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Abstract—This paper presents an analysis of the scalability
and performance of an edge cloud system designed to support
latency-sensitive applications. A system model for geograph-
ically dispersed edge clouds is developed by considering an
urban area such as Chicago and co-locating edge computing
clusters with known Wi-Fi access point locations. The model
also allows for provisioning of network bandwidth and process-
ing resources with specified parameters in both edge and the
cloud. The model can then be used to determine application
response time (sum of network delay, compute queuing and
compute processing time), as a function of offered load for
different values of edge and core compute resources, and
network bandwidth parameters. Numerical results are given for
the city-scale scenario under consideration to show key system-
level trade-offs between edge cloud and conventional cloud
computing. Alternative strategies for routing service requests
to edge vs. core cloud clusters are discussed and evaluated.
Key conclusions from the study are: (a) the core cloud-only
system outperforms the edge-only system having low inter-edge
bandwidth, (b) a distributed edge cloud selection scheme can
approach the global optimal assignment when the edge has
sufficient compute resources and high inter-edge bandwidth,
and (c) adding capacity to an existing edge network without
increasing the inter-edge bandwidth contributes to network-
wide congestion and can reduce system capacity.

Keywords-Cloud Computing, Mobile Edge Cloud, Fog Com-
puting, Real-time Applications, Augmented Reality, System
Modeling

I. INTRODUCTION

Edge clouds promise to meet the stringent latency require-
ments of emerging classes of real time applications such as
augmented reality (AR) [1] and virtual reality (VR) [2] by
bringing compute, storage and networking resources closer
to user devices [3], [4]. Edge compute resources which are
strategically placed near the users in the access network
do not incur the irreducible propagation delays associated
with offloading of compute intensive tasks to a distant data
center. In addition, the use of edge computing can also
lower wide-area backhaul costs associated with carrying user
data back and forth from the central cloud. AR and VR
applications enable users to view and interact with virtual
objects in real time, hence requiring fast end-to-end delivery
of compute services such as image analytics and video
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rendering. Previous studies [5]–[8] have shown that latency
associated with AR or gaming applications can be reduced
by migrating some of the delay-sensitive tasks computing
tasks to local servers, while maintaining global state in the
core cloud.

While edge clouds have significant potential for improved
system-level performance, there are some important trade-
offs between edge and core clouds that need to be consid-
ered. Specifically, core clouds implemented as large-scale
data centers [9] have the important advantage of service
aggregation from large numbers of users, thus making the
traffic volume predictable. Further, service requests entering
a large data center can be handled in a close to optimal
manner via centralized routing and load balancing [10]
algorithms. In contrast, edge clouds are intrinsically local
and have a smaller scale and are thus subject to significantly
larger fluctuations in offered traffic due to factors such as
correlated events and user mobility. In addition, we note that
edge computing systems by definition are distributed across
multiple edge networks and hence are associated with con-
siderable heterogeneity in bandwidth and compute resources.
Moreover, the data center model of centralized control of
resources is not applicable to a distributed system [11],
[12] implemented across multiple edge network domains,
possibly involving a multiplicity of service providers.

A general technology solution for edge clouds will thus
require suitable distributed control algorithms and associ-
ated control plane protocols necessary for realization. The
unique nature of the distributed edge cloud system poses
key design challenges such as specification of a control
plane for distributed edge, distributed or centralized resource
assignment strategies, traffic load balancing, orchestration of
computing functions and related network routing of data,
mobility management techniques and so on. In order to
address these challenges, a simulation based system model is
the foundation for understanding performance and evaluating
alternative strategies for any of the above design issues.

This paper presents an analysis of the scalability and
performance of a general hybrid edge cloud system which
supports latency-sensitive applications. The goal is to pro-
vide a better understanding of key system design parameters
such as the proportion of resources in local cloud vs. data
center, fronthaul and backhaul network bandwidth, relative
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Figure 1. General Multi-tier Edge-cloud Network Architecture

latency/distance of core and edge clouds, and determine their
impact on system level metrics such as average response
time and service goodput. Using the model described here,
we seek answers to the following questions: (a) How much
load can an edge cloud network support without affecting
the performance of an application; (b) How does the value
of the application delay-constraint affects the capacity of the
system; (c) What is the impact of offered load and resource
distribution on goodput; (d) Under what circumstances can
the core cloud perform better than an edge network and vice-
versa; and (e) What is the impact of inter-edge (fronthaul)
and edge-to-core (backhaul) network bandwidth on system
capacity?

We use a simulation model to study a city scale general
multi-tier network as shown in Fig. 1 containing both edge
and central cloud servers. The model is used to obtain
system capacity and response time for an augmented reality
application while analyzing the impact of key parameters
resource distribution and fronthaul/backhaul bandwidth. A
general optimization framework for the distributed system
is proposed and compared with distributed algorithm ap-
proaches. The rest of paper is organized as follows. Section
II demonstrates the augmented reality application with two
use-cases and discusses the need of edge clouds to ful-
fill their low-latency requirements. Section III details the
system model with an emphasis on system design, and
performance model to analyze edge clouds using a city
scale network including models for application, compute and
latency. A baseline distributed resource allocation approach
for selecting an edge cloud for an AR application is also
detailed in Section III. Section IV presents the performance
evaluation of the baseline approach. Section V proposes and
evaluates a capacity enhancement heuristic (ECON) for real-
time applications. Numerical results to compare ECON and
the baseline are given in Section VI. Section VII provides
related work in the field and finally, Section VIII concludes
the paper.

II. AUGMENTED REALITY AND EDGE CLOUDS

Augmented reality is gaining popularity in numerous
fields such as healthcare, visualization, entertainment and ed-

ucation. Most of the commercially available AR devices like
Atheer AiR [13], Microsoft Hololens [14] and Google Glass
[15] have limited power, storage and on-chip computation
capabilities for example currently Hololens has storage ∼64
GB and RAM ∼2GB. In turn, these devices often rely upon
offloading storage as well as compute to an architecturally
centralized cloud server while ensuring application response
time.

The Quality of Experience (QoE) perceived by a user
running an AR application using cloud services is a complex
combination of network bandwidth, network traffic and
compute capabilities of the cloud. First, the bandwidth from
end–user to a cloud data center is the minimum bandwidth
available across all the hops in the network path, which
could be significant when cloud is located far from the user.
Second, the network traffic depends upon the network load
and congestion, and varies for each individual local network.
Edge cloud computing (denoted as ”edge” in the follow-
ing discussions) promises to alleviate the shortcomings of
the cloud server by bringing computation, networking and
storage closer to the user and providing fast response, con-
text awareness and mobility support [16]. Therefore, edge
computing can be viewed as having the same centralized
cloud resources scattered at the mobile network edge and
accessed through fast Wi-Fi or 5G access networks. This
approach has the potential to provide tightly bounded service
response time thereby creating a geographically distributed
heterogeneous computing and communication system.

Edge computing does not replace but complements the
cloud infrastructure as edge clouds are resource limited in
terms of bandwidth and compute. The multifaceted edge
system therefore must be studied in conjunction with the
existing core cloud for different user requirements, appli-
cation types, edge assignments and QoS constraints. Thus,
for a resource constrained system it is required to allocate
resources per request while taking system capacity into con-
sideration. This leads to a nonlinear optimization problem
[17] due to multiple factors affecting the capacity including
but not limited to network bandwidth, resource availability
and application type. In order to understand the capacity
constraints of a hybrid edge cloud system for a latency
sensitive application, we first, analyze the system taking the
AR application as an example and later generalize to other
applications.

A. Use Case Scenario
Figure 2(a) shows the process flow of our implementation

of a demo AR application using Microsoft Hololens. A client
sends a continuous video stream to the edge server which
processes the information based upon application type and
returns output to the client. The video stream (30 fps) is
processed by OpenCV [18] 3.3 running on Intel i7 CPU
980, 3.33GHz and 15GB RAM taking ∼20 ms time for
processing each frame. The edge server is connected to the
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Figure 2. AR Use-case Scenario Set-up: (a) AR Application Flow (b)
Smart Meeting Application using Indoor Navigation and (c) Annotation
based Assistance

Figure 3. Timing Diagram for the AR Applications: (a) Smart Meeting
Application using Indoor Navigation and (b) Annotation based Assistance.

client in two hops: (i) edge to first hop router (bandwidth:
932 Mbps) and (ii) router to Hololens (bandwidth: 54 Mbps).
The following use-cases are evaluated.

Smart Navigation. A user enters a building. The edge in
the building has her contextual information from calender
entries and GPS. As shown in Fig. 2(b) the user is navigated
to meet a person in the building using a set of cubes
appearing on the device as she moves. Achievable latency
is critical here because real-time activities of the user can
be disrupted by late arrival of AR information.

Annotation based assistance. In this scenario, a user looks
at an object having a set marker through Hololens with an
intention to get supplementary information about the object.
In Fig. 2(c), user looks at the printer and the status, ink level,
number and current jobs are annotated on the user’s display.

B. Application Flow Timing Diagram
Figures 3(a) and (b) show (not to the scale) timing

diagrams of a packet flow in the system for smart meeting
and annotation based assistance application respectively. The
network delay in both the cases is kept below 10 ms by
deploying edge cloud services a single hop away from
the AP. In both the scenarios, the processing delay, path
finding in the navigation and OpenCV image processing
in the annotation application, can be a major bottleneck.
The following techniques are used in our implementation to
lower the total response time as compared to the traditional

core cloud based services: (i) reduction of network latency
via higher bandwidth and closer edge cloud service; (ii)
passing minimum processed information to the client such
as end-to-end coordinates (8 Bytes) per query in case of the
navigation and 64-1500 Bytes per frame processed for the
annotation application, and (iii) offloading multiple tasks to
the edge cloud to minimize local processing at the UE. The
AR implementation serves as a guide to the parameters used
in the system model described in the next section, which
assumes a low-latency requirement (< 50 ms) to run AR
applications with acceptable subjective quality [8].

Using our deployed AR applications, this section confirms
that: (a) the total application latency can be brought down
by reducing the number of hops and increasing available
access bandwidth, and (b) although edge cloud lowers the
network latency, application processing latency contributes
significantly to the total latency for AR applications.

III. SYSTEM MODEL

A. System Design
The system diagram of the hybrid edge cloud under con-

sideration is shown in Fig. 4. Each AP is equipped with an
edge cloud with a configurable compute resource capacity.
In general, a compute resource represents a machine or a
group of machines (cluster) also known as cloud or edge
rack. A rack has limited capacity to support users for their
computational requirements. For instance, an AR application
requires computation to process video/image stream and
receive their response back from the server. The edge rack
in our design has maximum five processors each having
3.33 GIPS processing speed. The central cloud server is
placed at Salem, Oregon (OR; location chosen to relate with
commercially available central clouds) which again has a
configurable capacity. The compute capacity is defined as
the number of servers available at the edge cloud and/or
at the central cloud. The inter-edge bandwidth is varied
from 1 Gbps to 100 Gbps and AP-Cloud bandwidth from
10 Gbps to 500 Gbps. The special case of unconstrained
inter-edge and AP-cloud bandwidth is also considered. The
central controller has the capability to collect network and
compute parameters from all the edge clouds and the core
cloud. The system design parameters are listed in Table I.

In this study, the total amount of compute available at
the edge clouds and core cloud is assumed to be fixed. This
assumption holding the compute cost constant allows us to
fairly analyze the impact of varying other key system param-
eters such as % of edge servers or core/edge bandwidth. In
our simulation, we increase the resource density of already
deployed edge clouds by removing and redistributing com-
pute resources from the central cloud thereby keeping the
overall compute resources for the whole system unchanged.

We use Chicago, the third most populous city in US, as
a test-case considering locations of 11,00 WiFi APs [19]
as shown in Fig. 5. The number of hops from Chicago to
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Figure 4. Hybrid Edge Cloud System Diagram

Table I
SYSTEM DESIGN PARAMETERS

Parameter Value/Range
AR Bit Rate 42.48 or 66.24 Mbps

AP-Cloud Bandwidth 10–500 Gbps
Inter-edge Bandwidth 1-100 Gbps
Core Cloud Resources 0, 20, 40, 60 or 100%
Edge Cloud Resources 0, 20, 40, 60 or 100%

Core Cluster 0-5500 servers
Edge Clusters 0-5500 servers

AR Latency Requirements 50-100 ms

OR varies from 10 to 20 (including switches) and takes
around 5-6 hops to reach the cloud server gateway whereas
the average latency in US ranges from 13 ms to 106 ms
[20] based on a simple ping test of 64 bytes packet from
various locations. The mean local delay in Oregon is as low
as 13 ms. It is to be noted that the AR application’s bit
rate increases rapidly with resolution for instance a 160x120
pixels video needs around 1.7 Mbps whereas a 640x480
pixels video requires 27 Mbps continuous uplink bandwidth
(assuming 30 fps, 24 bit per pixel) which goes up to 432
Mbps for 1920x1080 video. For annotation based assistance,
assuming each frame is processed for information, relevant
data is queried from the database and sent to the user, the
required downlink bandwidth varies from 54–600 Mbps.
The response from the server is sent to the UE as multiple
packets (100–1500 Bytes) per frame processed. The uplink
bandwidth is assumed to be from 27–300 Mbps as listed
in Table II. For the simulations in this paper, we used
1280x720 and 1026x576 video size chosen randomly for
each user and maintained throughout. Note that the uplink
bandwidth requirement for an AR application is more than
the download bandwidth due to its uplink video/downlink
processed information characteristic which is quite different
from most web traffic today. We model the network based
on the type of application and its latency requirement.

We run an AR application at the UE which sends a video
stream to the server while server computes the contextual
information and sends back the output to the user. The

Figure 5. Wi-Fi APs Placement in Chicago City

application is annotation-based assistance using AR wherein
a user gets information about surrounding annotated on his
AR device as described in Section II. Annotation-based
assistance can be used in various application scenarios. For
example, a policeman looks at a license plate of a car while
driving and the information about the owner gets displayed
on the device. The license plate can also be run against a
list of stolen car and can be immediately reported to the
policeman.

Table II
SIMULATION PARAMETERS

Parameter Value
Area 5.18 km2

Number of APs 1.1K
Number of Users 55K

Distribution of Users Random
Bandwidth (Uplink) 27, 150 and 300 Mbps

Bandwidth (downlink) 54, 300 and 600 Mbps
Packet Size 1500 Bytes

Edge Resources (baseline) 5 Machines
α 2
β 1
γ 0.1
δ 1
ρ 0.9
w 0.5
p 10

B. Performance Model

In this section, we describe system modeling aimed
at evaluating user performance and system capacity as a
function of key design parameters. A multi-tier edge-cloud
system as shown in Fig. 4 can be divided into user, network
(data and control) and computation plane. Our system de-
sign is a hierarchical composition of compute and network
elements. The computation at edge or cloud is similar in
functionality but different in terms of resources availability
as the core cloud has a single big pool of shared resources
while each edge cloud has limited resources closer to the
user. The following discussion presents application, compute
and latency modeling.
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1) Application: In our model, the application is defined
by a four tuple < V,G, S, L > where V denotes the compu-
tational task per unit time ranging from [1, n], n ∈ Z+. Each
AR application requires these tasks to be completed within
a specified real-time threshold latency in order to be useful
to the AR application. In case a task is not completed within
the application latency threshold, the goodput of system
goes down. G denotes the geolocation of the UE. A city
is considered to be a collection of Gi blocks (assume as
cells of a cellular network), i ∈ [1, N] where N is the total
number of geographical blocks. For simplicity, we divide
the geographical area into square Gi’s. Analyzing the users
served by each block provides us meaningful information
if we need to upgrade the capacity of an edge cloud in the
block. Binary S ∈ {0, 1} denotes the availability of the edge
cloud in the geographical area G of a user. Unavailability
of an edge cloud may mean that there is no physical edge
cloud present or the edge cloud of that region has run out
of capacity in which case, a neighboring edge cloud can
be chosen or the user can be routed to the central cloud.
For delay-tolerant applications, routing a user to the central
cloud frees resources at the edge to serve latency sensitive
applications. Finally, L ∈ (0, dmax) represents the maximum
tolerable latency for the said application.

2) Compute: The delay due to computation is modeled
using a multi-server queuing model. The edge cloud is like
a mini data center where tasks arrive from geographically
distributed users, processed by the available resources in the
edge cloud and depart. Therefore, as the number of trans-
actions in the system increase when the system load rises
these tasks are queued till they are processed. This scenario
can be best represented by employing an M/M/C queuing
model [21]. Each edge or central cloud processes multiple
service requests in a work-conserving FCFS queue with
assumed infinite buffers. The overall latency is dependent on
the arrival rate λ, service rate µ and the number of servers
c. It can be noted that as the system computation power is
constant, increasing capacity at the edge will mean removing
equivalent resources from the central cloud implying a rise in
queuing delay at the cloud. As the system load increases, the
arrival rate, λ, rises thereby increasing the total computing
latency per task V as dcomp = 1/(cµ−λ) where µ = f/K,
f being the rated speed in instructions per second and K is
number of instructions required per task.

For a given set of static users, the system load is pro-
portional to the number of active users and the rate of
application requests per second. In our model, we assume
55K users and Load=1 is defined as 10% of the the users
are running the application. Load=10 implies that all 55K
users are running the AR application 100% of the time. In
general, average time spent by a task in the server is the sum
of transmission delay, queuing delay and processing delay,
which is calculated using the M/M/c queuing model as given

below in Eq. (1-3).

dnode = W +
1

µ
+ ttx = PQ ∗ ρ

λ(1− ρ)
+

1

µ
+ ttx (1)

PQ =
(cρ)c

c!

1

1− ρ
p0 (2)

p0=

[
c∑

k=0

(cρ)k

k!
+
(cρ)c

c!

1

1− ρ

]−1

(3)

Here, dnode is the total time spent by a task V at the edge
cloud or the core cloud, W is the wait time in the queue,
PQ is the queuing probability, ρ is the server utilization, c
are number of servers at each edge or total server at the
cloud, p0 is the initial probability, and ttx is the average
transmission time for a task at an edge as noted in [22] given
by ttx = (N ∗ r)

∞∑
j=1

j(1− Φ)(j−1)Φ, where Φ is the non-

outage probability of a link implying available bandwidth
for a task, r are the number of tasks per user per second
and N is the total number of users in the system. In view of
shared bandwidth on inter-edge links, ttx can be simplified
as blink/rusers where blink is the total bandwidth of a link
and rusers are number of total tasks run by all the users at
an edge. For large c, to avoid involved calculations in Eq.
(2), we split cloud computing resources into set of uniform
clusters where a selected cluster is one serving the lowest
number of concurrent tasks.

3) Latency: The overall latency of an application has
several components including irreducible propagation delay,
the transmission delay, routing node delays and the cloud
processing time. For a core cloud server, which carries ag-
gregated traffic, there is also a Software Defined Networking
(SDN) switching latency. As the number of users increase in
a geographical region, the bandwidth is shared among them
costing more transmission delay. For a cloud only model
when there are no edge servers, the total cloud latency can
be stated as:

Lcloud = (α+δ)∗Dmin(UE,APs)+(β+γ)∗DAP−cloud+dnode
(4)

Eq. 4 shows that a closest AP is chosen to route a
user to the cloud. Here, α and δ are the proportionality
constants for uplink and downlink bandwidth from UE to
AP link respectively, and β and γ are the similar factors for
AP to cloud uplink and downlink bandwidth respectively.
Dmin(UE,APs) is distance from UE to nearest AP and
DAP−cloud is the distance from AP to the central cloud.
It is noted that the uplink bandwidth usage for the AR
application is much higher than that of the downlink as
mentioned earlier. When resources are available at the edge,
the total edge latency can be represented as:

Ledge = (α+ δ) ∗Dmin(UE,APs) + dnode + ds (5)

In Eq. 5, ds ≥ 0 is the control plane switching latency from
an edge at AP to another AP’s edge in case of unavailable

���



resources which is assumed to be between 1–5ms. The
response time for an application is the sum of transmission
delay, propagation delay, switching delay (if any), queuing
delay and computation delays in both the cases.

A core cloud-only system is defined as one with no edge
cloud available. The edge-only system does not have any
core cloud and if the load exceeds the available computa-
tional resources, a request is queued until it is processed. We
also consider hybrids of core and edge based on the percent-
age parameter that splits computing resources between the
two.

C. Edge Selection for an AR Application

Edge selection in a system for a given traffic load can be
achieved using multiple approaches depending upon whether
the system has centralized or distributed control. The net-
work routing information that is available to all the routers
can be used to deliver the service request to the nearest edge
cloud — the edge cloud then independently decide to serve
the request based upon resource availability or can route
the user to the central cloud. A queuing model (M/M/c)
is used to predict the estimated service time for a request
apart from networking delays (control plane), propagation
delays and transmission delays (available bandwidth). This
approach works well for scenarios with evenly distributed
users and network resources. However, this simple nearest
edge cloud routing strategy does not work well when the
user distribution is not geographically uniform ascertained
by our simulation showing only 10% improvement in the
average system response time as compared to a cloud-only
system.

An alternative distributed approach improves upon simple
anycast by having routers maintain compute resource avail-
ability states of neighboring edge clouds. This may involve
the use of overlay protocols to exchange cloud state in a
distributed manner [23], [24]. A user is routed to the nearest
edge first which makes one of the following decisions: (i)
serve the request, (ii) route to a neighboring edge with
available resources, or (iii) route to the central cloud. The
decision at the edge is based upon application requirement
and traffic load. For an AR application, the decision metric
selects the closest edge to the UE which can serve the UE in
Ledge ≤ dmax. The algorithm for this approach is as detailed
below.

D. Baseline Approach

Algorithm 1 shows the pseudo-code for the baseline edge
cloud selection approach adopted in our study. The algorithm
is invoked whenever the default edge cloud is unable to
serve the user’s demand (line: 2). It then scans the states of
neighboring edges to find the best edge which can serve the
user within the specified latency threshold. This approach re-
lies upon shared resource and bandwidth information among
neighbors. The list of neighbors is defined as p closest edge

Algorithm 1: Finding neighboring edge with available
resources for an AR application

1 function AvailableNeighbor (a, b);
Input : Neighbor resource and bandwidth si and bi
Output: TorF

2 Condition: TotalDelayEdge ≥ delayth
3 while(NeighborEdge)
4 if TotalDelayNeighborEdgei ≤ delayth then
5 return TRUE;
6 else
7 return FALSE;
8 end

clouds from the current edge location. For finite p the order
of state update messages to be exchanged is ∼ N ∗p2where
N is the number of edge clouds, and is thus an acceptable
overhead for small to moderate values of p.

This section detailed our system and performance model.
A baseline algorithm which scans the states of neighboring
edge clouds to find the best edge which can serve the user
within the specified latency threshold is developed. Next
section evaluates the performance of baseline algorithm.

IV. PERFORMANCE EVALUATION OF BASELINE SYSTEM

In this section we discuss the capacity of different edge
cloud systems with respect to traffic load, resource distri-
bution and inter-edge bandwidth. Consider a system with
following compute resources: (i) core cloud only, (ii) edge
cloud only, and (iii) core cloud plus edge cloud, where in
each case, the total amount of resources are same. Major
system parameters used in the simulation are summarized
in Table II.

A. Impact of Network Bandwidth Parameters

Figure 6 shows the average response time for core cloud
only and edge only networks for different system load when
there is no limit on inter-edge and edge-cloud bandwidth.
As there is no bandwidth limitation, the queuing delay
dominates and crosses the 50 ms response time threshold
after the system load is more than 60% for edge only system
without bandwidth constraints. In the case when the core
cloud has infinite capacity we observed that the network
latency affects the total application response time.

Figure 7 illustrates the impact of constraint bandwidth
AP-cloud system on the average response time. Here, the
total bandwidth limit is set between edge network and the
core cloud cluster. For a 500 Gbps AP-cloud bandwidth, for
given system, the average response time compares with that
of an unconstrained bandwidth case while for 50 Gbps case,
it rises exponentially as the load increases. In case of lower
bandwidth cases like 10 Gbps and 25 Gbps, the system is
unable to handle higher load. As a bandwidth-constrained
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Figure 6. AR Application Average Response Time for Core Cloud only
and Edge only Networks with Increasing System Load

Figure 7. AR Application Average Response Time for Core Cloud only
System with Increasing System Load and Different Uplink Bandwidth

cloud system cannot compete with an edge-only system in
terms of response time, further discussions in this paper will
assume a bandwidth-unconstrained cloud.

Figure 8(a) plots the average response time for the core
cloud as well as edge only system with different inter-edge
bandwidth. On one hand, the extreme fronthaul bandwidth
of 100 Gbps edge-only compares with the unconstrained
bandwidth edge-only system and therefore all the edge
resources are utilized. On the other hand, after the system
fills up at Load=7, core cloud only system outperforms
the edge only system with 1 Gbps inter-edge bandwidth.
The reason is that for the baseline case, when an edge
fills up the capacity, it routes the request to a neighboring
edge utilizing inter-edge bandwidth. As the finite inter-edge
bandwidth is split between multiple application flows, the
propagation delay and queuing delay rise which in turn
increases the average response time for higher load. In the
baseline approach, the edge decides whether to send the
request to a neighboring edge or to the central cloud. For
1 Gbps inter-edge bandwidth, the average response time for
Load=1 is as low as 30 ms while for Load=10 case, it rises to
170 ms as the bandwidth exhausts and queuing delay rises.
A delay more than 100 ms is unsuitable for most of the AR
applications. As the bandwidth doubles, for Load=10 case,
the average response time is ∼120 ms. Increasing bandwidth
lowers the average response time for a completely loaded
system but beyond 10 Gbps there is no significant advantage

Figure 8. Average Response Time Comparison for Core Cloud and Edge
Only System, with Different Load and Inter-edge Bandwidth for Baseline

visible for the baseline case as there are still significant
queuing delays for a loaded edge at an AP (or neighboring
AP). After a load point, there is no dip in response time
irrespective of how good the fronthaul connectivity between
edges is. In this case, there is a crossover around Load=7 so
we compare the CDF of core cloud only and edge-only with
the 1 Gbps case in Fig. 8(b). A linear rise in response time
can be observed for the static load case implying that the
inter-edge bandwidth of 1 Gbps is insufficient to run such a
heavily loaded system.

B. Impact of Resource Distribution

In this subsection, we analyze the impact of the com-
pute resource distribution between the core cloud and edge
cloud on the average response time. There are a total of
5.5K processors each having 3.33 GIPS speed, available
as compute resources which are equivalent to 1.1K full
edge racks. Figure 9 shows the baseline latency performance
for a core cloud-only system, edge-only system and cloud-
edge (CE) system for the simulation parameters listed in
Table II. CE80-20 implies that 80% compute resources are
available at the cloud and 20% are placed at the edge
near the APs and so on. The inter-edge bandwidth has no
limitation in this case. As expected, the edge only system
outperforms irrespective of load. As the resources are moved
from central cloud to the edge, the response time CDF moves
towards the left close to the edge-only system. When the CE
system does not find resources available at the neighboring
edge using Algorithm 1, the request is routed to the core
cloud. Therefore in each of these cases, except for the edge-
only case, a few requests are bound to have response time
as close as core cloud-only case. As expected, increasing
resources at the edge brings response time down in the case
of unconstrained bandwidth. Next we consider more realistic
scenarios with constrained bandwidth.

Figures 10(a) and (b) compare average response time
in CE28 and CE82 for the baseline with respect to inter-
edge bandwidth and load respectively. Response times for
inter-edge bandwidth of 10, 50 and 100 Gbps are close to
each other for all the load cases for both scenarios. This
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Figure 9. Response Time CDF for Different Resource Distribution for
Baseline without Inter-edge Bandwidth Limit

Figure 10. Average Response Time for Edge Cloud System for Different
Load, Resource Distribution and Inter-edge Bandwidth for Baseline

implies that increasing inter-edge bandwidth indefinitely
cannot improve the system performance when using the
simple scheme of filling neighboring edge resources. Figure
10(a) also highlights the fact that when edge resources are
higher than the core cloud for a low inter-edge bandwidth,
beyond a load point, the core cloud-only system performs
better. This means that for a highly loaded system, if fast
edge connectivity is unavailable, it is better to use the core
cloud.

C. Impact of AR Application Traffic Parameters

Figure 11 establishes the fact that inter-edge bandwidth
plays a crucial role in the system. For the CE28 case, when
the cloud-edge resource distribution is 20%-80% and inter-
edge bandwidth is 1 Gbps, average response time increases
at a faster rate than that of the CE82 case. The reason is that
in the baseline scenario for CE28, an edge might be able to
find a neighbor with available capacity but the connectivity
is not sufficient to reach to that neighbor. In the case of lower
or no edge resources, the core cloud is immediately favored
and therefore performs better than the edge cloud scenario
as can be observed from the crossover point at Load=8 case.

One more point of interest in Fig. 11 is between Load=5
and Load=6 where all the CE cases intersect. Figure 12
shows the average response time with different inter-edge
bandwidth and resource distribution for baseline when

Figure 11. Average Response Time for Edge Cloud System with Different
Load and Resource Distribution for Baseline. Inter-edge Bandwidth=1Gbps.

Figure 12. Average Response Time for Edge Cloud System with Different
Resource Distribution and Inter-edge Bandwidth for Baseline. Load=5.

Load=5. Here, for the CE82 case, increasing inter-edge
bandwidth does not boost the system performance as com-
pared to the CE28 case because for the low edge resources
case, increasing inter-edge bandwidth cannot decrease the
processing delays at the edge. For a system with high edge
resources, a higher inter-edge bandwidth is therefore needed
to maintain AR performance.

Similarly, for the Load=6 case, Fig. 13 plots average
response time vs. resource distribution for different inter-
edge bandwidths. Again, for a 50 Gbps inter-edge bandwidth
system, a faster drop in the average response time can be
observed for the CE28 case when 80% resources are at the
edge. For a 1 Gbps inter-edge bandwidth system, the average
response time is slightly higher for the CE28 system than
for the CE46 system.

Using our designed system and performance model, we
make following observations for the baseline scenario: (a)
for unconstrained compute resources, the edge cloud contin-
ues to perform better than the core cloud due to its vicinity
to the users (lower network latency), (b) increasing core
network bandwidth beyond a load point does not lower
the total application latency as the compute latency takes
over, (c) for higher system load, the propagation delay and
queuing delay rise because finite inter-edge bandwidth is
divided among multiple application flows, (d) indefinitely
increasing fronthaul edge cloud connectivity does not im-
prove the response time after a load level, and (e) for lower
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Figure 13. Average Response Time for Edge Cloud System with Different
Resource Distribution and Inter-edge Bandwidth for Baseline. Load=6.

inter-edge bandwidth case, distributing more resources at the
edge clouds only worsens the application performance.

V. ECON: ENHANCED CAPACITY EDGE CLOUD
NETWORK

The baseline approach considered in Section IV relies on
distributed control to select the best available neighboring
edge cloud which might be sub-optimal in terms of overall
system capacity. A more general approach is to select an
edge cloud based upon global information about network and
compute resources available at a logically centralized point
such as an SDN controller. The idea is to use the complete
network view before assigning an application/user to an edge
cloud or deciding to route it to the core cloud. We call this
approach Enhanced Capacity Edge Cloud Network (ECON).
This section describes the ECON method and compares its
performance with the baseline method.

Definition 1: An edge or cloud is ”usable” for a request
i if the latency La

i for the user running an application a is
below the latency threshold for given application La

Th i.e.
La
i ≤ La

Th. Here, La
i is simply equal to Lcloud or Ledge

with different dnode and ds.
A ”usable” server is best for a user request in terms of

service quality whereas the overall system capacity might
not be optimal with this assignment. For example consider
a user’s application latency threshold 110 ms which may be
assigned to an edge server serving request within 30 ms. This
assignment will hamper performance of another needy user
who required 35 ms latency but cannot be accommodated
due to unavailable resources at the edge.

Definition 2: ”delay-constraint (%)” of an edge-cloud
system is defined as the number of requests out of hundred
served below the application response time threshold, La

Th.
For a specific value of La

Th, the delay-constraint can also
be interpreted as system capacity. For instance, a delay-
constraint of 10% for a 15 ms threshold implies that system
can accommodate only 10% of the total requests and 90%
requests will only consume resources to lower the goodput.
This means for 90% of the requests, the assigned edge
resources are ”not usable”.

Percentage delay-constraint, C = nTh
N ∗ 100, where nTh

are requests served within threshold response time and N
are the total number of requests in the system. A system with
high C for a threshold is required to run latency sensitive
applications.

A. ”Usable” Edge-Cloud Optimization
Assigning requests to a ”usable” server is similar to

capacity optimization of an edge-cloud system for given
compute as well network resources and application delay
fulfillment. This problem is equivalent to the maximum
cardinal bin packing and hence is NP-hard [25], [26]. We can
model the global optimization to maximize usable server s
for N requests, where each request i is assigned to the server
s, as:

max
s

∑

n∈N
I{sn>0} (6)

subject to:

La
i (s) ≤ La

Th, ∀sn > 0, n ∈ N (7)

I{sn>0} being the indicator function with values 1 or 0
depending upon if such a server is available or not for a given
request which means if it can serve the request in application
response time threshold. Mapping users to ”usable” server
is NP-hard problem as explained earlier thus requiring an
alternative approach.

The total average processing delay, dcomp, at the cloud
or edge, comprise of a waiting delay in the queue and a
processing delay associated to the type of application. At
each node, there is a transmission time, ttx associated with
each task V , adding which to dcomp provides total time,
dnode, spent at a server. Therefore, for such a system, we
can formulate Eq. (6) as minimizing dnode of the system for
all the users, while compromising on the optimality, instead
of a ”usable” server problem as follows:

P1 : min
M∑

i=1

(
N∑

j=1

dj,iproc + ditx + dis) (8)

subject to:
La
j ≤ La

Th, ∀j ∈ N (9)

bi,upmin ≤ bai ≤ bi,upmax, ∀i ∈ M (10)

bi,down
min ≤ bai ≤ bi,down

max , ∀i ∈ M (11)

M∑

i=1

ci ≤ C (12)

Equation 8 defines the optimization problem with Eq. (9)
as delay constraint, Eq. (10) and Eq. (11) as bandwidth con-
straints for uplink and downlink each user application and,
Eq. (12) as capacity constraint of each node respectively. As
explained earlier, bai can be computed as bi/redge. Again,
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the problem is similar to maximum cardinality bin packing
problem and is NP-hard. Therefore, to find the ”usable”
server, we need to fix a user to a nearby edge and find the
Pareto optimal edge for the next user sequentially satisfying
the application latency constraint. This can be done by
omitting the switching delay. Therefore, the problem can
be simplified as (with same constraints as above) follows
assuming ditx constraint is satisfied by bandwidth splitting
for each request.

P2 : min
M∑

i=1

N∑

j=1

dj,iproc (13)

Equation 13 establishes that for a latency sensitive AR
application, finding the ”usable” server for a user means
we need to place the task to a server which is nearby to the
user in strict network sense having low load, latency and
high available bandwidth. The delay minimization objective
function fills up the edge resources before routing a task
to the central cloud. The latency and bandwidth of chosen
server are estimated using the exponential moving average:
xp∗wx+(1−wx)x, with wx as weight factor for x, xp is the
previous value, x is the previous average and x is latency
or bandwidth parameter. We call this approach ECON and
results are compared with the baseline in next section.

VI. ECON VS. BASELINE

A. Resource Distribution and Inter-edge Bandwidth

ECON relies upon filling up the edge resources before
routing to the central cloud. Figures 14(a) and (b) compare
average response time for CE28 and CE82 cases when the
inter-edge bandwidth is 1 Gbps. For an edge-favored CE28
scenario in Fig. 14(a), ECON and baseline have similar
performance because finding an available resource in ECON
is equivalent to finding a neighbor in the baseline which
has high probability when edge resources are 80%. When
the resources are cloud-favored i.e. CE82 in Fig. 14(b),
for a lightly loaded system, ECON performs better as it is
able to find the resources anywhere in the network without
additional queuing delays at the edge. For a highly loaded
system, finding an available edge is more expensive than
routing the request to the cloud itself and therefore baseline
outperforms ECON in case Load>5.

B. Application Delay Constraints

Figure 15 presents the delay-constraints for unlimited
fronthaul bandwidth edge-cloud system for CE82 case when
Load=1. As application latency threshold increases, delay-
constraint rises meaning if an application has a latency
threshold of 100ms, about 60% requests can be fulfilled by
the cloud-only system whereas the edge-only system will
be able to fulfill all the requests. As shown in the plot,
without inter-edge bandwidth limits, ECON performs better

Figure 14. Average Response Time Comparison for ECON and Baseline,
for Different Load and 1 Gbps Inter-edge Bandwidth

Figure 15. Impact of Application Latency Threshold on Delay-constraint
Percentage for ECON and Baseline without Inter-edge Bandwidth Con-
straints

than the baseline as it fills up maximum edge resources
before routing any request to central cloud.

Figures 16(a) and (b) compare a 1 Gbps edge-favored
(CE28) system with Load=1 and Load=10. For a lightly
loaded system when the edge cloud has more resources,
ECON and baseline have similar performance as both of
these schemes are able to find an available resource at the
edge and 1 Gbps bandwidth is sufficient to route the request
to a neighboring edge. In the case of a heavy load scenario,
both of these schemes again have similar performance but
the core cloud-only system is able to serve more requests
than any of these schemes when the application latency
threshold is more than 140 ms. This study shows that for
elastic applications such as email, a cloud-only system is
sufficient and can even perform better when compared to an
edge-cloud system with low bandwidth. Also, for the low
bandwidth scenario, routing to the cloud is more helpful in
improving application latency performance than maximizing
usage of edge clouds as illustrated by Fig. 16(b) as baseline
outperforms ECON when application latency threshold is
more than 100 ms.

Figures 17(a) and (b) show the difference between ECON
and baseline delay-constraint performance for Load=1 and
Load=10 for CE82 case. For a lightly loaded system, and
lower available inter-edge bandwidth, ECON is able to fill
up edge clouds before routing to the cloud and therefore
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Figure 16. Edge Cloud System Capacity for Different Load and Edge
Favored Resources (Inter-edge BW=1 Gbps)

Figure 17. Edge Cloud System Capacity for Different Load and Cloud
Favored Resources (Inter-edge BW=1 Gbps)

performs better than baseline. When the load is higher, when
ECON tries to fill up all the edge resources which are only
20% here, with 1 Gbps inter-edge bandwidth connectivity,
it introduces more transmission delays and therefore the
baseline outperforms. In this specific case, the cloud-only
system overtakes first ECON and later the baseline case
when the application can withstand higher latencies.

1) Edge-favored vs. Cloud-favored: Figures 18(a) and
(b) compare edge and cloud favored resources respectively
when inter-edge bandwidth is 10 Gbps. Figure 18(a) shows
that for an edge-favored case when most of the resources
are available at the edge, a baseline neighbor selection
scheme performs equally well as ECON which selects the
best of all edge resources for the request. For the cloud
favored resource case shown in Fig. 18(b), ECON performs
better than baseline as each of the edges has sufficient
bandwidth to reach a far away available edge resource.
Therefore, when sufficient bandwidth is available, it is better
to choose an edge even if there are fewer resources available
as the queuing time at an edge can be compensated by
faster request transfers. On the other hand, if the inter-
edge bandwidth is low, instead of trying to maximize edge
resource utilization, it is good to send the request to the
cloud if the application can withstand the resulting delay.

2) Goodput: As discussed earlier, AR applications are de-
lay sensitive and discard packets which arrive late. Goodput
is defined as the number of useful (on time) bits per second

Figure 18. ECON and Baseline Comparison for Edge and Cloud Favored
Resources (Inter-edge BW=10 Gbps)

Figure 19. Impact of Load on Goodput Ratio of ECON and Baseline in
an Edge Cloud System for Real-time Applications

delivered to UEs running the AR application. Therefore,
even when the system throughput is high, the goodput
could remain low due to high proportion of late arrivals.
The capacity improvement can be studied by analyzing a
geographic block, G′is level of goodput using our simulation
tool. If goodput is lowest in a block, this is an indicative of
a need to augment additional edge resources to the serving
edge. Figure 19 shows the normalized goodput ratio of
ECON and baseline for different resource distribution and
load. For an unconstrained inter-edge bandwidth system,
the goodput ratio of a cloud-favored system is more than
that of an edge-favored one as ECON tries to find the
best available edge resource as compared to the neighbor
selection baseline scheme. In a cloud-favored system, the
edge has minimal resources and therefore each edge requires
sufficient bandwidth to transfer requests to other edges
which may be far away. The edge-favored system cannot
be significantly improved with ECON as there are ample
neighboring edges available from the baseline and therefore
finding a more optimal edge tends to increase the network
delay. Also, as the system load increases, there is a rise in
the queuing delay at the edge server and therefore the system
performance is similar for ECON as well as baseline in this
case.

This section compared baseline scenario with a global
edge assignment approach called ECON. We found that: (a)
for an edge-favored resource system, ECON and baseline
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have similar application response time performance, (b) for
a cloud-favored resources and lightly loaded system, ECON
performs better than the baseline, (c) maximizing edge
clouds usage for lower inter-edge bandwidth hampers the
average system response time, and (d) for elastic applications
such as email, a cloud-only system is sufficient and can even
perform better as compared to an edge-cloud system with
low bandwidth.

VII. RELATED WORK

Edge cloud solutions have been proposed for a number
of emerging scenarios including Internet of Things (IoT)
[27], Cloud of Things (CoT) [28]–[31], health analytics
[32] and autonomous driving [33], [34]. The term cloud is
generically used to describe a remotely located on-demand
computing and networking system along with its typical
storage functionality. Architectures such as Mobile Edge
Cloud (MEC) [17], [25], fog [35] and edge [36] computing
bring these resources close to the user to support faster
networking and ultra-low latency applications.

Serving IoT devices using edge clouds is proposed in
[37]–[39] with or without virtualization techniques to pro-
vide local compute offload, nearby storage, and networking.
Real-time applications such as autonomous driving, traffic
monitoring/reporting, and online multi-player 3D gaming
have also been considered, [8], [40]–[42]. Applications of
ICN (Information Centric Networking) have been proposed
in [43] as a means to reduce network complexity through
named services and content. A three-tier cloud of things
(CoT) system is modeled in [44] which identifies edge cloud
is a key design element for time-constraint applications.
Attempts are also made to provide hierarchical models
of edge clouds thereby enabling aggregation capabilities
similar to data center networks [45]. Understanding network
topology is a critical step in analyzing a cloud or edge
network mainly due to effect of routing on latency and
throughput. Attempts have been made to characterize the
network using geographical properties in [46] using data of
autonomous system (ASes) and their relationships, to create
a network topology for realistic analysis.

Motivated by faster compute and connectivity needs of
newer AR/VR applications, an edge-centric computing is de-
scribed in [47]. A QoS-aware global optimal edge placement
approach is described in [48]. An energy efficient resource
allocation strategy is proposed in [49] considering link layer
parameters. A small cell based multi-level cloud system
is simulated in [50]. Existing literature either relies on a
central controller for an optimal edge placement or the use
of new network hierarchy to realize improvements in system
performance [51], [52]. Studies aimed at determining the
overall capacity of a edge cloud system to support multiple
applications using a city-scale network are lacking in the
existing literature. To the best of our knowledge, this is one
of the early attempts to characterize such a hybrid system

with respect to edge-cloud resource distribution, inter-edge
bandwidth, AP-cloud bandwidth and system load.

VIII. CONCLUSION

This paper provides a framework for modeling and an-
alyzing capacity of a city-scale hybrid edge cloud system
intended to serve augmented reality application with service
time constraints. A baseline distributed decision scheme is
compared with a centralized decision (ECON) approach for
various system load, edge-cloud resource distribution, inter-
edge bandwidth and edge-core bandwidth parameters. The
results show that a core cloud only system outperforms the
edge-only system when inter-edge fronthaul bandwidth is
low. The system analysis results provide guidance for se-
lecting right balance between edge and core cloud resources
given a specified application delay constraint. We have
shown that for the case with higher inter-edge bandwidth
and edge computing resources, a distributed edge selec-
tion achieves performance close to centralized optimization,
whereas with ample core cloud resources and no bandwidth
constraints, ECON provides a lower average response time.
Our study shows that adding capacity to an existing edge
resource without increasing internetwork bandwidth may
actually increase network-wide congestion and can result in
reduced system capacity. Future work includes evaluating al-
ternative application profiles with task splitting and compute
prediction, analyzing the impact of mobility on the system
capacity and edge placement using the city-scale edge cloud
testbeds such as COSMOS [53].
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