
Cloud4Home — Enhancing Data Services with @Home Clouds

Sudarsun Kannan, Ada Gavrilovska, Karsten Schwan
Center for Experimental Research in Computer Systems

Georgia Institute of Technology
sudarsun@gatech.edu, {ada, schwan}@cc.gatech.edu

Abstract—Mobile devices, netbooks and laptops, and power-
ful home PCs are creating ever-growing computational capacity
at the periphery of the Internet, and this capacity is supporting
an increasingly rich set of services, including media-rich
entertainment and social networks, gaming, home security
applications, flexible data access and storage, and others. Such
‘at the edge’ capacity raises the question, however, about how to
combine it with the capabilities present in the cloud computing
infrastructures residing in datacenter systems and reachable
via the Internet. The Cloud4Home project and approach
presented in this paper addresses this topic, by enabling
and exploring the aggregate use of @home and @datacenter
computational and storage capabilities. Cloud4Home uses vir-
tualization technologies to create content storage, access, and
sharing services that are fungible both in terms of where stored
objects are located and in terms of where they are manipulated.
In this fashion, data services can provide low latency response
to @home events as well as high throughput response when the
higher and less predictable latencies of datacenter access can
be tolerated. Cloud4Home is implemented with the Xen open
source hypervisors for standard x86-based mobile to server
platforms, and is evaluated using sample applications based
on home security and video conversion services.

Keywords-Objects; Virtualization; Hand-held Platforms;
@Home Services; Distributed Hash Table; Public Cloud

I. INTRODUCTION

Concurrent with the rapid gains in popularity of cloud
computing facilities and infrastructure is an even more im-
pressive continued increase in the capabilities of end devices
used in the Internet’s periphery. In fact, major hardware
manufacturers are releasing new end devices as frequently
as every six months, whereas server systems typically expe-
rience a multi-year replacement cycle. These facts raise the
interesting challenge of how to best combine server provider
cloud services like those offered by Google Docs, Amazon’s
EC2, VMware’s VSphere, Microsoft’s Azure, Eucalyptus,
etc. with services that can efficiently run on consumer
devices like smartphones, iPads or netbooks, laptops and
desktops, game consoles, etc. In particular, purely end-point
based solutions cannot take advantage of the large storage
and computational capacities present in large scale datacen-
ters. Conversely, current ‘thin client’ models in which end
devices ‘simply access the Internet’ can suffer from high and
variable delays in accessing and using remote resources –
as evident for services like DropBox – and they are subject
to challenges when devices must operate in disconnected

mode. Preferable to either extreme would be a solution that
(1) can leverage the lower costs of using local resources and
exploiting locally available state, avoid potential issues with
data privacy or security for cloud-based operation, while at
the same time (2) exploit Internet resources when those are
not encumbered by undue costs like high latency or undue
communication overheads.

The Cloud4Home project and approach described in this
paper can exploit the efficiencies and opportunities presented
by flexible and combined @home and @datacenter opera-
tion. The data services explored in the paper can tap into
the aggregate resources offered by remote clouds, and they
can leverage ‘nearby’ devices in home or office settings. The
outcome is quality in service delivery that exceeds that of
the pure ‘in the cloud’ or ‘at the edge’ service realizations.
Data services investigated include data access and storage,
data and media manipulation, and services like real-time
image recognition – face detection – for images captured
by a home security system, for example. For such services,
sensitivity to response-time variation experienced with the
use of public clouds and the Internet indicate the usefulness
of using nearby or home devices. At the same time, increased
processing requirements cause an increased need to exploit
the larger capacities of remote cloud services. Given these
tradeoffs, we formulate the following design principles for
Cloud4Home systems:

∙ Fungibility for dynamic flexibility: the physical re-
sources on which services run should be ‘fungible’, so
as to create dynamic options in the mappings from the
resources applications believe they are using – virtual
resources – to the physical resources actually being
used.

∙ Augmentation: services should not be constrained
to operate within the boundaries of private devices
vs. public cloud platforms; instead, they should be able
to run so that the two types of resources can augment
each other, in a manner best suited for the given service
and current operating constraints.

∙ Guided active management: since the ‘best’ mappings
of virtual to physical resources depend on current
context, user needs, and resource availabilities, active
management of these mappings must have continuous
inputs from methods that monitor these factors.

∙ Automation and independence: guided management

2011 31st International Conference on Distributed Computing Systems

1063-6927/11 $26.00 © 2011 IEEE

DOI 10.1109/ICDCS.2011.74

539

should not require end user participation, i.e., it should
be automated, and in addition, management should be
independent of specific operating systems or application
frameworks present on mobile devices.

The resulting outcome, described in this paper, is the
Cloud4Home approach and system for enhancing cloud
services through the use of local, private resources. We
specifically focus on services for storage, access, and manip-
ulation of data for the home environment and when doing so,
we leverage the VStore++ [1] system, a virtualized object
storage system that abstracts from an application where
the objects it accesses are stored. Further, it permits the
enhancement of data access services with custom data ma-
nipulation functions that can be run on the machines used by
data providers and/or consumers. VStore++ is independent
of operating systems or middleware by operating at the
virtualization level of systems. It is fungible in that data can
be stored on local disks, on remote machine’s stores, or at
Internet-connected storage sites, in ways that are transparent
to end users, independent of application frameworks, and
even the operating systems running on the @home devices.
At the same time, since the context in which an end-
user device operates can change dynamically, as can end
user requirements, VStore++ will track resource availabil-
ity in order to direct requests to appropriate destinations
based on their needs and/or resource availability, using a
global indexing and monitoring infrastructure maintained
during its operation. Interactions with VStore++ may take
place across wireless networks, across the Internet, when
using Internet-based resources like cloud storage, or across
a mix of wired and wireless links when operating in a
user’s home. The outcome is a Cloud4Home comprised
of dynamically varying sets of devices that cooperate to
provide end users with seamless storage, access, and data
manipulation services, including interactions with remote,
publically available cloud platforms.

The technical contributions of this paper include the
following. (1) VStore++ is a set of Cloud4Home services
implementing methods for data storage and manipulation
that enhance what can be provided by solely @home or
@datacenter service realizations. (2) VStore++’s implemen-
tation for a prototypical home environment, with desktop
and handheld devices, uses the Xen hypervisor to attain
operational independence from vendor-specific solutions.
(3) Home security and video streaming services realized
with VStore++ exhibit improved performance properties
compared to prior service realization, including services
realized in Amazon’s EC2 cloud. (4) For home device
cooperation and active resource management, VStore++
uses (i) a dynamic overlay layer implemented with the
lightweight Chimera [2] peer-to-peer overlay system, and
(ii) a distributed key-value store for data accesses and
dynamic resource monitoring. (5) Experimental evaluations
of the VStore++ system and approach demonstrate multiple

interesting facts, including (i) the tradeoffs in using @home
vs. @datacenter resources, (ii) the advantages derived from
judiciously using both, and (iii) future work in terms of
scaling Cloud4Home functionality to larger systems and to
other sets of services.

II. SERVICES IN THE HOME

Before continuing with details regarding VStore++ and
our Cloud4Home approach, we provide additional motiva-
tion for the need to enhance the capabilities of remote clouds
by using private and nearby resources. Several classes of
services are discussed.
Home surveillance. Surveillance companies, such as Drop-
cam Echo, have started providing specialized hardware that
not only captures images and video, but also has the abil-
ity to offload content to a public cloud. The devices are
expensive and consumers need to bear storage cost in the
cloud, with limited control over the data being generated. In
addition, the quality of the service is highly dependent on
the available connectivity to the public cloud, exposing it to
potentially substantial levels of variability.

A Cloud4Home solution like the one described in this
paper can eliminate several limitations associated with this
class of services. First, with Cloud4Home, both the data
being acquired and stored and the computations performed
on such data can be mapped to appropriate target nodes,
including nearby nodes in home environment. This flexibility
in mapping can be used to maintain desired levels of service
quality, despite known variability in cloud connectivity. The
outcome is lower response times resulting in improved
timeliness for detecting potentially critical events. Guided
management can be used to control which and how much
state is stored in the public vs. the home cloud, thereby
limiting the service delays, costs and providing desired
privacy guarantees. At the same time, resources available
in the public cloud continue to be available, including
large amounts of storage, public databases of image training
sets, or computational resources for parallel execution of
face detection and recognition algorithms. In particular, the
surveillance service described in this paper is implemented
as an application that uses VStore++ interfaces [3] to store
and manipulate captured images. Surveillance images are
processed first by a face detection algorithm, followed by
face recognition [4]. These algorithms may be run at nodes
in the home environment, or on instances at Amazon’s EC2
public cloud.
Media conversion. The diversity of end-user devices gives
rise to increased amounts and types of multimedia content
being generated or used by end-users. A purely public-
cloud-based solution for interacting with such content can
be limited by the available connectivity to the public cloud.
Furthermore, for a given device form factor and multimedia
resolution, the performance (i.e., delay) and operating costs

540

(i.e., dollars) associated with the public cloud interactions
may not be necessary.

A more flexible solution supported by the Cloud4Home
approach is one in which content can be retrieved from either
home or remote cloud resources, and where appropriate
format conversion services can be applied transparently so
as to customize desired multimedia content for diverse end-
user devices. This can be done so as to better meet desired
cost functions. We use a prototypical multimedia service in
the experimental analysis of our VStore++ system.
Other services. Obvious examples are those that pertain
to content sharing in college dorms or apartment homes,
as evident from recent work on peer-based solutions for
IPTV services. More interestingly, there are other examples
of hybrid @home and @datacenter services. Consider data
services in hospital environment, where privacy concerns
may require purely office based solutions, but where con-
venience in remote data access or data use by researchers
suggests the need for datacenter storage and manipulation for
select data elements [5]. Another example occurs for gaming
applications where camera-guided home games require low
latency home processing but where long term analysis
needed for improving camera-based control methods can
benefit from the extensive data collected in millions of
game-playing homes (provided that privacy concerns are
adequately addressed). More generally, there is a plethora of
sensor-based applications in which mobile or home devices
can be used to pre-analyze and rapidly inspect captured data,
raise local alarms, but where at the same time, global data
mining methods can benefit from the many inputs received
from spatially or time-offset distributed end systems.

III. VSTORE++ ARCHITECTURE

We next describe the VStore++ architecture, which real-
izes the Cloud4Home approach for providing data storage,
access, and manipulation services that are transparently
performed across any of the resources available in the home
or remote public clouds.

The overall VStore++ architecture is shown in Figure 1.
VStore++ is a virtualized storage service exposing an object-
based file system interface, similar to other object-based
storage interfaces [6, 7], including popular cloud stores such
as Amazon’s S3 storage service. Internally, it uses a standard
file system to represent objects, using a one-to-one mapping
of objects to files. In addition to object fetch and store
operations, it supports an explicit process operation, which
permits object manipulation functions to be associated with
the object access.

Applications using VStore++ API reside in guest virtual
machines (VMs) running on nodes in the home environment,
which is virtualized with the hypervisor in our current
implementation. All requests are passed to the VStore++
component residing in the control domain (i.e., dom0 in
Xen) via shared memory-based communication channels. On

���������
��	
�����

��	���
��������������
�����

��	��

�������
����
���������� ���

������������������������������������
���

��������������������������
���

�������
�

� �

������
��
!�

�
�������
!�

��	
�����
���
���������

����"�
��
	����
���

��	
��
#
��

����	
��$ �%��
���
���
��
����

"� $� ������������

&�����'
	��

�
���
��'
	��

Figure 1. Cloud4home architecture.

each node, a set of mandatory resources is available for the
execution of services (e.g. storage or computation) on behalf
of applications deployed on that node. In addition, nodes can
contribute voluntary resources to the aggregate storage pool
available to any node in the VStore++ home cloud.

The metadata layer provides object lookup and transparent
access to storage and services distributed across nodes in the
home or remote clouds. To deal with the potential dynamism
of the home environment, where nodes may periodically go
off-line and become unavailable, the metadata management
layer is built as a distributed key-value store on top of a
peer-to-peer overlay across all control domains in the home
cloud. At least one of these nodes must provide an interface
among the home and remote cloud services.

In order to enable location transparency for object ac-
cesses and for execution of object manipulation functions, all
VStore++ operations specify only the object and/or service,
where the actual location is determined at the metadata
layer. Since our goal is to ensure that the request routing
can be performed in a manner that depends on the resource
availability and operating conditions, it is necessary to also
maintain resource monitoring state at runtime. We use the
same distributed key-value store for both metadata man-
agement and distributed resource monitoring, and support
dynamic request routing decisions based on customizable
policies.

A. Metadata and Resource Management

The metadata and resource management layer provides
(i) lookups for data objects and services available in the
distributed store (ii) routes VStore++ requests to the appro-
priate location and (iii) tracks information regarding avail-
able resources in the local/home environment and between
the home and the remote cloud platform. The layer is
organized as a key-value store where unique keys correspond
to object names, service names, and as node identifiers.
This allows us to maintain a uniform interface for access
and manipulation of meta information regarding objects,
services, and infrastructure available in the VStore++ cloud.

The current implementation of this key-value store is
based on a distributed hash table (DHT), built on top of the
Chimera peer-to-peer system [2]. Chimera is a lightweight

541

C implementation of a structured overlay that provides func-
tionality to that of prefix routing protocols like Tapestry [8]
and Pastry [9]. When an application creates and stores an
object using VStore++, the corresponding metadata entry is
also created and updated. The object name is hashed, and the
object information is routed to a node with an ID closest to
the hash value. Updates to Chimera have an overwrite policy
value that determines if the metadata needs to be overwritten,
if newer version of metadata is to be added by chaining, or
if an error should be returned.

In our current implementation, every object’s key is a 40
bit hash value generated by the object name. The value entry
in the key-value store is a serialized data containing object
location and metadata, such as tags, access information, etc.
The location field can map to a node in the local home cloud
or to a remote cloud.

Similarly, information regarding services deployed in VS-
tore++ is also stored in key-value store. For services, our
current prototype uses unique keys derived from the service
name and identifier. The value associated with each entry in
key-value store is a string identifying the nodes where the
service is currently available. Additional service information
is maintained in service profiles, which encode the minimum
resource requirements for a service for a given SLA for
the different types of nodes.Our current assumption is that
such profiles are determined a priori and made available to
VStore++ when services are deployed.

Finally, we use the same key-value store to maintain
resource information for the Cloud4Home overlay. A key-
value entry exists for each physical resource, with keys
derived based on the nodes’ IP address in the home cloud.
The structure of resource monitoring mechanism along with
its pseudocode is shown in Figure 2. On each node, Chimera
provides a logical tree view of other nodes in the overlay,
implemented as a red-black tree. Nodes periodically update
their current resource usage in the key-value store using their
node ID as key and serialized resource information structure
as value. The updates are performed through a resource
monitoring utility module. When an object needs to be stored
or processed, VStore++ makes a chimeraGetDecision() call
to obtain a list of nodes and for each node, queries the
key-value store for the node’s resource information. This
information is used to determine the most suitable target
node for a service request, as described in the following
subsection. The ‘policy’ parameter in this operation makes
it possible to support multiple decision policies, where
requests are routed to target nodes depending on overall ser-
vice performance, vs. achieving balanced resource utilization
or improved battery lives for portable devices.

In addition to the DHT-based key-value store, we have
enhanced Chimera with capabilities for dynamic overlay
reconfiguration, caching, and replication [10, 11]. Our
Cloud4Home prototype uses a simple metadata caching and
replication functionality built into the metadata management

���� ���������	
����

�� �

��� ������

���� ���������	
����

�

��

� � ���� �

���
�����
����������
�

���������������������� !�"�#

��������	
���$
�%&'
����(�"'
%����'

)

����������	
���	����������������������	������

������������������������������������� ���
�

������!����������
����������������������������	����

"#�����	������	������������$����%���������	��	��
�!������	����
�����$�������#"��&

Figure 2. Resource Monitoring

layer to support improved availability and reliability. Key-
value entries are cached onto intermediate hops on each
request’s path through the DHT overlay, and state can be
replicated using a fixed replication factor. Whenever a key-
value entry is modified, the corresponding caches are also
updated. This approach is suitable for the current scale
and dynamism in home environments considered in our
research, but more scalable and robust methods may be
necessary for larger home or office deployments. Regarding
overlay formation and reconfiguration, our implementation
permits nodes to dynamically join or leave the Cloud4Home
infrastructure. Whenever a node enters or exits, it sends
a message to its right and left nodes in the logical tree
structure. A departing node’s keys are always redistributed
among the available set of nodes.

Naturally, there exist many alternative implementations
of this layer for VStore++, including centralized ones or
those that distribute the key-value store in a manner that
is proportional to the local resources/capabilities of each
node in the distributed overlay [12]. Our future work will
investigate such alternatives. We next describe in more detail
the basic operation and components of VStore++.

B. VStore++ Operations

We next describe the basic types of operations supported
by VStore++, including their use of the metadata and
resource management layer discussed above. VStore++ sup-
ports storage and retrieval of state represented as objects via
store and fetch operations. Due to the heterogeneous target
environment, with end-user devices exhibiting significant
differences in their storage or computational capabilities,
it is often necessary for additional processing to be asso-
ciated with these basic accesses. For instance, accessing
a large video file via a smart phone with limited display
and networking capabilities may require reformatting and
compression of the original video stream. In addition, there
is need to support services that explicitly operate on stored
data. In the home surveillance example, captured images
must be processed to first detect faces, and then to run face
recognition algorithms, the latter also accessing appropriate
training images before an alert can be raised. For these
reasons VStore++ also supports process operations, which

542

����������	
�����

������

�������
������

���������
�������

��������
���
����

����������	��
�
���
����������
	��

�����������	
��� �

�����

�
	� !
���

���"����
������

����#��$��%&�

��"���������
'�(����(��

��
�)�����
�*�

 ��

+
�%
���*
 ��

�
	� !
���

,��"�����������

-����������
��./�.����

,��012������!�

Figure 3. Operations - Store & Fetch

allow a service deployed in the home cloud to be invoked
explicitly, or jointly with the object store or fetch operation.
Store. The store operation is represented in Figure 3. To
store an object, an application must first invoke VStore++’s
CreateObject() call to map a file to an object, which also
results in the creation of the mandatory meta information,
like name and type. It then invokes StoreObject(), which
transfers the object from the application’s guest domain
to VStore++’s control domain. This is where the decision
where to store the object is performed. By default, the object
is stored in the node’s mandatory bin – the set of resources
available for applications hosted on the same node. In cases
where the mandatory bin is full, or when an explicit storage
policy specifies otherwise, the data is stored elsewhere,
either in the voluntary resources available on other nodes
in the home environment, or in a remote cloud.

It is important to note that store operations provide strong
controls – via policies – over where data is stored, in contrast
to what might be done in a distributed file system that
distributes blocks and/or caches them on arbitrary nodes
in a system. This provides management layers with the
opportunity to control storage locations to meet privacy
and/or performance demands. Specifically, the target loca-
tion for the store operation is determined via the policy
associated with the store. The service policy describes a
set of rules which ‘guide’ the routing of the store request.
For instance, in the home surveillance application, we may
specify a service policy where objects (i.e., images) are
stored on a desktop in the home cloud vs. in the remote
cloud based on their size. Experimental results described in
Section V discuss the benefits of one such policy. In our
current implementation, these policies are represented as a
set of statically encoded rules. Our future work will explore
opportunities to associate learning methods and support
dynamic adaptations.

Finally, VStore++ supports both blocking and non-
blocking store operations, where blocking operations incur
the cost of an additional acknowledgement. In all of these
cases, the key-value store is updated with metadata and
location of stored objects.
Fetch. As shown in Figure 3, a fetch uses the FetchObject()
operation. Similarly to the store case, the operation is passed
to VStore++ domain, where a message (IPC) is sent to the

Chimera-based metadata module to determine the location of
the object, whereupon the object is requested from the owner
location specified in Chimera. Once the object is fetched, it
is passed to the application’s guest VM.
Fetch and Process. An object fetch operation may be
explicitly associated with certain processing, specified via
a service identifier. In that case, VStore++ performs the
following steps. When the node storing the object (i.e.,
‘object owner’) receives the request, it uses the service
identifier to first determine if the requesting node is capable
of executing the service itself. In that case, the object is
simply returned as in the regular fetch operation, and the
service processing is performed at the requesting node’s
VStore++ guest domain. Otherwise, the object owner checks
whether it is capable of performing the required service, and
if so, returns the output of the operation.

If neither of these is true, the ‘value’ field for the service
is used to determine other possible targets, including in
the remote cloud for execution of service. In the event
of multiple possible locations, a decision is performed to
determine the actual processing target. This step considers
the time to locate the target node, the associated data
movement costs for the argument and resulting object, and
the service processing requirements and execution time. We
maintain the latter information for each node as part of
the service profile mentioned in the previous subsection.
In our current implementation, we assume constant target-
location time and we approximate the data movement costs
by considering the movement of the argument object only
(which is accurate when the resulting objects are of the same
size, independent of where the service is performed). We use
the key-value entries for each of the possible target nodes for
resource information regarding their current processing loads
and available bandwidth, and make a selection for a suitable
service execution location. All results shown in Section V
include the time for performing this decision process.
Process. Applications can explicitly invoke a processing ser-
vice on objects already stored in VStore++. The destination
of the service execution is chosen in the same manner as
described above – by selecting the most suitable of all
possible locations that support the service. For instance,
in the home surveillance application, a process operation
may be invoked on a set of stored images, to first perform
face detection, and next face recognition processing on each
image. Depending on image sizes, processing complexity,
and resource availability, this may require movement of
images among nodes in the VStore++ cloud, as shown in
the examples evaluated in Section V.

C. Interfacing with Public Clouds

A key component of VStore++ is its ability to interface the
home cloud infrastructure with remote public clouds. This
is necessary to provide access to shared state or services
available in the public cloud, or to transparently increase

543

the storage or computational resources available in the home
cloud. As mentioned earlier, the actual location of the service
execution, including for storing data, may be guided by
resource availability or by other constrains, such asresponse-
time SLA’s, data privacy requirements, etc.

One or more nodes in the home cloud support a public
cloud interface module, responsible for routing all remote
cloud interactions. In our current implementation, the VS-
tore++ domain on each node includes an interface to Ama-
zon’s S3 storage cloud, but other implementations, where the
public cloud interactions areperformed only via some subset
of designated nodes (e.g., nodes with sufficient Internet
connectivity) are possible. The location of data object and
availability of services in remote cloud are maintained in
the same key value store. For data object, URL location of
object in users S3 storage bucket is stored as value.

IV. IMPLEMENTATION

VStore++. VStore++ is implemented in C++ and majority
of its components are run at user level. It currently utilizes
the C++ boost library for supporting multi-threaded inter-
faces both at host and VM domains. Every method call
in VStore++ is converted into a command. The command
based interface is used for communicating between virtual
machines and remote nodes. Each command packet consists
of packet length, command type, the requesting service ID,
VMs domain ID, shared memory reference and command
data. The command data depends on command type (e.g.,
object name, processing command). Commands are usually
less than 50 bytes and use TCP/IP sockets. The command
based mechanism helps with implementing asynchronous
fetch and store operations.

For object transfers between remote machines, we use
the Linux zero copy mechanism using splice and tee, which
provides kernel to kernel socket-based data transfer and
avoids user space overheads. Larger objects are mapped to
files before they are transferred. For data transfers between
the host dom0 and guest VM, we utilize XenSocket, a high
throughput shared memory kernel module [13] that provides
a socket-based send() and recv() interface. Before every
transfer, the data receiver creates a shared descriptor page
and grant table reference which is sent to the sender before
communication begins. The receiver allocates thirty two 4
KB pages. For better performance, the page size can be
increased up to 2 MB if the devices have larger memory.
For data storage across public clouds, we create a wrapper
over the Amazon S3 interface [14] which is a blocking call
that uses a TCP/IP-based data transfer mechanism.
Metadata management and service discovery. Metadata
management is implemented by extending the DHT-based
Chimera into a key-value store. This is a C-based imple-
mentation and has both Linux and Windows port. VStore++
communicates with Chimera using IPC. It has a basic put
and get interface wrapped under the VStore++ interface to

provide richer functionality. In our current implementation,
every node registers its list of services with the key-value
store using a service name concatenated with service ID as
key, and a value that is a list of nodes supporting a service
along with a service policy.
Resource Monitoring. In addition to the description in
Section III, we added a custom resource monitoring utility
to Chimera using the Linux glibtop library. The utility
updates resource information in the key-value store after a
configurable time period (to contain messaging overheads).
A simple file system watcher component keeps track of
mandatory and voluntary bin space.
Use cases. In the home security use case, face detection and
recognition use OpenCV. The original code loads a training
dataset to compare against images. For our prototype, we
modified the code to run it as service, with training data and
a set of images to be recognized as inputs, and output being
ID of the best matched image. As a representative media
conversion service, we use the x264 encoding [15] library. In
both cases, application performance depends both on the size
of input data and on its complexity. To avoid data content-
related perturbations in performance measurements, care is
taken to select images and videos of similar complexities,
by repeated experimentation. All components of the current
prototype implementation are available through svn.

V. EXPERIMENTAL EVALUATION

The Cloud4Home prototype is evaluated in a prototypical
home environment with high end connectivity to the Internet
and thus, to remote cloud resources. Experiments use an
implementation on Xen-3.3.0 as the virtualization platform,
with VStore++ as the object-based storage service, and
customized Chimera 1.20 with support for DHT, peer-to-
peer communication services, and resource monitoring. The
experimental testbed consists of 5 dual-core 1.66 GHz Intel
Atom N280 netbooks and a 2.3 GHZ 32 bit Intel Quad core
desktop machine, running Linux 2.6.28 on Xen. Internal
home communication capabilities exceed the connectivity
available to remote cloud facilities, using a 95.5 Mbps
Ethernet LAN for some of the nodes. Access to public
Amazon EC2 services and to S3 cloud storage uses the
Georgia Tech wireless network, offering maximum wireless
bandwidth close to 6.5 Mbps for download and 4.5 Mbps
for upload, with average around 1.5 Mbps.

Experimental results validate the Cloud4Home approach
by demonstrating (i) the need for enhancing remote cloud
services with home cloud infrastructure, (ii) the importance
of flexibility in data placement on storage and location where
data manipulation services run, in the home or the remote
cloud, due to noticeable differences in the levels of perfor-
mance and variability, (iii) the advantages of using aggregate
resources offered by local and remote service instances, (iv)
all the above with moderate overheads for data services and
content sharing via the VStore++ implementation.

544

Figure 4. Home vs. remote cloud latency

A. Importance of Home Cloud Services.

It can be important to deploy cloud services on ‘nearby’
resources, such as those available in a home environment.
Figure 4 shows the latency and the latency variation for fetch
and store accesses to data stored in nodes in a home vs. a
public remote cloud. For the home cloud measurements, the
dataset is distributed across all nodes in our home prototype,
so data accesses are made to both on-node and off-node stor-
age. As evident from the graph, both the absolute latency and
particularly the latency variability are significantly increased
when accessing public cloud storage. These increases be-
come more significant for larger data sizes. For remote cloud
accesses, additional variability exists between the two types
of storage operations, due to differences in the available
upload vs. download bandwidth. Even with improvements
of communication resources (i.e., bandwidth) to the remote
cloud, these trends will continue to exist, particularly due to
the use of the shared Internet infrastructure between homes
and remote public clouds. These measurements motivate the
Cloud4Home approach in which services can also be run on
‘nearby’ resources (e.g., in the home) that are accessible
with lower and less variable latencies.
VStore++ Overheads. The next set of measurements as-
sesses the overheads associated with the basic mechanisms
of VStore++. The results shown in Table I represent the
costs associated with the fetch operation, with cost profiles
for other VStore++ operations exhibiting similar trends.
Inter-node transfers represents the cost for interacting with
other nodes in the home environment. Inter domain costs
correspond to the interactions between the application VM
and the VStore++ domain via the XenStore shared memory
channels, and those costs are small compared to the unavoid-
able costs of inter node accesses. In both, and as expected,
we observe linear increases in these costs as object sizes
increase. The costs of accessing the metadata management
layer via the key-value store, however, remain constant for
the fixed-size home cloud used in our work, independent of
object sizes, and is negligible for larger objects.

In all of the measurements, the obvious differences are
observed when running in a virtualized vs. non-virtualized
setting: virtualization requires additional memory resources
and tends to result in higher CPU utilization. Our prior work
has already investigated the overheads associated with virtu-
alizing the different types of devices used in our prototype

File
Size(MB)

Total(ms) Inter
Node(ms)

Inter Do-
main(ms)

DHT
Lookup(ms)

1 228 103 25 12
2 454 190 37 13
5 1160 513 57 13
10 2522 1042 189 14
20 2477 2079 386 12
50 5174 4678 480 16
100 15180 13577 1603 12

Table I
HOME CLOUD FETCHES: COST ANALYSIS.

system [1] which is why we do not further elaborate on them.
This is also because industry trends indicate that hardware-
level support for virtualization will become ubiquitous on
newer generation devices, including on embedded platforms
for mobile devices and smartphones. In summary, the over-
heads experienced on current platforms are moderate, with
further reductions expected on next-generation platforms.
Tradeoffs in data placement. There are definite tradeoffs in
the costs of data access not only in the home, for on- vs. off-
node resources, but even more so when using remote cloud
resources. We use the eDonkey [16] peer to peer dataset
to demonstrate these tradeoffs, the goal being to emulate
representative local vs. remote access patterns. In order
to use it, the dataset is modified as follows. The original
dataset contains files of different formats and sizes, where
each file is described with an identifier, size and tags that
define its context, and each access is tagged with a client
ID and time. The original dataset represents a large number
of clients performing only a few repetitive file accesses. We
modify it by combining clients into smaller sets (emulating
6 clients) that each access a large number of files (1300 in
total), performing repeated accesses across these files. The
percentage of store vs. fetch operations is set to 60% and
40%, respectively.

First, we evaluate the tradeoffs when using a remote cloud
for data storage service. We classify all objects into small (1-
10 MB), medium (10-20 MB), large (20-50 MB), and super-
large(50-100 MB) buckets. In each experiment, we store the
objects of a single bucket into the remote cloud, and we
structure our experiments so that the total number of bytes
in a bucket is kept constant (Method 1 in Figure 5), or so
that the total number of files in a bucket is constant (Method
2). We next use the access traces to compute the average
throughput for all remote cloud interactions.

The results in Figure 5 indicate that for both types of
experiments, the throughput measurements show similar
trends. Originally, as the size of individual file transfers
to and from the remote cloud increases, the aggregate
throughput actually increases. This is due to the use of
TCP as an underlying transport. First, longer transfers are
performed mostly in the congestion avoidance vs. slow-start
phase, thereby utilizing more of the available bandwidth.
Second, cloud providers such as S3 increase the TCP win-
dow size during a single transfer up to some maximum limit,

545

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 10 20 30 40 50 60 70 80 90 100

T
hr

ou
gh

pu
t (

M
B

/S
ec

)

Object Size (MB)

Remote Cloud Throughput Data Fetch (4 Nodes/ Remote 1.29 Mbps/ Total 700 MB Data Fetch)

Method 1 (MB/Sec)
Method 2 (MB/Sec)

Figure 5. Remote Cloud - optimal object size

approximately 1.6 MB in the case of S3. Therefore, longer
transfers benefit from the use of this larger window size.

Beyond a certain point, throughput starts to deteriorate
rapidly. The observed degradation is primarily due to traffic
shaping and rate limiting policies enforced by ISP providers,
which become visible for long bandwidth-hogging data
transfers. This implies that when placing data in remote
clouds, certain data sizes result in significantly better per-
formance. The ‘optimal’ sizes vary depending on available
upload/download bandwidth between the home and remote
cloud, transport-level parameters, such as TCP window sizes
used by the cloud provider, and traffic policing enforced by
third-party ISP providers. In our experimental setup, the best
aggregate throughput levels are achieved when using remote
clouds for object sizes of approximately 20 MB.

These results indicate that, despite the significantly larger
and more variable latency, remote cloud accesses can be
improved by careful selection of the types of interactions
for which they are being used (e.g. storing data of certain
sizes).

B. Utility of joint usage of home and remote resources.

We modified the synthetic dataset to consist only of
objects with the ‘optimal’ data size determined in the above
experiments – 10-25 MB – and distributed it across the
home and remote resources using a policy that stores private
data (in our case all .mp3 files) locally and shareable data
(i.e., all other types of files) remotely. The lowest curve
in Figure 6 shows the aggregate throughput when client
applications executing on 3 of the 6 devices in our home
cloud perform VStore++ file accesses, one at a time. We
avoid using all 6 home devices so as to limit the contention
for the scarce bandwidth resource between home and remote
cloud devices. As the percentage of data stored in the remote
cloud increased, the aggregate throughput decreased when
only a single thread performs sequential object accesses.

To observe the effect of increased number of concurrent
access, we modified the client application to use multi-
ple threads. Threads fetch objects from the home or re-
mote cloud, transparent to the application. When content
in present mostly in the home cloud, as the number of
concurrent requests made by different threads increase, the

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20 25 30 35 40 45 50 55

T
hr

ou
gh

pu
t (

M
B

/S
ec

)

Data % in Remote Cloud

3 Threads(MB/Sec)
2 Threads (MB/Sec)

1 thread (MB/Sec)
Remote Cloud(MB/ Sec)

Figure 6. Fetch Throughput

overall throughput of system increases by factor of 45%.
In this case, most access are performed at home, making
effective utilization of the locally available bandwidth, with
less contention for Internet bandwidth. As the number of
remote accesses increases (i.e., more content present in
the remote cloud), we continue to observe benefits due to
increase of concurrency, but those benefits are reduced due
to the fact that they all contend for the aggregate bandwidth
available to the remote cloud.

The utility of joint usage of home and remote resources
is also illustrated with the following example. Consider an
application where a sequence of images is to be compared
against an existing image dataset, for instance using a face
recognition algorithm. We compare three different scenarios:
(i) the image sequence is processed at home, using a 60
MB dataset stored across home devices, (ii) the processing
is performed on EC2 instances in the Amazon cloud, using
190 MB dataset, consisting of our original 60 MB of images,
plus additional public images available in the remote cloud
only, and (iii) the sequence processing is split between the
home and remote cloud. In general, the actual decision
how processing should be split must also consider the state
present in the home vs. remote cloud and its impact on the
quality of information provided by the specific service. In
this example, we use a simplistic policy which splits the
image sequence roughly proportional to the amount of home
vs. remote resources, to illustrate the feasibility and utility
of our approach. The resulting processing times for each of
these scenarios are 162 sec, 127 sec, and 98 sec, respectively,
demonstrating significant importance and performance gains
due to joint usage of home and remote cloud resources.
Object Processing and Storage. We next evaluate the flexi-
bility offered by VStore++ in combining object manipulation
functions with storage. Consider a use case derived from
a home surveillance application. Captured images are first
processed by a CPU-intensive face detection step (FDet),
followed by memory-intensive face recognition (FRec). Both
algorithms are deployed on two home nodes: S1 – in 512
MB VM with one VCPU on a 1.3 GHZ dual-core Atom
platform, and S2 – in a 128 MB multi-VCPU VM on a 1.8
GHz quad-core processor. In addition, both algorithms are
supported in an extra large EC2 para-virtualized instance

546

Figure 7. Importance of service placement.

with five 2.9 GHZ CPUs with 14 GB memory, labeled S3 .
We use images of size 0.25, 0.5, 1 and 2 MB. For each
size, we use different resolution of the same image. Since
the training data for FRec is usually very large, we make
the assumption that it is available on any of the processing
locations, to avoid considering the costs of moving such
large content in and out of a remote cloud.

The results in Figure 7 represents processing time required
to execute the home surveillance application from low-end
Atom node, S1.For each data size, we consider the costs of
individual steps in the processing pipeline when performed
on S1, vs. on S2 or S3 . For small image sizes, the resources
available on S1 are sufficient to efficiently execute the entire
processing pipeline, particularly since this eliminates the
need for data movement. As image sizes increase, benefits
from the availability of additional computational resources
on S2 outweigh the data movement costs. Finally, for the
largest image size considered, the limited amount of memory
on the S2 VMs starts delaying the execution of the FRec
step. In this case, the most efficient deployment of the
processing service is the one that uses the remote cloud
resources, S3 , despite the even greater data movement costs.
These tradeoffs demonstrate the need for flexible and dy-
namic mapping of object access and manipulation codes in a
manner that takes into account runtime resource availability
and cost.

We use another example, based on a media conversion
service that downgrades files from the ‘.avi’ video format
to a mobile compatible ‘.mp4’ format, using the x264
CPU-intensive library. A low-end Atom-based device ‘owns’
a video file, which is being accessed by another mobile
device. (i) The format conversion may happen at the ‘owner’
node (Town in Figure 8), or (ii) VStore++’s mechanisms
for dynamic resource discovery may determine that a third,
desktop node, is most suitable for the execution of this
service. The observation for Topt in Figure 8 show that
the latter(ii) case results in substantial performance gains,
despite the additional costs for moving data from owner
to the desktop node and executing the VStore++ decision
algorithm. These results demonstrate the importance and
feasibility of the Cloud4Home approach and its VStore++
realization.

Figure 8. Feasibility of dynamic request routing.

VI. RELATED WORK

Cloud4Home provides transparent virtualized object stor-
age and processing for applications executing in a VM. The
object nature of its VStore++ realization borrows from the
SWALLOW project [17], which was among the first system
to implement object stores in file systems, and a number
of other object-based file systems [18–20]. Cloud4Home
also borrows from extensive prior work on key-value stores
(e.g., Dynamo developed for large-scale data centers [21]),
by implementing a simple a DHT-based [2] key-value store
built on top of the Chimera overlay mechanism.

VStore++’s approach to virtualization stems from our pre-
vious work on a virtualized object store termed O2S2 [22].
Contributions of O2S2 includes efficiency includes effi-
ciency in implementation and exploration of role based
object access controls for trusted vs. untrusted VMs. We
do not currently use those access control methods, instead
focus on the distributed storage and processing capabilities
for VMs.

Gibson et al. [23] was one of the first to associate process-
ing with storage, and recent work generalizes the storage-
centric methods proposed in earlier work (i.e, quFiles [24])
to associate dynamic data processing with file accesses. In
comparison with VStore++, qufiles retains a strictly file-
based interface, which would make it more difficult to
interface with object-based APIs like Amazon’s S3. The
semantic information available for objects also makes it
easier to associate various operations with the entities being
accessed, and make decisions whether to move data where
operations are running and/or apply operations where data is
currently located. This can be exploited to better deal with
the relatively larger degrees of heterogeneity ‘at the edge’
vs. in server systems.

VII. CONCLUSIONS AND FUTURE WORK

Cloud4Home is an approach to realizing end-user services
that can leverage both home and datacenter resources. A
specific implementation of the concept for data services,
termed VStore++, is implemented in a virtualized system
so that both the locations of data objects used by such
services and selective processing on those objects are eas-
ily changeable as well as adapted to application needs

547

and current resource availabilities. The project is called
Cloud4Home because it is not about reproducing datacenter
level cloud infrastructures in the home environment. Instead,
it is to make it easy to use both home and remote cloud
facilities to provide better services for the home. Current
use cases target the home environment, but Cloud4Home
could easily be generalized to operate in office or larger
scale environments like hospitals. Performance advantages
derived from flexible home and datacenter operation include
reduced latency of service provision, reduced data rates and
bandwidth needs to/from end systems, while still retaining
the potential benefits of using large datacenter storage and
processing capabilities.

There remain many open issues with Cloud4Home, the
most notable ones being (i) to deal with data privacy –
i.e., to implement and experiment with richer access control
methods and policies, (ii) to adapt and expoit the advantages
offered by heterogeneity, (iii) to understand how to scale to
larger numbers of @home and then in the cloud participants,
(iv) to design and evaluate mechanisms that adapt to the
changing network conditions, and (v) to evaluate use cases in
which multiple Cloud4Home infrastructures collaborate. A
concrete example of the latter(v) would be a ‘neighborhood
security’ system in which multiple Cloud4Home systems
interact to provide effective security services for entire
neighborhoods. Other examples would be media or gaming
services in which multiple home systems interact in social
networks or joint games. Technical issues outstanding with
Cloud4Home include better optimizations of large-scale ob-
ject transfers across machines, by using better object transfer
protocols, additional automation for selecting the locations
at which certain operations should be run or where objects
should be placed (i.e., policies), and aricher infrastructure
for easily formulating and running diverse policies.

ACKNOWLEDGMENT

The authors would like to thank the ICDCS program
committee reviewers as well Alex Merritt, Hobin Yoon
and CERCS Kernel group members for their helpful com-
ments. We gratefully acknowledge the technical support
and guidance provided by researchers at Motorola Labs in
Schaumburg, and Intel’s Embedded and Communications
Group.

REFERENCES

[1] S. Kannan, K. Babu, A. Gavrilovska, and K. Schwan,
“Vstore++: Virtual storage services for mobile de-
vices,” in MobiCloud ’10 In Proceedings of Interna-
tional Workshop on Mobile Computing and Clouds,
Oct. 2010.

[2] “Chimera,” current.cs.ucsb.edu/projects/chimera/.
[3] A. Pai, B. Seshasayee, and K. Schwan, “Customiz-

able multimedia devices in virtual environments,” in
MODUS ’08 , 2008.

[4] “Opencv,” http://opencv.willowgarage.com/wiki/.
[5] S. Hastings, S. Oster, S. Langella, D. Ervin, T. M. Kurç,

and J. H. Saltz, “Introduce: An open source toolkit for
rapid development of strongly typed grid services,” J.
Grid Comput., vol. 5, no. 4, pp. 407–427, 2007.

[6] A. Azagury, V. Dreizin et al., “Towards an object
store,” in 11th NASA Goddard Conference on Mass
Storage Systems and Technologies, 2003.

[7] “Lustre,” http://wiki.lustre.org.
[8] B. Zhao, L. Huang et al., “Tapestry: a resilient global-

scale overlay for service deployment,” Selected Areas
in Communications, IEEE Journal on, vol. 22, no. 1,
Jan. 2004.

[9] A. I. T. Rowstron and P. Druschel, “Pastry: Scalable,
decentralized object location, and routing for large-
scale peer-to-peer systems,” in Middleware, 2001.

[10] A. Rowstron and P. Druschel, “Storage management
and caching in past, a large-scale, persistent peer-to-
peer storage utility,” in SOSP, 2001.

[11] V. Ramasubramanian and E. G. Sirer, “Beehive:
O(1)lookup performance for power-law query distri-
butions in peer-to-peer overlays,” in NSDI, 2004.

[12] S. Zoels, S. Schubert, W. Kellerer, and Z. Despo-
tovic, “Hybrid dht design for mobile environments,”
in AP2PC, 2006.

[13] X. Zhang, S. McIntosh et al., “Xensocket: a high-
throughput interdomain transport for virtual machines,”
in Middleware, 2007.

[14] “S3 tools,” http://s3tools.org/s3tools.
[15] “x264,” http://www.videolan.org/developers/x264.html.
[16] S. Blond, F. Fessant, and E. Merrer, “Finding good

partners in availability-aware p2p networks,” in SSS,
2009.

[17] B. M. Oki, B. H. Liskov, and R. W. Scheifler, “Reliable
object storage to support atomic actions,” SIGOPS
Oper. Syst. Rev., vol. 19, December 1985.

[18] S. A. Weil, S. A. Brandt et al., “Ceph: A scalable, high-
performance distributed file system,” in OSDI, 2006.

[19] F. Wang, S. A. Brandt et al., “OBFS: A File System
for Object-Based Storage Devices,” in Conf on Mass
Storage Systems and Technologies, 2004.

[20] M. Mesnier, G. R. Ganger, E. Riedel, and C. Mellon,
“Object-based storage,” 2003.

[21] G. DeCandia, D. Hastorun et al., “Dynamo: amazon’s
highly available key-value store,” in SOSP, 2007.

[22] H. Raj and K. Schwan, “O2s2: enhanced object-based
virtualized storage,” SIGOPS Oper. Syst. Rev., vol. 42,
no. 6, 2008.

[23] E. Riedel and G. Gibson, “Active disks - remote
execution for network-attached storage,” Tech. Rep.,
1997.

[24] K. Veeraraghavan, J. Flinn, E. B. Nightingale, and
B. Noble, “qufiles: The right file at the right time,”
Trans. Storage, vol. 6, September 2010.

548

