PyTorch. (2017).

[29] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. 2016. You
only look once: Uni�ed, real-time object detection. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 779–788.

[30] Rob Roy and Venkat Bommakanti. 2017. ODROID XU4 user manual. (2017).
Retrieved April 23, 2018 from https://magazine.odroid.com/odroid-xu4

[31] Mahadev Satyanarayanan. 2001. Pervasive computing: Vision and challenges.
IEEE Personal communications 8, 4 (2001), 10–17.

[32] Mahadev Satyanarayanan. 2017. The emergence of edge computing. Computer
50, 1 (2017), 30–39.

[33] Mahadev Satyanarayanan, Paramvir Bahl, Ramón Caceres, and Nigel Davies.
2009. The case for vm-based cloudlets in mobile computing. IEEE pervasive
Computing 8, 4 (2009).

[34] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George
Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, et al. 2016. Mastering the game of Go with deep neural
networks and tree search. nature 529, 7587 (2016), 484–489.

[35] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014. Sequence to Sequence Learn-
ing with Neural Networks. In Proceedings of the 27th International Conference on
Neural Information Processing Systems - Volume 2 (NIPS’14). MIT Press, Cambridge,
MA, USA, 3104–3112. http://dl.acm.org/citation.cfm?id=2969033.2969173

410

IONN: Incremental O�loading of Neural Network Computations SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA

[36] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich, et al. 2015.
Going deeper with convolutions. Cvpr.

[37] Christian Szegedy, Vincent Vanhoucke, Sergey Io�e, Jonathon Shlens, and Zbig-
niew Wojna. 2015. Rethinking the Inception Architecture for Computer Vision.
CoRR abs/1512.00567 (2015). arXiv:1512.00567 http://arxiv.org/abs/1512.00567

[38] Anh Tuan Tran, Tal Hassner, Iacopo Masi, and Gérard G. Medioni. 2016. Regress-
ing Robust and Discriminative 3D Morphable Models with a very Deep Neural
Network. CoRR abs/1612.04904 (2016). arXiv:1612.04904 http://arxiv.org/abs/
1612.04904

[39] Lei Yang, Jiannong Cao, Hui Cheng, and Yusheng Ji. 2015. Multi-user computation
partitioning for latency sensitive mobile cloud applications. IEEE Trans. Comput.
64, 8 (2015), 2253–2266.

411

