
MUVR: Supporting Multi-User Mobile Virtual
Reality with Resource Constrained Edge Cloud

Yong Li
Department of Electrical Engineering and Computer Science

University of Tennessee at Knoxville
yli118@vols.utk.edu

Wei Gao
Department of Electrical and Computer Engineering

University of Pittsburgh
weigao@pitt.edu

Abstract—Virtual Reality (VR) fundamentally improves the
user’s experience when interacting with the virtual world, and
could revolutionarily transform designs of many interactive
systems. To provide VR from untethered mobile devices, a viable
solution is to remotely render VR frames from the edge cloud,
but encounters challenges from the limited computation and
communication capacities of the edge cloud when serving multiple
mobile VR users at the same time. In this paper, we envision the
key reason of such challenges as the ignorance of redundancy
across VR frames being rendered, and aim to fundamentally
remove this performance constraint on highly dynamic VR
applications by adaptively reusing the redundant VR frames
being rendered for different VR users. Such redundancy in each
frame is decided at run-time by the edge cloud, which is then able
to memoize the previous results of VR frame rendering for future
reuse by other users. After a VR frame is generated, the edge
cloud further reuses its redundant pixels compared with other
frames, and only transmits the distinct portion of this frame to
mobile devices. We have implemented our design over Android
OS and Unity VR application engine, and demonstrated that our
design can efficiently reduce the computation burden at the edge
cloud by more than 90%, and reduce more than 95% of the VR
frame data being transmitted to mobile devices.

I. INTRODUCTION

Virtual Reality (VR) stimulates users’ immersive senses of
the virtual world, and improves user experiences in many
interactive scenarios such as gaming [15], [64], automobiles
[48], healthcare [20], and education [44]. Ideally, VR should
be provided through untethered mobile head-mounted displays
(HMDs) that project rendered frames from the connected
smartphones, to be usable anytime and anywhere with low
cost. However in practice, smartphones have too limited com-
putational capacity and battery lifetime to ensure high rates
(!60 FPS) and low motion-to-photon latency ("20ms) when
rendering high-resolution VR frames [31]. Their VR perfor-
mance, hence, are much lower than that of their counterparts
being tethered to high-performance workstations (e.g., Oculus
Rift [22] and HTC Vive [21]).

A viable solution to this challenge is to offload the compu-
tationally expensive VR frame rendering to the nearby edge
cloud [58], which then wirelessly transmits the rendered frame
data back to the mobile HMD. The edge cloud nowadays,
however, could be usually located over individual households
with end-user desktop PCs or small-scale workstations, which
have much lower capacities in both computation and com-
munication compared to traditional cloud facilities such as

data centers. They, hence, fail to provide satisfactory VR
performance when serving multiple VR users in a household
at the same time (e.g. multiple family members play the same
multi-player VR game).

The fundamental reason of such failure is that existing mo-
bile workload offloading techniques [37], [17], [32], [27], [26],
when being applied to VR applications, serve each user inde-
pendently: every VR frame for a user is separately rendered
by the edge cloud and fully transmitted back to the mobile
HMD. The computation and communication overheads of such
remote VR frame rendering, hence, grow with the number of
concurrent VR users in the following two perspectives. First,
in order to provide 360◦ immersive experience with satisfiable
image quality, every VR frame needs to be panoramic with at
least 4K resolution. Comparing to traditional 3D multimedia
applications which only render the partial user view in 720p
resolution, rendering such panoramic frames results in 6x
more computation, and this burden may quickly overload the
edge cloud’s computing capacity with multiple VR users.
Second, rendering these panoramic VR frames also produces
more than 2GB of frame data every second with 60 FPS1,
but only a portion of such data can be timely transmitted
even through gigabit WiFi network. Existing video encoding
techniques such as H.264 [63], on the other hand, may be
highly ineffective when being applied to such VR frames, due
to their ignorance of the specific VR frame context and the
subsequent fixed encoding strategies.

Our solution to such excessive workload on the edge cloud
builds on experimental observations from real VR applications,
which indicate the VR frames being rendered and transmitted
for different users as highly redundant. First, even in highly
dynamic VR scenarios such as interactive games, our exper-
imental studies show that movement trajectories of different
VR users share more than 30% in common when they are
near the same Points of Interests (PoIs) in the VR world. Such
locality in VR user movements [16] leads to redundant frames
with very similar scene views across different users. Second,
consecutive frames of the same VR user are also correlated,
because of the perspective object projection in VR applications
that reduces the impact of user movement on the user view.

1Each panoramic VR frame with 4K resolution could contain more than
8.3 million pixels and have a raw size up to 33MB.

�

�����5IJSE�"$.�*&&&�4ZNQPTJVN�PO�&EHF�$PNQVUJOH

����������������������������¥�����*&&&
%0*���������4&$�����������



We verified that such redundancy could exceed 50%, i.e., more
than half of pixels in these frames are identical with each other.

Based on these observations, in this paper we present Multi-
User Virtual Reality (MUVR), a systematic mobile VR frame-
work that maximizes the efficiency of edge cloud’s resource
utilization to support multi-user VR. The key approach of
MUVR is to adaptively reuse the previous results of VR frame
rendering whenever necessary, by identifying and exploiting
the aforementioned redundancy when the edge cloud renders
VR frames and transmits these frames to the mobile HMD.
In particular, MUVR eliminates redundant computations in
VR frame rendering via frame memoization, which caches
the invariant background view of rendered VR frames. These
caches will be opportunistically reused when rendering frames
for other users in the future, if they are at the similar camera
locations in the virtual world. Furthermore, in order to reduce
the amount of VR frame data being wirelessly transmitted to
the mobile HMD, MUVR avoids transmitting full VR frames
for every user. Instead, it only transmits a small portion of VR
frames in full as reference frames. Then, for any other frame
produced between reference frames, only its distinct portion
will be transmitted to the mobile HMD as a delta image.

The major challenge of designing MUVR, however, lies
in the complicated dynamics of user movements in the VR
world, which make it difficult to maintain and utilize the
cached VR frames. First, it is very rare that the camera
locations of two VR users in the virtual world exactly match
each other. The dynamic difference of such camera locations
across VR users, then, complicates the decision of cache hit.
Second, the efficiency of cache indexing and overhead of
cache maintenance must be carefully balanced at the edge
cloud. Maintaining a distributed cache at individual VR users
reduces the overhead of cache indexing, but increases their
local consumption of storage because the same VR image
may appear in multiple users’ local caches. In contrast, a
centralized cache at the edge cloud maximizes the efficiency
of storage utilization, but may involve frequent inter-process
communications (IPC) for delivering cached images across
different users.

To address these challenges, our primary idea is to maintain
a two-level hierarchical cache at the edge cloud. In particular,
the edge cloud maintains a central cache, which aggregates
the VR frames rendered for different VR users and reuses
these cached frames whenever necessary: for any new camera
location being requested for VR frame rendering, the cached
VR frame with the closest matching location will be trans-
formed by image warping, so as to be reused with minimum
image quality loss. On the other hand, when the VR user
stays stationary in the virtual world, individual VR application
locally maintains a distributed small-sized cache to reuse a
precedent background image, and only requests to the central
cache for rendering a new VR frame if the user movement
results in perceivable change of the user view. In this way,
by dynamically adapting the threshold of image warping, we
are able to flexibly balance between using the central and
distributed caches, so as to maximize the efficiency of cache

tĞĂƉŽŶ

DŽŶƐƚĞƌ

^ǁŝƚĐŚ

&ƌŽǌŽŶ�tĂůů

(a) User movement trajectories

� ���� ���� ���� ���� ����� �����

3OD\HU�

3OD\HU�

3OD\HU�

3OD\HU�

)UDPH�6HTXHQFH

�

0RYLQJ�3HULRG 6WDWLRQDU\�3HULRG

(b) User movement timeline

Fig. 1. Users’ movements in the mobile VR Fantasy application

utilization while providing satisfactory VR image quality to
users.

We have implemented MUVR over the Android OS and
Unity VR application engine2 as a mobile middleware between
VR applications and OS drivers, so as to ensure its generality
over different VR applications with heterogeneous dynamics
and computation demands. More specifically, MUVR is im-
plemented in native language within the Android OS, and we
utilize the unified OpenGL APIs for graphics operations such
as VR frame rendering, so as to tackle the heterogeneity of
shading languages and scripting APIs used by different VR
applications. The implementation consists of ∼5,000 Lines of
Codes (LoC) in total, and our experimental results over real-
world VR applications show that MUVR, when being used to
simultaneously serve multiple (>4) VR users, could efficiently
reduce the computation burden at the edge cloud by more than
90% with complicated scenes and intensive user movement,
while reducing more than 95% of the VR frame data being
wirelessly transmitted.

II. MOTIVATION & PRELIMINARIES

Our design of MUVR is motivated by the unique character-
istics of user movement and frame rendering in VR applica-
tions. First, different VR users’ movements in the virtual world
could significantly overlap with each other due to the temporal
and spatial locality of such movements, leading to similar
background views of these users that can be memoized and
reused. Second, for any single VR user, the impact of his/her

2The Unity engine (https://unity3d.com/) is the most popular tool for
commercial VR game creation.

�



Virtual World Model (3-D Space)

C1: (0,0,0)

C2: (0.1,0,0)

C3: (2,0,0)

User View
(2-D Display)

Apex

FOV

Truncated Pyramid Frustum

Fig. 2. The virtual world in VR applications

movement on the corresponding user view could be reduced by
the perspective projection being used in VR applications. Such
reduction results in very high redundancy across consecutive
VR frames of the same user, which can be utilized by MUVR
to reduce the amount of VR frame data being transmitted to
the mobile HMD.

A. Locality of VR User Movement

User movements in VR applications are mostly triggered
by Point of Interests (POIs) in the virtual world, which are
intentionally designed to represent the application contents.
Camera trajectories of different VR users, hence, would
overlap when they visit the same POI. To investigate such
locality of VR user movement, we conducted experimental
studies over a real-world mobile VR application downloaded
from Google Play: a typical role-playing VR game called VR
Fantasy (Fantasy) [7] that allows the user to freely explore
the virtual world. To collect camera traces of user movements
in the application, we hacked into the dynamic-link library
(DLL) of the Unity engine inside the application .apk file, and
recorded the camera position for each frame being rendered.
The camera trajectories of 4 VR users with Google Cardboard,
as shown in Figure 1a, demonstrate a 8% to 35% overlap when
the users are moving closer to the same POI.

At the same time, we observed that users’ movements in
the virtual world are intermittent, because they usually stop
at POIs to interact with the nearby virtual objects. As shown
in Figure 1b, the user character spends more than 53% of
time as stationary, with only slight change of their camera
positions due to the VR neck model [46] between -0.1 and
0.1 in virtual-world units (∼10cm in reality).

These observations motivate MUVR to eliminate redundant
computations in VR frame rendering by exploiting the locality
of user movement: once a background view is rendered for a
VR user, it can be reused for rendering VR frames of another
user in the future, as long as the camera location of frame
rendering remains the same or has only minor changes. On
the other hand, such a rendered background view can also be
reused for rendering consecutive frames of the same user, as
long as the user stays stationary.

B. Pixel Redundancy across Frames

As shown in Figure 2, VR applications construct the virtual
world as a 3D space, where virtual objects are modeled and

W

(x, y, z) (x’, y’, z’)

Image Image’

Mproj M’
proj

Fig. 3. VR image warping

��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���
��

��

��

��

��

��

���

$P
RX
QW
�R
I�S
L[
HO
V�
EH
LQ
J�
UH
WD
LQ
HG
���

�

'LVWDQFH�WR�UHIHUHQFH�IUDPH

�9LNLQJ
�/LWH
�6FL�)L

Fig. 4. Frame correlation after image warping

placed at certain coordinates. In this 3D world, the user
character is represented by a 2D camera, and the application
view being presented to the user is rendered by projecting each
3D object to the camera surface. Specifically, most of today’s
VR applications adopt perspective projection [47], [23], which
emulates how human eyes see the real world. Such projection
forms the 3D world as a truncated pyramid frustum, with the
camera sitting at the apex point and its range being defined
as the camera’s field of view (FOV). Any object within this
frustum is projected to and visible in the user view.

The most significant characteristic of perspective projection
is that distant objects in the 3D world appear smaller than
objects close-by, and the impact of user movement on the
2D user view will hence be reduced after object projection,
which leads to large pixel redundancy between frames. Image
warping techniques, in this case, are widely used by existing
VR applications to reproject a rendered frame to the new
camera view, which may change in the mean time when the
VR frame is being rendered. For example, the most commonly
used technique, Image-based Rendering (IBR) [43], [49], is
illustrated in Figure 3. For any pixel (x, y) on the 2D user
view plane, its coordinate in the 3D virtual world can be
computed as W = M−1

proj ·(x, y, z), where z is the depth value
of (x, y) and Mproj indicates the current camera projection.
Then, when the camera projection changes to M

′

proj , the
new user view can be produced by reprojecting W onto
the 2D plane as (x′, y′, z′) = M

′

proj · W for every pixel,
without re-rendering these pixels at new locations. Since such
reprojection continuously warps the original frame’s pixels to
the exact positions in the new user view, it is able to precisely
capture the pixel redundancy between VR frames.

In practice, image warping imposes no restrictions on the
target camera position to enable the perspective reprojection
in the virtual world. However, the visual quality of the warped

�



ǆ
Ǉ

ǌ

/ŵĂŐĞ��ĂĐŚĞ
�ĂŵĞƌĂ �ŝƚŵĂƉ

;Ϭ͘ϬϮ͕�Ϭ͕�ϬͿ

͙ ͙

hƐĞƌ�Ϯ͗�
;ͲϬ͘ϬϮ͕�Ϭ͕�ϬͿhƐĞƌ�ϭ͗

;Ϭ͘ϬϮ͕�Ϭ͕�ϬͿ

/ŵĂŐĞ�
tĂƌƉŝŶŐDĞŵŽŝǌĞ

hƐĞƌ�Ϯ�sŝĞǁ

ZĞƵƐĞ
ZĞŶĚĞƌ

hƐĞƌ�ϭ�sŝĞǁ

WK/

Fig. 5. Overall design of MUVR

image is subject to the accuracy of measuring the user’s
location in the virtual world, i.e., the user motion should be
precisely depicted and reflected. Such accuracy of location
measurement is inherently determined by the mobile HMD
hardware, which implements the neck model and tracks the
users motion in realtime. For example, the motion tracking in
Oculus VR reaches a precision of 0.0003 (∼0.03cm in reality)
[34] and guarantees high visual quality with accurate camera
location in each frame.

Based on such accurate user location measurement in the
VR world, we conducted preliminary experiments to mea-
sure the extent of pixel redundancy across VR frames in
practical VR applications. Our experiments randomly pick 10
reference frames from three open-sourced VR applications
(Viking Village [6], Lite [4] and Sci-Fi [5]) with different VR
scene complexity and character dynamics, and utilize IBR to
warp these frames to the target camera views from different
distances away. Figure 4 demonstrates that more than 50%
of pixels can be retained in VR frames after image warping,
even if the warping distance increases to 5.0 (∼5m in reality).
Such redundancy will be exploited in MUVR to minimize
the amount of VR frames being transmitted from the edge
cloud, by generating multiple delta images at different camera
locations over time from the same reference frame.

III. OVERVIEW

Figure 5 illustrates how MUVR works: A centralized im-
age cache is maintained by the edge cloud to memoize the
previously rendered VR frames from all users. Then, for
every new incoming request of VR frame rendering, MUVR
searches the image cache with the target camera position, and
reuses a cached VR image whenever possible to minimize the
computation burden of VR frame rendering. When there is a
cache miss, the edge cloud will render the requested VR frame
in full and add the rendered frame into cache.

In particular, MUVR considers a cache hit if a cached VR
image at a nearby camera position, whose distance from the
target camera position is shorter than a given threshold, can
be found. For example in Figure 5, the edge cloud will serve
User 1’s request for rendering the frame at the camera position
(0.02, 0, 0) when the cache is empty. Afterwards, for User 2’s

request with the camera position (-0.02, 0, 0), the edge cloud
will reuse and warp the cached image of User 1 to the target
camera position. In practice, MUVR can flexibly adopt cache
replacement algorithms to improve the cache hit rate, and the
distance for image warping can also be controlled to balance
between the cache hit rate and image quality loss.

After having generated a VR frame at the edge cloud,
MUVR further minimizes the communication overhead of
transmitting VR frames by eliminating the redundancy across
consecutive VR frames. To achieve such minimization, MUVR
only transmits a subset of VR frames as full panoramic images
that capture all the possible user orientations at the corre-
sponding camera positions, referred to as reference frames,
to the mobile HMD. Every time when a new VR frame is
needed, MUVR first renders this frame in full at the edge
cloud, and then warps the most recent reference frame from its
original camera view to the current user view. As a result, the
delta image is synthesized via delta encoding as the difference
between the originally rendered frame and the warped image
from the reference frame. At the mobile HMD, MUVR warps
the received reference frame in the same way to the user view.
When the corresponding delta image is received, it reverses the
delta encoding operations and applies the delta image to patch
the visual artifacts being produced by image warping, so as
to restore the full VR frame for display without any image
quality loss.
How to maximize the cache utilization? MUVR designs a
universal portal with a large central cache at the edge cloud
to render the background views for all VR users. Such central
cache aggregates the VR frames from all users and enables
the cached images to be reused across different users, which
significantly improves the cache utilization. However, such
central cache inevitably incurs IPC overhead to deliver the
rendered images to individual VR applications. To minimize
such system operational overhead, a small-sized cache is also
created and maintained by each VR user, which memoizes
the previous background images that are locally rendered for
faster reuse (see Section IV).
How to minimize the VR frame data being transmitted? As
shown in Section II-B, a large amount of redundant pixels can
be retained across consecutive VR frames or even after image
warping over long distance. Hence, delta images for multiple
VR frames can be synthesized from the same reference frame,
and the size of each delta image is always smaller than the
corresponding full VR frame. In practice, the sizes of delta
images will grow when the user character keeps moving and
results in longer warping distance. In order to ensure timely
transmission of each delta image, MUVR further reduces the
average size of delta images to <25 KB without impairing the
VR image quality, through image compression and clipping
(see Section V).

IV. VR FRAME MEMOIZATION

MUVR utilizes the central image cache to memoize and
reuse the background views of rendered VR frames at the edge
cloud, which are always identical for a fixed camera position.

�



�ĞŶƚƌĂů�
�ĂĐŬŐƌŽƵŶĚ�
'ĞŶĞƌĂƚŽƌ

�ƉƉ�WƌŽĐĞƐƐ�
&Žƌ�hƐĞƌ�ϭ

�ƉƉ�WƌŽĐĞƐƐ�
&Žƌ�hƐĞƌ�Ϯ

�ƉƉ�WƌŽĐĞƐƐ�
&Žƌ�hƐĞƌ�E

͙

�ĂĐŬŐƌŽƵŶĚ
�ĂĐŚĞ

DĂŶĂŐĞ

DĂŶĂŐĞ

DĂŶĂŐĞ

DĂŶĂŐĞ

Fig. 6. The two-level cache design in MUVR

In practice, the background views, after being transmitted
to the mobile HMD, will be combined with the foreground
objects produced by the corresponding local VR application
for up-to-date animations and user interactions.

A. Two-level Image Cache Design
An intuitive strategy to memoize and reuse the rendered VR

images is to maintain an image cache in the VR application
processes of different users. However, the cache utilization in
such scheme is impaired because the rendered images cannot
be reused across different users, even if their camera positions
are the same. In addition, extra memory consumption would
be incurred because each user process may store its own copy
of the same image.

On the other hand, a centralized cache could reduce the
memory consumption by coalescing the rendered VR frames
of all users, and improve the cache utilization by allowing
these frames to be reused across multiple users. However,
IPC operations such as shared memory would be involved
to deliver a rendered VR image from the central cache to
individual users and consume additional system resources.

Based on the observation that user movement in VR appli-
cations is intermittent with long stationary periods in Section
II-A, MUVR devises a two-level cache mechanism which
optimizes the cache performance with the advantages in both
centralized and distributed cache schemes. Specifically, as
shown in Figure 6, the edge cloud maintains a small local
cache in the VR application process of every VR user, as
well as a large central cache through a corresponding central
process. These two levels of caches collaborate together to
generate the background view for all VR users at the edge
cloud: When a VR user keeps stationary, the camera positions
would be mostly unchanged and the background view of
consecutive frames can be reused from the user-specific local
cache without any IPC operations at the edge cloud. On the
other hand, in cases of cache miss in the local cache, the
corresponding user process sends a request with the latest
camera position to the central process, which serves as the
universal portal to reuse the rendered images across multiple
users with high cache utilization.

B. VR Frame Rendering
Based on this two-level cache design the procedure of

rendering a VR frame in MUVR is shown in Figure 7.
Whenever a new VR frame is needed at the edge cloud,
the corresponding user process first looks up the local cache
with the latest camera position, and the cached background

hƐĞƌ��ƉƉ�WƌŽĐĞƐƐ
WƵůů�
�ĂĐŚĞ

tĂƌƉ�
EĞĂƌďǇ

ZĞŶĚĞƌ�
^ĐĞŶĞ

�ĂĐŬŐƌŽƵŶĚ�
/ŵĂŐĞ

^ŚĂƌĞĚ�DĞŵŽƌǇ
ϯ͘��ŽƉǇ�ƚŽϰ͘��ŽƉǇ�ĨƌŽŵ

ϭ͘�ZĞƋƵĞƐƚ /ŶĚĞǆ��ĞŶƚƌĂů�
�ĂĐŚĞ

�ĂĐŬŐƌŽƵŶĚ�
/ŵĂŐĞ

ZĞŶĚĞƌ
�ĂĐŬŐƌŽƵŶĚ

/ŶĚĞǆ�>ŽĐĂů�
�ĂĐŚĞ

&ŽƵŶĚ

Ϯ͘ϭ��ǆĂĐƚ�DĂƚĐŚ

Ϯ͘Ϯ�&ŽƵŶĚ
EĞĂƌďǇ

Ϯ͘ϯ�EŽ�DĂƚĐŚ

�ĞŶƚƌĂů��ĂĐŬŐƌŽƵŶĚ�'ĞŶĞƌĂƚŽƌ�WƌŽĐĞƐƐ

Fig. 7. VR frame rendering in MUVR

view will be reused if a matching entry is found. Otherwise,
a request with the current camera position will be sent to
the central process at the edge cloud, where a specialized
background view generator will produce the target view by
looking up the central cache with the following options.

First, when the background view of the current camera
position has been previously rendered by other VR users and
memoized in the central cache, the cache indexing will find the
entry that matches exactly with the requested camera position.
Therefore, the memoized background view can be directly
pulled from the cache as the rendering result.

Second, when the camera positions of two VR users
mismatch, the cache indexing would fail to find an entry
with exact match. However, if such mismatch is minimal,
their background views still manifest large amounts of pixel
redundancy, which could be utilized by MUVR to avoid
unnecessary computation. To do so, MUVR exploits such
pixel redundancy between adjacent frames and reuses a nearby
background view with image warping: the background gener-
ator iterates through all cached entries and searches for the
entry whose camera position is closest to the target camera
position. If such distance is smaller than the given threshold,
the background generator warps the view in this cache entry
to the target camera position. In particular, MUVR adaptively
adjusts such threshold to balance between the image quality
and computational overhead: a large threshold enables a view
to be warped to a farther distance with more computation
reductions, in the exchange of degraded image quality. We
will further investigate such tradeoff and the best choice of
such threshold via experimentation in Section VIII.

Last, if the background generator cannot find any reusable
entry, the background generator would fall back and render the
background view with the application engine, which is then
added into the cache for possible future use. Particularly, if a
new image arrives while the cache has reached its maximum
capacity, an existing entry would be removed according to the
cache replacement policies (e.g., LRU or LFU).

After the background view is generated, it would be de-
livered to the user process so as to be combined with the
foreground view. In order to ensure the efficiency of image
delivery, a chunk of shared buffer will need to be established
between the background generator and the user process, so as
to avoid the expensive memory operations on the large bulk
of image data.

�



� ���� ��� ���� ��� ���� ��� ���� ��� ���� ���
��

��

��

��

��

��

$Y
HU
DJ
H�
6L
]H
�R
I�'

HO
WD
�,P

DJ
H�
�.
%�

:DUSLQJ�'LVWDQFH
�

�

'HOWD�6L]H

Fig. 8. Average size of delta images after compression

V. DELTA IMAGE SYNTHESIS

As stated in Section III, the VR application views being
generated at the edge cloud will be further shrunk by delta en-
coding, so that only their distinct portions will be transmitted
to mobile HMDs as delta images with the minimum transmis-
sion overhead. MUVR synthesizes a delta image through per-
pixel subtraction between the full VR frame and the warped
image from the corresponding reference frame. Specifically,
for VR frames with 8-bit pixel channels3, the pixel value in
each channel of the delta image is computed as

Delta =
Full −Warped

2
+ 127, (1)

which maps the positive and negative differences between the
full VR frame and the warped image to lighter and darker
colors, respectively. Similarly, when restoring the full VR
frame, the mobile HMD patches the delta image to the warped
image by inversing the subtraction as

V iew = min[2 · (Delta− 127) +Warped, 255]. (2)

Based on such encoding, MUVR further reduces the size
of delta image from the following two aspects. First, the
edge cloud compresses each delta image before sending it,
and uses the decompressed version of compressed reference
frames at the edge cloud to ensure the consistency of delta
image synthesis with the mobile HMD. Second, the edge cloud
clips each delta image according to the current user camera
orientation and FOV, In this way, it avoids transmitting any VR
frame data outside of the current user view, which is unlikely
to be noticeably changed during the short time period of
transmitting a delta image. Our experimental studies show that
the delta encoding with compression and the viewport clipping
reduce ∼25% and ∼65% of VR frame data respectively, which
hence minimize the size of a delta image to be < 25 KB
without any VR image quality loss. Such reduction, on the
other hand, also allows a reference frame to be used for
synthesizing more delta images and further minimizes the total
amount of VR frame data being transmitted.

A. Delta Image Compression
The most straightforward approach to reducing the size

of a delta image is to compress the image at the edge
cloud before transmitting it to the mobile HMD. Since the

3The pixel value in an 8-bit channel ranges from 0 to 255.

�� �� �� �� ��
�

��

��

��

���

���

���

���

���

���

�$YHUDJH�'HOWD�6L]H
�66,0�6FRUH

+����&RPSUHVVLRQ�5DWLR

$Y
HU
DJ
H�
'
HO
WD
�6
L]
H�
�.
%�

����

����

����

����

����

����
����

�6
6,
0
�6
FR
UH

Fig. 9. Balancing between delta size and image quality

size of a delta image is much smaller than the full VR
frame, each delta image, after being processed by existing
lossy compression techniques such as H.264 [63], could be
efficiently decompressed by the mobile HMD before the next
delta image arrives. As shown in Figure 8, the average size of
delta images with H.264 compression continuously increases
along with the warping distance, which reduces the amount of
redundant pixels in VR frames when it increases. Even when
the warping distance is very long (∼0.5), such average size
could be lower than 80 KB with compression ratio (23)4.

However, applying such a lossy compression technique over
delta images in MUVR is challenging, because it may result in
discrepancy in delta image synthesis between the edge cloud
and the mobile HMD, further impairing the VR image quality.
More specifically, the edge cloud synthesizes a delta image
by warping from an uncompressed reference frame, but has to
send such a panoramic reference frame to the mobile HMD
after compression. The warped image from the decompressed
reference frame at the mobile HMD, hence, will have more
visual artifacts due to lossy data compression and affect the
correctness of delta patching.

To address this challenge, MUVR retains a decompressed
version of each compressed reference frame, and uses this ver-
sion for image warping at the edge cloud to ensure consistency
of delta image synthesis. The correctness of delta patching at
the mobile HMD, then, could only be impacted by compres-
sion over the delta images themselves. In practice, such impact
can be controlled by adopting different H264 compression
ratios that balance between the VR image quality and delta
image sizes. To evaluate such balance, we conducted prelim-
inary experimental studies by using the structural similarity
(SSIM) metric [62] over the Viking Village VR application [6].
According to [19], SSIM is designed to model the human eye’s
perception to 3D images, and a SSIM score higher than 0.9
indicates good quality of VR images. Our experiment results
in Figure 9 show that any H264 compression ratio lower than
27 results in a satisfiable level of VR image quality, and could
further reduce the average size of delta images down to 25 KB.

B. Delta Image Clipping

The size of delta image could be further reduced by exploit-
ing the limited FOV of today’s mobile HMDs, which is usually

4H.264 allows different compression ratios by adjusting its Constant Rate
Factor (CRF), which decides the amount of data bits being used for each
image frame.

�



Top

LeftRight

Bottom

Back

Front

Enlarged FOV

Current FOV

Anticipated head rotation

Fig. 10. Delta image clipping

smaller than 120◦ [3]. As a result, instead of synthesizing
and transmitting a delta image over the 360◦ panoramic view,
MUVR transmits to the mobile HMD with a clipped delta
image corresponding to the current user camera orientation
and FOV, which are reported from the mobile HMD to the
edge cloud every time when a new VR frame is needed.

The major challenge of such delta image clipping, however,
is that the user view may change during the process of delta
image synthesis due to user head rotation, and such change
cannot be known by the edge cloud in advance. Our solution
to this challenge, as shown in Figure 10, is to further enlarge
the FOV of image clipping by X◦ in both sides, to cover the
possible change of user view [35]. In practice, since each delta
image is promptly transmitted to the mobile HMD within a
very short amount of time, the possible change of user view
during this short time period is very limited. For example, even
with the most vigorous user head rotation where the angular
velocity reaches to 780◦ per sec [28], the value of X is merely
17.5 for a 22ms latency of delta image transmission.

As shown in Figure 11, after H.264 compression, such
clipping further reduces the size of delta images by up to 65%,
when being applied to the three open-sourced VR applications
that we described in Section II-B. In particular, such size
could be effectively controlled within 25 KB when the user
FOV is smaller than 150◦, which could be considered as the
optimal FOV that well balances between VR frame rate and
user experience in practice.

VI. IMPLEMENTATION

We implemented MUVR over Google VR Unity SDK
v1.20 and Unity VR application engine v5.5.1, with minimum
modification on either the Google VR SDK itself or the VR
application binaries. It consists approximately 4,000 lines of
C++ code as a plugin to the Unity engine, and 1,000 lines
of C# code as a Unity engine script. We use x264 [9] as the
encoder and decoder of delta images.

A. Edge Cloud Operations
MUVR runs a clone copy of each VR application at the edge

cloud, and renders VR frames according to the user inputs
such as controller operations received from the mobile HMD
as system events. To retrieve the rendered full VR frames from

��� ��� ��� ��� ���
�
��

��

��

��

��

��

��

'
HO
WD
�6
L]
H�
�.
%�

&OLSSLQJ�)29��GHJ�

�9LNLQJ
�/LWH
�6FL�)L

Fig. 11. Delta size with different clipping FOV. H.264 with CRF=23 is being
used.

the application binary, we exploit the hook of the application
engine and attach a post-processing script to the specialized
VR camera. This script transforms the depth buffer into a
greyscale image, and then reads the raw pixels of the color
and depth images into the main memory.

On the other hand, in order to render the panoramic refer-
ence frames at the edge cloud, we create a specialized camera
in the VR application binary, which utilizes the VR application
engine’s API to render the scene as a cubemap. Specifically,
the camera renders the scene onto the sides of a cube with six
square textures, which represent the view along the directions
of the world axes (up, down, left, right, forward and back).
Each face of the cubemap has a FOV of 90◦ and a resolution
of 1024x1024 so as to capture a 4K panoramic user view.

B. Central Cache Implementation
One intuitive approach to implementing the central cache

at the edge cloud is to assign a dedicated storage space
that can be synchronously shared by all VR user processes.
Specifically, each user process of VR application needs to
synchronize its cache access with other user processes in
a distributed manner, during which IPC operations can be
involved to coordinate among them. However, the run-time
overhead of such synchronization increases significantly when
more user processes are being operated at the edge cloud and
could hence result in severe contention for cache access. For
example, the synchronization may indefinitely block some user
processes from execution, or lead to race conditions that may
retrieve wrong background views for VR display. To address
these problems, MUVR deploys a dedicated central process
with shared cache, which greatly simplifies the interaction
among user processes with high performance. In particular,
during any cache access in background rendering, the user
process only needs to interact and synchronize with the sole
central process without contention. On the other hand, the
central process owns a global view of all VR users, which
could help manage the cache resources more effectively.

C. Edge Cloud System Integration
The major challenge of MUVR implementation on the edge

cloud is how to efficiently support different VR applications
and hardware drivers in a generic manner. First, VR ap-
plications are heterogeneous in their shading languages and

�



hŶŝƚǇ��ŶŐŝŶĞ

KƉĞŶ'>

'Wh��ƌŝǀĞƌ

hŶŝĨŝĞĚ��ŶŐŝŶĞ�
WůƵŐŝŶ��W/

EĞƚǁŽƌŬ�
DĂŶĂŐĞƌ

tŝ&ŝ ͬ�>d�

'ƌĂƉŚŝĐƐ�
ZĞŶĚĞƌĞƌ

�ŽƌĞ�EĂƚŝǀĞ�
>ŝďƌĂƌǇ

DhsZ�DŝĚĚůĞǁĂƌĞ

hŶƌĞĂů��ŶŐŝŶĞ
WůƵŐŝŶ�^ƚƵď WůƵŐŝŶ�^ƚƵď

�ƌǇ�ŶŐŝŶĞ
WůƵŐŝŶ�^ƚƵď

Fig. 12. MUVR as a mobile middleware

scripting APIs being used. For example, the Unity engine uses
either JavaScript or C# as the script language, but the Unreal
engine5 only supports C++. Second, hardware drivers from
multiple vendors usually provide heterogeneous interfaces for
hardware operations. Supporting pixel reuse within the VR
application binary or hardware driver, hence, could lead to
large amounts of re-engineering efforts for different hardware.
Such operations, on the other hand, if being done in the user
space, would also be much less effective due to frequent
interaction with the system hardware.

To address these challenges and retain generality, we in-
tegrate MUVR into the operating system of the edge cloud,
and implement it as a middleware of shared libraries between
VR applications and OS drivers. Such implementation ensures
the isolation between the heterogeneous hardware drivers and
VR applications, and hence enables MUVR deployment on
any edge cloud platforms with the minimum reprogramming
efforts over VR applications. As shown in Figure 12, the core
of MUVR is implemented as an OS library in native language
to regulate the main MUVR functionality, such as the two-
level cache management and IPC operations. The core library
then interacts with the graphics renderer, which manages frame
buffers and invokes APIs directly from OpenGL for image
warping and delta encoding. Since the OpenGL provides
unified APIs for 3D graphics rendering, the pixels in VR
frames are generically reused without involving the engine-
specific shading languages such as the Microsoft’s HLSL [61]
and Nvidia’s Cg [42].

On the other hand, the core library should interact with VR
application binaries to retrieve the necessary metadata for pixel
reuse, such as the current camera position, orientation and
FOV. An intuitive solution is to invoke engine-specific APIs
directly from the core library, but lacks generality. Instead, we
introduce a middle layer with a suite of unified plugin APIs for
data exchange as shown in Figure 13. In particular, a plugin
stub is implemented with engine-specific scripts to fulfill
behaviors of the predefined APIs. Such stub is dynamically
linked with the core library during development, so that any
invocation to the plugin API will be directed to the plugin stub
at runtime. For example in Unity, to warp the reference frame
to the target view at runtime, the graphics renderer needs to
find out the current camera position and hence will invoke

5https://www.unrealengine.com/

'ƌĂƉŚŝĐƐ�ZĞŶĚĞƌĞƌ

sZ �ŶŐŝŶĞ WůƵŐŝŶ�^ƚƵď/ŵƉŽƌƚ DhsZ�>ŝďƌĂƌǇ/ŵƉůĞŵĞŶƚ�ĞǀĞůŽƉ͗

�ĂŵĞƌĂ

�WŽƐŝƚŝŽŶ
�ZŽƚĂƚŝŽŶ

�ĂŵĞƌĂ^ƚƵď ;�ηͿ

�'ĞƚWŽƐŝƚŝŽŶ;Ϳ
�'ĞƚZŽƚĂƚŝŽŶ;Ϳ

�ĂŵĞƌĂ�W/ ;�Ϳ

�'ĞƚWŽƐŝƚŝŽŶ;Ϳ
�'ĞƚZŽƚĂƚŝŽŶ;Ϳ

�ZĞŶĚĞƌWĂŶŽ;Ϳ
� &ƌĂŵĞtĂƌƉ;Ϳ

ZƵŶƚŝŵĞ͗
WƌŽƉĞƌƚǇ
�ĐĐĞƐƐ

DĂƌƐŚĂů�Θ
hŶŵĂƌƐŚĂů

/ŶǀŽŬĞ

WůƵŐŝŶ��W/ /ŶǀŽŬĞ

>ŝŶŬ>ŝŶŬ

Fig. 13. Unified interaction with application engine

>Ϭ ZϬ

>Ϭ

ZĞŶĚĞƌ�Θ�tĂƌƉ

�ĞůƚĂ�^ǇŶƚŚĞƐŝƐ

,Ϯϲϰ��ŶĐŽĚŝŶŐ

,Ϯϲϰ��ĞĐŽĚŝŶŐ

tĂƌƉ�Θ��ĞůƚĂ�WĂƚĐŚ

ZϬ

>ϭ Zϭ >Ϯ ZϮ
͙

>Ϭ ZϬ

>Ϭ ZϬ

>Ϭ ZϬ

>ϭ Zϭ >Ϯ ZϮ
͙

>ϭ Zϭ >Ϯ ZϮ
͙

>ϭ Zϭ >Ϯ ZϮ
͙

>ϭ Zϭ >Ϯ ZϮ ͙

�ĚŐĞ��ůŽƵĚ
DŽďŝůĞ

�ĂƚĂ��ĞƉĞŶĚĞŶĐǇ EĞƚǁŽƌŬ��ĞƉĞŶĚĞŶĐǇ

Fig. 14. Pipeline processing of MUVR

the GetPosition() function in the plugin CameraAPI, which is
written in native C. This function marshals the request to the
managed format in C#6 and triggers the engine-specific script
CameraStub to access the position property of the camera
object. Afterwards, the position values of the engine camera
are marshaled to the native format and returned to be processed
by the graphics renderer.

D. Parallel and Pipeline Processing
MUVR is also implemented to maximize the performance

of the edge cloud and reduce the response latency to the
mobile HMD. We divide the MUVR operations into individual
tasks and execute them in a pipeline manner for the two
stereo eyes in each frame. As shown in Figure 14, when
the system is working to render and warp for the right eye
of frame 0 (denoted as R0), it is simultaneously encoding
the delta image for the left eye of frame 0 (L0). To avoid
pipeline stalls or resource idleness due to the heterogeneous
computational complexity in different stages, we maintain a
request queue for each stage, which can then proceed to the
next task immediately without waiting. In addition, we also
share the VR frame memory and allow the memory handle to
be passed between stages, so as to avoid copying the bulky
VR frame data itself.

With the pipeline, the mobile VR performance is con-
strained by the most computationally expensive stage in the
pipeline, whose processing time is further reduced in MUVR
by exploiting the system parallelism. In particular, when the
limited GPU resources on low-end mobile HMDs are fully
used by image warping and hence incapable of decoding the
compressed delta images timely, MUVR splits a delta image
into multiple segments and dedicates specialized CPU threads
for faster software decoding.

VII. MAKING VR APPS WITH MUVR

The generic design and implementation of MUVR signif-
icantly reduce the burden of VR application development,

6http://msdn.microsoft.com/en-us/library/ms235282.aspx

�



�ƉƉ�KďũĞĐƚƐ
hŶŝƚǇ�WůƵŐŝŶ�

^ƚƵď
WĂŶŽƌĂŵŝĐ�
ZĞŶĚĞƌĞƌ�
;WƌĞĨĂďͿ

EĂƚŝǀĞ��ŽĚĞ�
;�ͬKƉĞŶ�'>Ϳ

�ŽŶǀĞƌƚ
�ŽƌĞ�>ŝď

&ƌĂŵĞ�
tĂƌƉĞƌ
�ĞůƚĂ�

�ŶĐŽĚĞƌ

>ŝŶŬ

sZ��ƉƉ

�ŽŵƉŝůĞ

�ƵŝůĚŝŶŐ�ƚŚĞ�ĞĚŐĞ�ĐůŽƵĚ�ĂƉƉ

�ƉƉ�KďũĞĐƚƐ

EĂƚŝǀĞ��ŽĚĞ�
;�ͬKƉĞŶ�'>Ϳ

�ŽŶǀĞƌƚ

sZ��ƉƉ

�ŽŵƉŝůĞ

hŶŝƚǇ

'ŽŽŐůĞ�sZ�^�<

hŶŝƚǇ�WůƵŐŝŶ�
^ƚƵď

EĂƚŝǀĞ��ŽĚĞ�
;�ͬKƉĞŶ�'>Ϳ

�ŽŶǀĞƌƚ
�ŽƌĞ�>ŝď

&ƌĂŵĞ�
tĂƌƉĞƌ
�ĞůƚĂ�
WĂƚĐŚĞƌ

>ŝŶŬ

sZ��ƉƉ

�ŽŵƉŝůĞ

�ƵŝůĚŝŶŐ�ƚŚĞ�ŵŽďŝůĞ�ĂƉƉ

/ŶƚĞƌĂĐƚŝŽŶ�
^ĐƌŝƉƚƐ

/ŶƚĞƌĂĐƚŝŽŶ�
^ĐƌŝƉƚƐ

Fig. 15. Making VR apps with MUVR

with the Unity engine as the target VR software platform.
Typically, as shown in Figure 15, the Unity engine converts the
application-specific 3D objects and scripts of user interaction
into native codes that are further compiled as executable
binaries, so as to render the VR scenes at run-time. Such
procedure enables the application developer to easily extend
the application’s functionality from a basic prototype by sim-
ply linking the new native libraries into the existing program
binaries.

Our work exports the components implemented in Section
VI-C as easy-to-use modules, based on which VR applications
can be built for both the edge cloud and the mobile HMD. As
shown in Figure 15, the developers simply need to import
the modules provided by MUVR by copying the libraries to
the application folder and create special prefab7 instances in
the Unity engine, and these prefabs will then be dynamically
linked into the final executable at compile time. Specifically,
besides the core library, the modules of image warping and
delta encoding/decoding should also be included into the
graphics renderer at both the edge cloud and the mobile HMD,
and a prefab of panoramic renderer should be created at the
edge cloud to render panoramic reference frames.

In this way, the components in our implementation of
the MUVR middleware are completely decoupled from the
specific VR hardware platform, and hence can be directly
integrated into any VR application engine. Such integration
minimizes the amount of required efforts to build VR ap-
plications on top of MUVR, by allowing the application
engine to incorporate MUVR into the VR application binaries
automatically at compile time.

VIII. EVALUATION

In this section, we first evaluate the performance of MUVR
on edge cloud, by measuring the computation and com-
munication reductions when multiple users are running VR
applications with the edge cloud. Besides, we also evaluate the
mobile VR performance in terms of the mobile VR frame rate,
image quality and motion-to-photon latency. Our experiment
results show that MUVR can significantly improve the mobile
VR performance when multiple VR users are being served by
the resource-constrained edge cloud.

7An object acts as a template with predefined scripts and properties.

(a) Viking Village (b) Lite (c) Sci-Fi

Fig. 16. Screenshots of VR applications

A. Experiment Setup

In our experiments, we use a LG G5 smartphone with
Android v6.0.1 as the mobile HMD, and a Dell OptiPlex 9010
Desktop PC with an Intel i5-3475s@2.9GHz CPU, Radeon
HD 7470 GPU and 8GB RAM as the edge cloud server.
We use a Google cardboard as the experimental VR headset
with a FOV of 90◦. The mobile HMD is connected to the
edge cloud server via campus WiFi, which has an average
throughput of 100 Mbps and transmission latency of 3.5 ms.
Each experiment is conducted multiple times for statistical
convergence.

TABLE I
STATISTICS OF VR SCENE COMPLEXITY

Application Draw Calls Triangles (K) Vertices (K)
Viking 400 2,400 1,600
Lite 212 65.7 52.4
Sci-Fi 227 32.7 36.7

Our experiments are conducted over the three open-sourced
VR applications listed in Section II-B. As shown in Table
I, they present different levels of VR scene complexity and
dynamics. The experiment results over them, hence, are repre-
sentative and can be generally applied to other VR applications
with similar levels of VR complexity.

Each panoramic delta image, before being transmitted, is
clipped with a FOV of 135◦, which allows a 22.5◦ head
rotation with Google cardboard and tolerates 28 ms delay
for transmission and decoding. X264 with default CRF=23
is being used for delta encoding and decoding. In our exper-
iments, otherwise explicitly specified, we set the capacity of
the central cache as 300 background images, which correspond
to 5 seconds of video frames, and 3 images for the per-user
cache. We set the threshold of warping distance to reuse a
nearby background view as 0.1 virtual unit. The number of
concurrent users running VR applications on edge cloud is 4.

We compare MUVR with three existing VR schemes:
• Local: VR applications are solely running on the mobile

HMD.
• Thin-client: VR frame of each user is rendered separately

by the edge cloud and transmitted in full to the mobile
HMD [8].

• Furion: A VR frame is collaboratively rendered at the
edge cloud and mobile HMD. Panoramic VR back-
grounds are rendered at the edge cloud and pre-fetched
by the mobile HMD for all possible directions of user
movement. Foreground VR objects are all rendered at
the mobile HMD itself [33].

�



9LNLQJ /LWH 6FL�)L
�

�

�

�

�

�

�

)U
DP

H�
5
HQ
GH
ULQ
J�
7L
P
H�
�P
V�

95�*DPHV

�5HQGHU�6FHQH
�:DUS�1HDUE\
�5HWULHYH�&DFKH

Fig. 17. The average time to render
a background view

3OD\HU�� 3OD\HU�� 3OD\HU�� 3OD\HU��
�

�

��

��

��

��

��

)U
DP

H�
5
HQ
GH
ULQ
J�
7L
P
H�
�P
V�

*DPH�3OD\HU

�7KLQ�FOLHQW
�)DQWDV\���0895
�=RPELH���0895

Fig. 18. The average time to render
the background views in a session

� � � �
���

���

���

���

)U
DP

H�
5
HQ
GH
ULQ
J�
7L
P
H�
�P
V�

1XPEHU�RI�&RQFXUUHQW�3OD\HUV

�)DQWDV\
�=RPELH

Fig. 19. The VR performance with
concurrent users

���� ���� ���� ����
���

���

���

���

���
)U
DP

H�
5
HQ
GH
ULQ
J�
7L
P
H�
�P
V�

:DUSLQJ�'LVWDQFH

�)DQWDV\
�=RPELH

Fig. 20. The VR performance with
different warping distance

B. Improvement of Edge Cloud Performance

Our experiment results show that, by reusing the previously
rendered images, MUVR could reduce 90% of the rendering
computations and 95% of network communications on edge
cloud. In addition, the two-level cache design could reduce
30% of memory consumption with a central cache and reduce
32% of IPC operations with a small per-user cache. Our
experiments are being performed over the camera traces of 4
VR users when they are playing two highly active VR games,
i.e., VR Fantasy (Fantasy) [7] and Dead Zombies Survival
VR (Zombie) [2]. During trace collection, we ask all VR
users to perform the same task to explore the virtual world
for 5 minutes. To eliminate the impact caused by the users’
unfamiliarity with game operations, we allow VR users to
try each application for 1-2 minutes before starting the trace
collection. Each experiment session is operated with such a
camera trace containing 3,000 VR frames.

1) Computation Reduction: In this section, we evaluate the
effectiveness of MUVR on reducing the edge cloud computa-
tions of VR frame rendering. We first benchmark the average
execution time to render a single VR background frame with
different cache indexing results. As shown in Figure 17, the ex-
ecution time to render a background frame is negligible when
an exact match is found in the cache and the cached image is
retrieved and reused directly. On the other hand, if a nearby
background image is reused and warped to the target camera
position, MUVR can still achieve more than 3x speedup to
render the background frame, because the pixel reprojection
in image warping is more computationally efficient than the
pixel value computation in graphics rendering. Moreover, the
computational complexity of image warping is correlated only
to the size and resolution of the reference image and hence
such speedup increases to 6x for the Viking application, which
has the most complex scene setup.

We have also evaluated the MUVR’s workload reductions

��� ��� ��� ���
���

���

���

���

���

)U
DP

H�
5
HQ
GH
ULQ
J�
7L
P
H�
�P
V�

&DFKH�&DSDFLW\

�)DQWDV\
�=RPELH

(a) Frame Rendering Time

��� ��� ��� ���

�

��

��

��

��

��

&
DF
KH
�/
RR
N�
XS
�7
LP
H�
�X
V�

&DFKH�&DSDFLW\

�)DQWDV\
�=RPELH

(b) Cache Look-up Time

Fig. 21. The impact of cache capacity on VR performance

on the edge cloud in practical scenarios. Figure 18 shows the
average execution time to render a background image for each
user. From the figure we can see that MUVR reduces more
than 90% and 95% of frame rendering time for the Fantasy
and Zombie traces respectively, by reusing the previously
rendered results. The Zombie application achieves a higher
computation reduction because it has more restrictions on the
user movement and higher movement locality is observed,
which leads to higher hit ratios during cache indexing.

2) Factors that influence MUVR performance: In this sec-
tion, we evaluate how the performance of MUVR could be
influenced by various factors, such as the number of concurrent
users, the threshold of warping distance to reuse a nearby
cached entry and the maximum capacity of the cache. During
the experiments, we measure the average time to render a
frame for player 1 with different system setups.

First, we evaluate how the number of concurrent users could
influence the frame rendering time and the experimental results
are shown in Figure 19. We can see that the edge cloud
spends less time to render VR frames for any user when the
number of concurrent users increases, because the locality of
user movement leads to a higher chance to reuse a rendered
image from other users. Compared to single-user play, the
edge cloud could reduce 35% of frame rendering time for the
Zombie trace, when 4 players are running the VR applications
concurrently.

We also evaluate the influence of the warping distance to
the frame rendering, by adjusting the threshold of warping
distance to reuse a nearby cached entry. As shown in Figure
20, the average rendering time decreases 51% and 60% for
the Fantasy and Zombie traces respectively, when the warping
distance increases from 0.05 to 0.2. Such reduction is because
a larger warping distance would allow a cached image to
be reused by a larger range of camera positions and reduce
the number of frames to be generated by expensive geometry
rendering. Despite such improvement on cache utilization, the
threshold of warping distance cannot be increased arbitrarily
because the view disocclusions with farther warping distance
lead to more visual artifacts, which degrade the visual quality
of the warped image and impair the user experience to an
unacceptable level.

MUVR imposes no hard requirements on the minimum
cache size required for VR frame reuse. The cache capacity,
however, is related to the effectiveness of such reuse and the
corresponding frame rendering time on the edge cloud. Such

��



9LNLQJ /LWH 6FL�)L
�

��

���

���

���

���

���
5
HT
XL
UH
G�
1
HW
Z
RU
N�
%D

QG
Z
LG
WK
��0

ES
V�

95�*DPHV

�0895
�7KLQ�FOLHQW
�)XULRQ

Fig. 22. Network bandwidth required by MUVR

� �� �� �� ��� ��� ���
�

��

��

��

��

�� �9LNLQJ� �/LWH� �6FL�)L
�:DUSLQJ�'LVWDQFH

)UDPH�6HTXHQFH

1
HW
Z
RU
N�
%D

QG
Z
LG
WK
��0

ES
V�

�

�

�:
DU
SL
QJ
�'
LV
WD
QF
H

Fig. 23. Temporal fluctation of network bandwidth
consumption

� �� �� �� �� ��

���

���

���

���

���

���

&
XP

XO
DW
LY
H�
'
LV
WUL
EX
WLR
Q�
)X
QF
WLR
Q

1HWZRUN�%DQGZLGWK��0ESV�

�9LNLQJ
�/LWH
�6FL�)L

Fig. 24. Cumulative distribution of network band-
width consumption

��� ��� ��� ���

��

��

��

��

��

���3H
UF
HQ
WD
JH
�R
I�5

HX
QG
DQ
W�(

QW
ULH
V�
��

�

&DFKH�&DSDFLW\

�)DQWDV\
�=RPELH

Fig. 25. Redundancy in entries with
per-user cache

/RZ 0HGLXP +LJK
�

��

��

��

��

��

��

��

��

)U
DP

HV
�S
HU
�6
HF
RQ
G

95�5HVROXWLRQ

�9LNLQJ���/RFDO�� �9LNLQJ���0895
�/LWH���/RFDO������ �/LWH���0895
�6FL�)L���/RFDO��� �6FL�)L���0895

Fig. 26. Frame rate with different VR
resolutions

correlation is evaluated in our experiments by adjusting the
maximum number of background images in the cache. As
shown in Figure 21a, the average frame rendering time reduces
24% and 57% for the Fantasy and Zombie games respectively,
when the cache capacity increases from 120 to 660. On the
other hand, the cache look-up time would linearly scale up
with the cache size as shown in Figure 21b, which however is
no more than 30 us and can be negligible. Therefore, the edge
cloud could trade the storage space for computation reductions
if it is equipped with large system memory or external storage.

3) Communication Reduction: MUVR also aims to address
the constraints of communication capacity on the edge cloud.
Being different from Furion [33] which requires gigabit WiFi
connection to transmit full VR frames, Figure 22 shows that
MUVR requires at most 25 Mbps of network bandwidth to
support a VR user, which enables to transmit the VR frames
of multiple users efficiently with existing WiFi protocols
[40], [39], [41]. In addition, we have evaluated the transient
consumption of network bandwidth to transmit the delta image
over 180 VR frames. As shown in Figure 23, the frame
transmission requires higher network bandwidth when the user
character moves farther and results in larger warping distance,
because the view difference increases in these cases and the
corresponding delta image needs to encode more pixel details.
Nevertheless, Figure 24 further shows that MUVR is able to
restrain the required network bandwidth to be always below
30 Mbps, because of the small size of the delta image. In
particular, such bandwidth consumption is also related to the
specific scene complexity and dynamics of VR applications.
For example, Figure 24 shows that more than 90% of VR
frames in the Viking game are consuming less than 26.5 Mbps
of network bandwidth, and this number is even as low as 10
Mbps for the Sci-Fi game.

4) Effectiveness of the Two-level Cache: In this section, we
evaluate the effectiveness of the two-level cache mechanism.
First, we evaluate the effectiveness of the central cache on
reducing the memory consumption. To do so, we maintain
a cache with different capacities for each user and measure
the percentage of redundant entries after merging the cached
entries of all users. As shown in Figure 25, more than 30%
of redundancy can be observed for the cached entries of all
users, which can be coalesced in the central cache so as to
save the cache memory consumption.

We also evaluate the effectiveness of the small per-user
cache, which improves the cache indexing efficiency with
reduced IPC operations. Our experiment results show that
the cache hit ratio for the local cache could be as high as
32% and 68% for the Fantasy and Zombie traces respectively,
because of the intermittent user movement and long stationary
periods. When the cache indexing finds a match in the local
cache, it avoids to copy the rendered images from the central
background generator, which eliminates the IPC operations
and saves the memory bandwidth consumption.

C. Improvement of Mobile VR Performance
In this section, we evaluate the performance of MUVR

in terms of the key metrics that directly impact the user
experience of mobile VR, including the frame rate, image
quality and motion-to-photon latency. In our experiments, by
avoiding expensive VR frame rendering at the mobile HMD,
MUVR always achieves the required 60 FPS with different
levels of VR resolution and scene complexity, while providing
high image quality with SSIM > 0 .92. It also minimizes
the motion-to-photon latency within 16ms (required by 60
FPS) to ensure responsive user interactions. Such experiment
results indicate that MUVR meets the stringent requirements
of mobile VR on system performance and enables satisfactory
VR experience without any possible motion sickness.

1) Frame Rate: As shown in Figure 26, the frame rate
provided by MUVR is constantly 60 FPS in all VR resolutions,
and greatly outperforms local VR frame rendering whose
performance significantly drops to < 15 FPS under high
resolution. Note that, the maximum FPS that MUVR can
achieve in our experiment is limited by the screen refreshing
rate at the mobile HMD that is being capped at 60Hz, and
could hence be further improved on future mobile devices
which support higher screen refreshing rates (e.g., 90Hz). The
reason for such improved mobile VR performance is that the

��



1HWZRUN�7UDQVPLVVLRQ +����'HFRGLQJ 5HQGHULQJ
�

��

��

��

��

��

��

/D
WH
QF
\�
�P
V�

6\VWHP�&RPSRQHQWV

�0895
�7KLQ�FOLHQW
�)XULRQ

Fig. 27. Breakdown of system la-
tency in MUVR

� �� �� �� ��� ��� ���

�

�

�

�

�

�

�
�9LNLQJ� �/LWH� �6FL�)L
�:DUSLQJ�'LVWDQFH

)UDPH�6HTXHQFH

7U
DQ
VP

LV
VL
RQ
�/
DW
HQ
F\
��P

V�

�

�

�:
DU
SL
QJ
�'
LV
WD
QF
H

Fig. 28. Temporal fluctuation of
frame transmission latency in MUVR

� � � � � � � �

���

���

���

���

���

���

&
XP

XO
DW
LY
H�
'
LV
WUL
EX
WLR
Q�
)X
QF
WLR
Q

7UDQVPLVVLRQ�/DWHQF\��PV�

�9LNLQJ
�/LWH
�6FL�)L

Fig. 29. Cumulative distribution of
frame transmission latency in MUVR

�� �� �� �� ��
�

�

�

�

�

�

�

�

7U
DQ
VP

LV
VL
RQ
�/
DW
HQ
F\
��P

V�

1HWZRUN�%DQGZLGWK��0ESV�

�9LNLQJ
�/LWH
�6FL�)L

Fig. 30. Transmission latency with
different network bandwidth

image warping in MUVR decouples the settings of graphic
quality and scene complexity from rendering complexity and
renders with high computational efficiency.

TABLE II
VR IMAGE QUALITY (SSIM)

Rendering Scheme Viking Lite Sci-Fi
Local Frame Rendering 0.8133 0.8766 0.8832
Thin-client 0.8783 0.8834 0.9263
MUVR w/ Stationary User 0.9569 0.9599 0.9681
MUVR w/ Moving User 0.9241 0.9210 0.9557

2) Image Quality: We evaluate the mobile VR image
quality provided by MUVR using the SSIM metric [62], which
quantifies the image quality degradation in MUVR from the
pristine high-quality image rendered at the edge cloud. The
results in Table II show that MUVR ensures high image
quality (SSIM > 0 .9 [19]) in all the VR applications with
fast user movement, and significantly outperforms that of local
frame rendering and thin-client. Such improvement on image
quality allows many advanced graphics options such as shadow
casting and anti-aliasing at the mobile HMD, and greatly
enhances the user experience.

3) Latency: Motion-to-photon latency is critical in VR to
ensure user experience and avoid motion sickness, and such
latency depends on 1) the transmission delay of reference
frames and delta images, and 2) the computation delay of
frame decoding, image warping and delta patching at the
mobile HMD. These delays over the Viking application are
averaged over all the VR frames being transmitted, and Figure
27 shows that the total processing latency for each VR frame
is less than 16ms. More specifically, the transmission delay
in MUVR is about 4.8 ms due to the minimized size of
delta images, and is less than 10% of that of Furion [33]
which pre-fetches the panoramic background images for all
possible directions of user movement. Similarly, the frame
decoding delay in MUVR is also 66% lower than the existing
schemes because of the smaller amount of VR frame data
being transmitted. At the mobile HMD, MUVR takes about
5.1 ms for frame rendering, which is slightly higher than other
schemes due to the extra overhead of image warping and delta
patching.

In addition, the transmission latency could also fluctuate
due to the wireless link condition and different sizes of delta
images. Our experiment results over 180 VR frames in Figure
28 show that such transmission latency could increase when

/RZ 0HGLXP +LJK
�

��

���

���

���

���

���

(Q
HU
J\
�3
HU
�)
UD
P
H�
�P
:
�

*UDSKLF�4XDOLW\

�/RFDO
�0895

Fig. 31. Energy consumption of rendering a frame

the warping distance increases for generating VR frames, due
to the larger view difference and the subsequent increase in
delta size. Despite such increase, Figure 29 shows that MUVR
is able to effectively control such transmission latency within
6 ms in all cases, which ensures the smooth VR experience
with responsive user interactions.

Network bandwidth could also be a key factor that impacts
the transmission latency for delta images. From the experiment
results in Figure 30, we can see that the transmission la-
tency decreases linearly with the available network bandwidth,
which further improves the responsiveness of VR experience.

4) Energy Efficiency: We evaluate the energy efficiency of
MUVR over the Viking application, by measuring the average
amount of power consumed by the mobile HMD for rendering
and displaying each VR frame. From the results in Figure 31,
we can see that MUVR reduces the energy consumption of VR
frame rendering by up to 60% with high VR image quality,
when compared with local VR frame rendering at the mobile
HMD. Besides, MUVR also maintains a constantly low level
of energy consumption regardless of the image quality setting
in VR applications, and is hence well applicable to a large
variety of mobile devices with severe resource constraints.

IX. RELATED WORK

Memoization Memoization techniques have been extensively
studied to reduce the computation overhead of computer
systems by reusing the previous computation results. CPU
memoization in both software and hardware level has been
widely studied and applied in real systems for decades. [57],
[56], [38] utilize function interception to enable software
memoization of any computationally expensive pure function
through the compiler and linker based techniques. Hardware
memoization schemes [12], [54], [59] exploit the temporal
and spatial coherence in programs and reuse the result of
instruction executions. Recently, the emergence of general

��



purpose computing on GPU has driven the development of
memoization on GPU. GRU [65] efficiently leverages the
GPU full-virtualization technology to memoize and reuse GPU
computation results, and hence transparently enables VMs in
the cloud to share GPU on kernels without modification of
existing device drivers and operating systems. Nonetheless,
these schemes are orthogonal to MUVR because MUVR
focuses on reusing the graphics rendering results instead of
general-purpose computing memoization.

Memoization has also been studied to improve the perfor-
mance of graphics rendering. Flashback [15] pre-renders all
the VR frames on the cloud and caches the rendered frames at
the HMDs’ local storage, so as to alleviate the mobile run-time
computation burden. However, it fails to adapt to the run-time
dynamics of VR applications and consumes a huge amount of
storage space at mobile devices (e.g., 50GB data for each VR
application). Reverse projection caching [45], [50], [52] allows
fragment shaders to store the calculation results and reuse
such results for the visible surface points in future frames,
by projecting the point back to the cached camera surface.
[13], [29] reduce redundant fragment shading executions by
caching the input signatures and reusing the results of fragment
shading in mobile GPU hardware, but incur large amounts of
computational overhead to compare different inputs.

Mobile Offloading and Cloud Gaming: General-purpose
mobile offloading reduces the local computational burden of
mobile devices, by adaptively partitioning the computing tasks
and offloading only the most appropriate portion to the cloud
for remote execution [25], [36], [18], [27]. However, it is
difficult to partition the process of rendering a VR frame,
which is operated by GPU hardware. The amount of frame
data sent to the mobile HMD, hence, remains unchanged.

Our proposed design of MUVR is related to prior work on
cloud gaming [24], [51], [30]. Existing commercial systems
such as PlayStation Now and NVidia Shield, consider frontend
mobile devices as a thin client, to which the game’s output is
streamed as compressed video. However, these designs cannot
scale to mobile VR, because its requirements of high resolu-
tion and low response latency make it impossible to stream
game scenes at real-time. MoVR [11], [10] enables multi-
Gbps wireless communication to VR headsets via mmWave
wireless technology, but relies on specialized hardware support
and line-of-sight connectivity. Instead, MUVR significantly
reduces the amount of VR frame data being transmitted, and
hence maximizes the mobile VR performance over conven-
tional wireless networks.

Collaborative Rendering: Recently research on collaborative
rendering splits the computing workload of rendering individ-
ual frames between the cloud and local mobile devices, so
as to reduce the local devices’ computational burden without
impairing the image quality. For example, Kahawai [19] only
renders the key frames over mobile devices and renders all
the other frames at the cloud, so as to avoid transmitting
key frames which usually have large sizes. These existing
techniques, nevertheless, are complementary with our design

of MUVR. More specifically, MUVR’s caching scheme can
be easily applied at the edge cloud to reduce its computation
overhead of background rendering. The mobile HMDs, on the
other hand, could also utilize their idle resources to locally
render the panoramic reference images whenever possible, so
as to avoid redundant transmissions of VR frames.

Furion [33] separates the VR scenes into background and
foreground layers, and streams only the panoramic background
images to mobile devices, but has to speculate future user
movement for prefetching and hence suffers from mispredic-
tion. Instead, MUVR does not involve any pre-fetching of VR
frames, and is hence resistant against sporadic VR application
events or user behaviors.
Graphic Processing: Image-based rendering [43] is widely
used in today’s VR applications, but incurs fast degradation
of image quality with large warping distance due to the
view disocclusion. Asynchronous TimeWarp technique [1] in
mobile VR compensates and displays the previous frame with
the current head rotation when the mobile fails to render on
time, but leads to flickering edges with vigorous head motions.
[49] aims to mask the network latency by provisioning an extra
view at deliberately selected location to fill the disoccluded
holes, but requires more computations to warp the extra image.
Post-processing techniques [60] interpolate or extrapolate the
disoccluded view, but lead to blurry regions. In contrast,
MUVR captures all disoccluded views in advance as the delta
image, and hence guarantees high VR image quality regardless
of the heterogeneous dynamics in VR applications.

Some other schemes [53], [55] propose to adapt the reso-
lution for different parts of the panoramic images according
to the user viewpoint, so as to reduce the amount of image
frame data being transmitted. These techniques, however, still
transmit full VR frames and are hence susceptible to vigorous
user head rotation or movement in intensive VR scenarios. In
contrast, MUVR transmits only delta images with minimum
sizes to the mobile HMD, enabling fast response to any
dynamic user behavior.

X. DISCUSSIONS AND FUTURE WORK

A. Supporting Augmented Reality
Augmented Reality (AR) [14] seamlessly overlays the vir-

tual objects onto the physical world, so as to enhance users’
perception to the natural environment and offer enriched
interactive user experience. Although the focus of MUVR is
to improve the performance of mobile VR via edge cloud, it
can also be extended to support AR scenarios with minimum
modifications due to the similarity between VR and AR
systems. To enhance the AR performance, besides using the
edge cloud to render the background view that is directly
streamed from the mobile camera, MUVR could also offload
the rendering of stationary background AR objects (e.g., a
complex AR castle lying on the ground), which are overlaid
on top of the camera view, for remote cloud processing. In
this way, the rendered AR backgrounds could also be reused
among multiple users at the edge cloud, so as to reduce the
edge’s computation and communication overhead.

��



Such extension, on the other hand, could be challenging for
specific AR applications, especially when they have only few
virtual objects being superimposed on the camera view of the
physical environment. In this case, the computation overhead
of generating the deltas from remotely rendered AR frames
may dramatically increase, and also leads to larger sizes of
deltas themselves. In the future, we will study the possibility
of precisely monitoring such computational complexity of
rendering virtual objects, so as to dynamically adjust the
decision of remote frame rendering at runtime.

B. Helping with VR Prediction

Many existing techniques improve mobile VR performance
by predicting VR user behaviors in the future and pre-act
accordingly [33], [35], but could easily suffer from mispre-
diction due to the the unexpected VR dynamics or sporadic
VR application events. In particular, if the edge cloud simply
clips the rendered panoramic VR frames by predicting the
VR user’s head motion and FOV for reduced VR frame data
transmission, the corresponding misprediction would lead to
serious quality degradation of VR images, especially when the
user rotates the head abruptly with vigorous angular velocity.

MUVR, on the other hand, could help improve the accuracy
of such prediction, by minimizing the latency of transmitting
VR frame data. First, the difficulty of prediction is reduced,
because the frame data will be delivered and used sooner and
hence has a lower chance of VR camera view misplacement.
Second, the bias in camera position could also be automati-
cally reduced by image warping when misprediction happens,
which incurs unnoticeable visual difference to the correct user
view.

C. Defending against Side Channel Attack

Sharing VR frame data among multiple users could bring
various security and privacy concerns at the edge cloud,
especially the side channel attack that analyzes the cache
utilization and the corresponding frame rendering time for
inferring other users’ behaviors in VR applications. MUVR
is able to mitigate such attack by monitoring the average
rendering time for VR frames and intentionally delaying the
transmission of some frame data when cache hits, so as to
obfuscate the cache utilization statistics. Such obfuscation,
however, will impair the mobile VR performance, and we
will experimentally investigate such tradeoff between VR
performance and user protection in our future work.

D. Subjective VR User Experience

Section VIII-C has demonstrated the high performance of
MUVR with several key computation and communication met-
rics that determine the user experience of mobile VR. Such VR
user experience in practice, however, also depends on many
subjective factors, especially the VR users’ preference and
sensitivity to motion sickness. In the future, we plan to carry
out a field study to learn the subjective VR experience from
actual users in real-world VR applications. We plan to collect
and analyze the user experience in the following aspects:

1) the smoothness of view display, 2) the responsiveness of
user interactions, 3) the visual quality of the user view. We
believe that the performance evaluation in Section VIII-C can
be projected to this field study and MUVR could outperform
existing VR schemes in all metrics.

XI. CONCLUSION

In this paper, we present MUVR, a systematic mobile VR
framework that maximizes the efficiency of utilizing the edge
cloud’s computation and communication resources to serve
multiple VR users from mobile HMDs. MUVR adaptively
identifies and utilizes the redundancy across VR frames from
different users to avoid unnecessary computation of VR frame
rendering at the edge cloud, and also exploits the redundancy
across consecutive VR frames of the same user to reduce
the amount of VR frame data being wirelessly transmitted.
Based on the implementation and evaluation over Android OS
and Unity engine, we demonstrate that MUVR significantly
reduces the computation and communication burden of the
edge cloud, hence improving the performance of supporting
multi-user mobile VR.

ACKNOWLEDGMENTS

We sincerely thank our shepherd Mahadev Satyanarayanan
and anonymous reviewers for their valuable comments and
feedback. This work was supported in part by the National
Science Foundation (NSF) under grant number CNS-1617198,
CNS-1812399, CNS-1812407 and CNS-1826884.

REFERENCES

[1] Asynchronous TimeWarp. https://developer.oculus.com/documentation/
mobilesdk/latest/concepts/mobile-timewarp-overview/.

[2] Dead zombies survival VR. https://play.google.com/store/apps/details?
id=com.dead.zombies.survival.vr.

[3] FOV of VR headsets. https://virtualrealitytimes.com/2017/03/06/
chart-fov-field-of-view-vr-headsets/.

[4] Lite. https://assetstore.unity.com/packages/3d/environments/fantasy/
make-your-fantasy-game-lite-8312.

[5] Sci-Fi Modular Environment. https://assetstore.unity.com/packages/3d/
environments/sci-fi/sci-fi-modular-environment-3426.

[6] Viking Village. https://assetstore.unity.com/packages/essentials/
tutorial-projects/viking-village-29140.

[7] VR fantasy. https://play.google.com/store/apps/details?id=com.Chibig.
VRFantasy.

[8] Wowza Streaming Cloud. https://www.wowza.com/solutions/
streaming-types/virtual-reality-and-360-degree-streaming/.

[9] x264. http://www.videolan.org/developers/x264.html.
[10] O. Abari, D. Bharadia, A. Duffield, and D. Katabi. Cutting the cord in

virtual reality. In Proceedings of the 15th ACM Workshop on Hot Topics
in Networks, pages 162–168. ACM, 2016.

[11] O. Abari, D. Bharadia, A. Duffield, and D. Katabi. Enabling high-quality
untethered virtual reality. In Proceedings of USENIX NSDI, pages 531–
544, 2017.

[12] C. Alvarez, J. Corbal, and M. Valero. Fuzzy memoization for floating-
point multimedia applications. IEEE Transactions on Computers,
54(7):922–927, 2005.

[13] J.-M. Arnau, J.-M. Parcerisa, and P. Xekalakis. Eliminating redundant
fragment shader executions on a mobile gpu via hardware memoization.
In Proceedings of the ACM/IEEE 41st International Symposium on
Computer Architecture (ISCA), pages 529–540. IEEE, 2014.

[14] R. T. Azuma. A survey of augmented reality. Presence: Teleoperators
& Virtual Environments, 6(4):355–385, 1997.

��



[15] K. Boos, D. Chu, and E. Cuervo. Flashback: Immersive virtual reality
on mobile devices via rendering memoization. In Proceedings of the
14th Annual International Conference on Mobile Systems, Applications,
and Services, pages 291–304. ACM, 2016.

[16] K.-T. Chen, P. Huang, and C.-L. Lei. Game traffic analysis: An mmorpg
perspective. Computer Networks, 50(16):3002–3023, 2006.

[17] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti. CloneCloud:
Elastic execution between mobile device and cloud. In Proceedings of
the 6th Conference on Computer Systems, pages 301–314, 2011.

[18] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl. MAUI: making smartphones last longer with
code offload. In Proceedings of the 8th international conference on
Mobile systems, applications, and services, pages 49–62. ACM, 2010.

[19] E. Cuervo, A. Wolman, L. P. Cox, K. Lebeck, A. Razeen, S. Saroiu,
and M. Musuvathi. Kahawai: High-quality mobile gaming using gpu
offload. In Proceedings of the 13th Annual International Conference
on Mobile Systems, Applications, and Services, pages 121–135. ACM,
2015.

[20] J. Dascal, M. Reid, W. W. IsHak, B. Spiegel, J. Recacho, B. Rosen, and
I. Danovitch. Virtual reality and medical inpatients: A systematic review
of randomized, controlled trials. Innovations in clinical neuroscience,
14(1-2):14, 2017.

[21] P. Dempsey. The teardown: Htc vive vr headset. Engineering &
Technology, 11(7-8):80–81, 2016.

[22] P. R. Desai, P. N. Desai, K. D. Ajmera, and K. Mehta. A review paper
on oculus rift-a virtual reality headset. arXiv preprint arXiv:1408.1173,
2014.

[23] M. Dhome, M. Richetin, J.-T. Lapreste, and G. Rives. Determination of
the attitude of 3d objects from a single perspective view. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 11(12):1265–1278,
1989.

[24] H. T. Dinh, C. Lee, D. Niyato, and P. Wang. A survey of mobile
cloud computing: architecture, applications, and approaches. Wireless
communications and mobile computing, 13(18):1587–1611, 2013.

[25] W. Gao, Y. Li, H. Lu, T. Wang, and C. Liu. On exploiting dynamic
execution patterns for workload offloading in mobile cloud applications.
In Proceedings of the IEEE 22nd International Conference on Network
Protocols (ICNP), pages 1–12. IEEE, 2014.

[26] M. S. Gordon, D. K. Hong, P. M. Chen, J. Flinn, S. Mahlke, and Z. M.
Mao. Accelerating mobile applications through flip-flop replication. In
Proceedings of the 13th International Conference on Mobile Systems,
Applications, and Services (MobiSys), pages 137–150. ACM, 2015.

[27] M. S. Gordon, D. A. Jamshidi, S. A. Mahlke, Z. M. Mao, and
X. Chen. COMET: Code offload by migrating execution transparently.
In Proceedings of OSDI, pages 93–106, 2012.

[28] G. E. Grossman, R. J. Leigh, L. Abel, D. J. Lanska, and S. Thurston.
Frequency and velocity of rotational head perturbations during locomo-
tion. Experimental brain research, 70(3):470–476, 1988.

[29] S. Hong, J. Im, S. Islam, J. You, and Y. Park. Enabling energy
efficient image encryption using approximate memoization. Journal of
Semiconductor Technology and Science, 17(3):465–472, 2017.

[30] C.-Y. Huang, C.-H. Hsu, Y.-C. Chang, and K.-T. Chen. Gamingany-
where: an open cloud gaming system. In Proceedings of the 4th ACM
multimedia systems conference, pages 36–47. ACM, 2013.

[31] T. Kämäräinen, M. Siekkinen, A. Ylä-Jääski, W. Zhang, and P. Hui.
Dissecting the end-to-end latency of interactive mobile video applica-
tions. In Proceedings of the 18th International Workshop on Mobile
Computing Systems and Applications (HotMobile), pages 61–66. ACM,
2017.

[32] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang. Thinkair:
Dynamic resource allocation and parallel execution in the cloud for
mobile code offloading. In Proceedings of IEEE INFOCOM, 2012.

[33] Z. Lai, Y. C. Hu, Y. Cui, L. Sun, and N. Dai. Furion: Engineering
high-quality immersive virtual reality on todays mobile devices. In
Proceedings of the 23rd International Conference on Mobile Computing
and Networking (MobiCom). ACM, Snowbird, Utah, USA, 2017.

[34] S. M. LaValle, A. Yershova, M. Katsev, and M. Antonov. Head tracking
for the oculus rift. In Proceedings of the 2014 IEEE International
Conference on Robotics and Automation (ICRA), pages 187–194. IEEE,
2014.

[35] K. Lee, D. Chu, E. Cuervo, J. Kopf, Y. Degtyarev, S. Grizan, A. Wolman,
and J. Flinn. Outatime: Using speculation to enable low-latency
continuous interaction for mobile cloud gaming. In Proceedings of the

13th Annual International Conference on Mobile Systems, Applications,
and Services, pages 151–165. ACM, 2015.

[36] Y. Li and W. Gao. Interconnecting heterogeneous devices in the personal
mobile cloud. In Proceedings of IEEE INFOCOM. IEEE, 2017.

[37] Y. Li and W. Gao. Minimizing context migration in mobile code offload.
IEEE Transactions on Mobile Computing, 16(4):1005–1018, 2017.

[38] R. LiKamWa and L. Zhong. Starfish: Efficient concurrency support
for computer vision applications. In Proceedings of the 13th Annual
International Conference on Mobile Systems, Applications, and Services,
pages 213–226. ACM, 2015.

[39] H. Lu and W. Gao. Supporting real-time wireless traffic through a high-
throughput side channel. In Proceedings of the 17th ACM International
Symposium on Mobile Ad Hoc Networking and Computing, pages 311–
320. ACM, 2016.

[40] H. Lu and W. Gao. Continuous wireless link rates for internet of things.
In Proceedings of the 17th ACM/IEEE International Conference on
Information Processing in Sensor Networks, pages 48–59. IEEE Press,
2018.

[41] H. Lu, W. Gao, et al. Scheduling dynamic wireless networks with limited
operations. In 2016 IEEE 24th International Conference on Network
Protocols (ICNP), pages 1–10. IEEE, 2016.

[42] W. R. Mark, R. S. Glanville, K. Akeley, and M. J. Kilgard. Cg: A
system for programming graphics hardware in a c-like language. In ACM
Transactions on Graphics (TOG), volume 22, pages 896–907. ACM,
2003.

[43] W. R. Mark, L. McMillan, and G. Bishop. Post-rendering 3d warping. In
Proceedings of the symposium on Interactive 3D graphics. ACM, 1997.

[44] Z. Merchant, E. T. Goetz, L. Cifuentes, W. Keeney-Kennicutt, and T. J.
Davis. Effectiveness of virtual reality-based instruction on students’
learning outcomes in k-12 and higher education: A meta-analysis.
Computers & Education, 70:29–40, 2014.

[45] D. Nehab, P. V. Sander, J. Lawrence, N. Tatarchuk, and J. R. Isidoro.
Accelerating real-time shading with reverse reprojection caching. In
Graphics hardware, volume 41, pages 61–62, 2007.

[46] N. Nguyen and T. D. Wilson. A head in virtual reality: Development
of a dynamic head and neck model. Anatomical sciences education,
2(6):294–301, 2009.

[47] T.-i. Ohta, K. Maenobu, and T. Sakai. Obtaining surface orientation from
texels under perspective projection. In Proceedings of IJCAI, volume 81,
pages 746–751, 1981.

[48] H. Qiu, F. Ahmad, R. Govindan, M. Gruteser, F. Bai, and G. Kar. Aug-
mented vehicular reality: Enabling extended vision for future vehicles. In
Proceedings of the 18th International Workshop on Mobile Computing
Systems and Applications (HotMobile), pages 67–72. ACM, 2017.

[49] B. Reinert, J. Kopf, T. Ritschel, E. Cuervo, D. Chu, and H.-P. Seidel.
Proxy-guided image-based rendering for mobile devices. In Computer
Graphics Forum, volume 35, pages 353–362. Wiley Online Library,
2016.

[50] D. Scherzer, L. Yang, O. Mattausch, D. Nehab, P. V. Sander, M. Wim-
mer, and E. Eisemann. Temporal coherence methods in real-time
rendering. In Computer Graphics Forum, volume 31, pages 2378–2408,
2012.

[51] R. Shea, J. Liu, E. C.-H. Ngai, and Y. Cui. Cloud gaming: architecture
and performance. IEEE network, 27(4):16–21, 2013.

[52] P. Sitthi-amorn, J. Lawrence, L. Yang, P. V. Sander, D. Nehab, and
J. Xi. Automated reprojection-based pixel shader optimization. ACM
Transactions on Graphics (TOG), 27(5):127, 2008.

[53] R. Skupin, Y. Sanchez, C. Hellge, and T. Schierl. Tile based hevc video
for head mounted displays. In Proceedings of the IEEE International
Symposium on Multimedia (ISM), pages 399–400. IEEE, 2016.

[54] A. Sodani and G. S. Sohi. Dynamic instruction reuse, volume 25. ACM,
1997.

[55] K. K. Sreedhar, A. Aminlou, M. M. Hannuksela, and M. Gabbouj.
Viewport-adaptive encoding and streaming of 360-degree video for
virtual reality applications. In Proceedings of the IEEE International
Symposium on Multimedia, pages 583–586. IEEE, 2016.

[56] A. Suresh, E. Rohou, and A. Seznec. Compile-time function memoiza-
tion. In Proceedings of the 26th International Conference on Compiler
Construction, pages 45–54. ACM, 2017.

[57] A. Suresh, B. N. Swamy, E. Rohou, and A. Seznec. Intercepting
functions for memoization: A case study using transcendental functions.
ACM Transactions on Architecture and Code Optimization (TACO),
12(2):18, 2015.

��



[58] L. Tong, Y. Li, and W. Gao. A hierarchical edge cloud architecture
for mobile computing. In Proceedings of IEEE INFOCOM, pages 1–9.
IEEE, 2016.

[59] T. Tsumura, I. Suzuki, Y. Ikeuchi, H. Matsuo, H. Nakashima, and
Y. Nakashima. Design and evaluation of an auto-memoization processor.
In Parallel and Distributed Computing and Networks, pages 230–235,
2007.

[60] C. Vázquez, W. J. Tam, and F. Speranza. Stereoscopic imaging: filling
disoccluded areas in depth image-based rendering. In Proc. SPIE, 2006.

[61] I. Viola, A. Kanitsar, and M. E. Groller. Hardware-based nonlinear
filtering and segmentation using high-level shading languages. In
Proceedings of the 14th IEEE Visualization Conference, 2003.

[62] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image
quality assessment: from error visibility to structural similarity. IEEE
transactions on image processing, 13(4):600–612, 2004.

[63] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra. Overview
of the h. 264/avc video coding standard. IEEE Transactions on circuits
and systems for video technology, 13(7):560–576, 2003.

[64] R. Zhong, M. Wang, Z. Chen, L. Liu, Y. Liu, J. Zhang, L. Zhang,
and T. Moscibroda. On building a programmable wireless high-quality
virtual reality system using commodity hardware. In Proceedings of the
8th Asia-Pacific Workshop on Systems. ACM, 2017.

[65] H. Zhou, Y. Fu, and C. Liu. Supporting dynamic gpu computing result
reuse in the cloud. In Proceedings of ACM HotCloud, 2015.

��


