CloudPath: A Multi-Tier Cloud Computing Framework

Seyed Hossein Mortazavi
University of Toronto
mortazavi@cs.toronto.edu

Caleb Phillips
University of Toronto
caleb@cs.toronto.edu

ABSTRACT

Path computing is a new paradigm that generalizes the edge com-
puting vision into a multi-tier cloud architecture deployed over the
geographic span of the network. Path computing supports scalable
and localized processing by providing storage and computation
along a succession of datacenters of increasing sizes, positioned
between the client device and the traditional wide-area cloud data-
center. CloudPath is a platform that implements the path computing
paradigm. CloudPath consists of an execution environment that
enables the dynamic installation of light-weight stateless event
handlers, and a distributed eventual consistent storage system that
replicates application data on-demand. CloudPath handlers are
small, allowing them to be rapidly instantiated on demand on any
server that runs the CloudPath execution framework. In turn, Cloud-
Path automatically migrates application data across the multiple
datacenter tiers to optimize access latency and reduce bandwidth
consumption.

CCS CONCEPTS

+ Computer systems organization — Cloud computing;

KEYWORDS

Mobile Edge Computing, Cloud Computing, Path Computing, Com-
puter Systems Organization

ACM Reference format:

Seyed Hossein Mortazavi, Mohammad Salehe, Carolina Simoes Gomes,
Caleb Phillips, and Eyal de Lara. 2017. CloudPath: A Multi-Tier Cloud Com-
puting Framework. In Proceedings of SEC ’17, San Jose / Silicon Valley, CA,
USA, October 12-14, 2017, 13 pages.

DOI: 10.1145/3132211.3134464

1 INTRODUCTION

Current mobile networks are not able to support next generation
applications that require low latency, or that produce large vol-
umes of data that can overwhelm the network infrastructure in a
carrier network. Examples include intelligent personal assistants,
medical patient monitoring [21], and safety-critical applications,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SEC 17, San Jose / Silicon Valley, CA, USA

© 2017 ACM. 978-1-4503-5087-7/17/10...$15.00

DOI: 10.1145/3132211.3134464

Mohammad Salehe
IEEE Student member
salehe@ieee.org

Carolina Simoes Gomes
University of Toronto
cgomes@cs.toronto.edu

Eyal de Lara
University of Toronto
delara@cs.toronto.edu

such as face recognition applications for airport security [35] and
intelligent transportation systems [38]. The use of servers on the
wide-area cloud is also not an option due to the same low-latency
requirements. To address these challenges, the research community
and the telecommunications industry are exploring ways to add
computation and storage capabilities to the edge of the network.
These approaches, variously referred to as cloudlets [33], micro dat-
acenters [8], or fog [12], augment the traditional cloud architecture
with an additional layer of servers that are located closer to the end
user, typically one-hop away.

This paper introduces path computing, a generalization of edge
computing into a multi-tier cloud paradigm that supports process-
ing and storage on a progression of datacenters deployed over the
geographic span of a network. Figure 1 illustrates how path com-
puting extends the traditional cloud architecture. At the top and
bottom of the figure are the traditional wide-area cloud datacenter
and the end-user devices, respectively. Path computing enables the
deployment of a multi-level hierarchy of datacenters along the path
that traffic follows between these two end points. Path computing
makes possible different classes of applications, including work-
loads that aggregate data (such as IoT applications), or services
that cache data and process information at different layers. Path
computing provides application developers the flexibility to place
their serve functionality at the locale that best meets their require-
ments in terms of cost, latency, resource availability and geographic
coverage.

We described CloudPath, a new platform that implements the
path computing paradigm and supports the execution of third-party
applications along a progression of datacenters positioned along
the network path between the end device (e.g., smartphone, IoT ap-
pliance) and the traditional wide-area cloud datacenter. CloudPath
minimizes the complexity of developing and deploying path com-
puting applications by preserving the familiar RESTful development
model that has made cloud applications so successful. CloudPath
is based on the key observation that RESTful stateless functional-
ity decomposition is made possible by the existence of a common
storage layer. CloudPath simplifies the development and deploy-
ment of path computing applications by extending the common
storage abstraction to a hierarchy of datacenters deployed over the
geographical span of the network.

CloudPath applications consist of a collection of short-lived and
stateless functions that can be rapidly instantiated on-demand on
any datacenter that runs the CloudPath framework. Developers
determine where their code will run by tagging their application’s
functions with labels that reflect the topology of the network (e.g.
edge, core, cloud) or performance requirements, such as latency

SEC ’17, October 12-14, 2017, San Jose / Silicon Valley, CA, USA

bounds (e.g. place handler within 10ms of mobile users). CloudPath
provides a distributed eventual consistent storage service that func-
tions use to read and store state through well-defined interfaces.
CloudPath’s storage service automatically replicated application
state on-demand across the multiple datacenter tiers to optimize
access latency and reduce bandwidth consumption.

We evaluated the performance of CloudPath on an emulated
multi-tier deployment. Our results show that CloudPath can deploy
applications in less than 4.1 seconds, has routing overhead bellow
1ms, and has negligible read and write overhead for locally repli-
cated data. Moreover, our test applications experienced reductions
in response time of up to 10X when running on CloudPath com-
pared to alternative implementations running on a wide-area cloud
datacenter.

The rest of this paper is organized as follows. Section 2 introduces
path computing, a generalization of the edge computing design into
a multi-tier cloud architecture that supports processing and storage
on a progression of datacenters deployed over the geographic span
of a network. Section 3 introduces CloudPath, a new platform that
implements the path computing paradigm. Section 4 describes the
design and implementation of our CloudPath prototype. Sections 5
and 6 present our experimental setup and the results from our evalu-
ation. Section 7 describes related work. Finally, Section 8 concludes
the paper and discusses future work.

2 PATH COMPUTING

Edge computing expands the traditional flat cloud architecture
into a two-tier topology that enables computation and storage at
a locale close to the end user or client device. We introduce path
computing, a generalization of this design into a multi-tier cloud
architecture that supports processing and storage on a progression
of datacenters deployed over the geographic span of a network.

Figure 1 illustrates how path computing extends the traditional
cloud architecture. At the top and bottom of the figure are the
traditional wide-area cloud datacenter and the end-user devices,
respectively. The figure also shows the path that traffic between
these two end points follows over a collection of intermediate
network links and routers. Path computing enables the deployment
of a multi-level hierarchy of datacenters along this path, with the
traditional wide-area datacenters at the root of the hierarchy.

We refer to a datacenter that is part of the hierarchy as a node.
Nodes along the hierarchy can differ vastly in the amount of re-
sources at their disposal, with storage and execution capacity ex-
pected to decrease as we descend levels in the hierarchy and move
closer to the end-user device. Wide-area nodes are assumed to have
access to virtually limitless computation and storage; in contrast,
nodes close to the edge of the network may have just a handful of
servers at their disposal. The number of nodes at any given level of
the hierarchy is expected to grow dramatically as we get farther
from the root. For example, a path computing deployment may
consists of a handful of wide-area nodes, tens of nodes running at
the network-core of various mobile carriers, hundred of nodes run-
ning on region-level aggregation switches, and tens of thousands
of nodes running on the edge of the network.

Path computing can be materialized in a variety of different
topologies and networking technologies. For example, a simple

S. H. Mortazavi et al.

[Cloud
DataCenter
Internet 4
-
- Core
Network
Aggregation Aggregation
Mobile
Network A
Aggregation Aggregation
," 7 AN Y .
. 1 A} 1 \

Figure 1: Path Computing Architecture: Path computing
provides storage and computation along a succession of dat-
acenters of increasing sizes, positioned between the client
device and the traditional wide-area cloud datacenter.

two-tier topology that is the focus of most edge computing re-
search, could consist of a layer of nodes running on or close to
WiFi access points and a cloud layer. This simple topology could
be expanded to include additional tiers inside the Internet Service
Provider’s network at convenient aggregation points, at the city and
regional levels. Similarly, the architecture could be incorporated
into mobile cellular networks. LTE networks by default encapsu-
late packets and send them to the network’s core for processing;
however, a growing number of product offerings, such as Nokia
RACS gateway [24] and Huawei’s Service Anchor [4], have the
potential to enable in-network processing by selectively diverting
packets for processing. Looking ahead, 5G, which is currently in
the process of being standardized, opens the possibility for packet
processing at the edge. CloudPath nodes could be incorporated on
the base station (EnodeB) or the Centralized Radio Access Network
(C-RAN) 1, as well as at aggregation switches along the path to the
network core and at the core itself.

2.1 Opportunities and Challenges

Path computing creates new opportunities for application devel-
opers. Today, mobile and IoT applications are typically developed
based on the client-server model, which requires developers to
partition application logic and state between a client running on
the end-user device and a server located on the wide-area cloud. In

1C-RAN is a proposed architecture for future cellular networks that connects a large
number of distributed low cost remote radio heads (RRH) to a centralized pool of
baseband units (BBU) over optical fiber links [31].

CloudPath: A Multi-Tier Cloud Computing Framework

contrast, path computing provides developers the opportunity to
run their server-side functionality on a number of different loca-
tions making possible different classes of applications, including
workloads that aggregate data (such as IoT applications), or ser-
vices that cache data and process information at different layers.
Path computing provides applications developers the flexibility to
control the placement of their application components or tasks at
the locations that best meet their requirements in terms of cost,
latency, resource availability and geographic coverage.

It is generally accepted that the cost of computation and storage
is inversely proportional to datacenter size [7]; therefore, it is rea-
sonable to assume that the unit cost of deploying and managing
computation and storage increases as we get closer to the edge and
nodes become smaller and more numerous. Conversely, the net-
work cost of serving a request goes down as we move closer to the
edge and fewer links need to be traversed. To a first approximation,
the cost of running a compute intensive task can be optimized by
placing it on the datacenter node that is farthest away from the
edge, but still meets the latency and hardware requirements of the
task. On the other hand, the cost of a network intensive task can
be optimized by running it on the datacenter node that is closest to
the edge, while still meeting the task’s hardware requirements (i.e.,
availability of a particular accelerator).

Optimal task placement may also depend on other factors such
as the geographic coverage provided by a datacenter node, the size
of the population it serves, and user mobility patterns. For example,
the effectiveness of a data reduction tasks, such as computing an
average over streams of sensor data produced by a farm of IoT
devices, is a complex product of the number of available incoming
streams, the aggregation factor, and the cost of the computation
and network bandwidth. On one hand, the network benefits of
aggregation decrease as we get father away from the edge. On the
other, the geographic coverage area served by a datacenter node
grows as we get away from the edge creating more opportunities
for data aggregation (i.e., there are more streams). Similarly, task
placement affects how an application component experiences user
mobility. For example, an application component running on a city-
level node will experience a much lower level of user handover
than one deployed on a node closer to the edge, such as WiFi access
point.

Unfortunately, taking advantage of the added flexibility intro-
duced by path computing is not easy. It requires developers to
partition their server-side functionality, and manage the placement
of code and data based on complex calculations that trade off prox-
imity to the user with resource availability and cost. In addition,
the limited capacity of the datacenters on the lower levels of the
hierarchy puts a hard bound on the number of applications and
datasets that can be hosted simultaneously requiring application
code and data to be dynamically provisioned. Section 3 introduces
CloudPath, a new platform designed to address these challenges.

2.2 Practical Considerations

Path computing datacenters need to be in or near the network
of different ISPs or mobile network providers, so it is likely that
they will be owned by the different network providers. In contrast,
application developers are used to a deployment model where their

SEC ’17, October 12-14, 2017, San Jose / Silicon Valley, CA, USA

face_detection_and_recognition_service {

login(credential)->token : any
detect_faces(image)->coordinates[] : 10 ms
recognize_face(image)->label : 50 ms

Figure 2: Server API with application entry points labeled
with latency requirements.

application is globally available independently of the carrier used
by an individual user 2. Rather than having individual application
developers negotiate service agreements with a myriad of network
providers, it is likely that cloud providers (existing or new) will
offer a one-stop shop that lets application developers run their
code across datacenters managed by different carriers. This model
follows the approach taken by content delivery network companies,
such as Akamai, which let applications owners serve their content
to users across different ISPs.

3 CLOUDPATH

CloudPath is a platform that implements the path computing par-
adigm, and supports the development and deployment of appli-
cations that run on a set of datacenters embedded over the geo-
graphical span of the network. CloudPath assumes a subscription
model similar to that of existing wide-area network cloud platforms
where anyone with an account on the system can deploy and run
applications. In this scenario, the available applications and their
data vastly outnumber the resources available at the smaller data-
centers, which only have enough resources to run a limited number
of applications at any time and can store only a fraction of the
data. As a result, CloudPath deploys applications and replicates
data on-demand.

CloudPath minimizes the complexity for developing path com-
puting applications by preserving, as much as possible, the familiar
development model that has made traditional cloud applications so
successful. CloudPath builds on the observation that it is accepted
practice for cloud applications to implement server-side functional-
ity as services that are exposed to the client over an API consisting
of stateless entry points, or functions, that are exposed as unique
URIs. For example, Figure 2 shows a simplified server-side API for
an application that performs face detection and recognition. The
API includes three entry points that let the client device login and
authenticate, upload an image on which to perform face detection,
and upload an image of a face for recognition. The stateless na-
ture of the entry points improves application modularity, makes
it possible to dynamically scale each function independently, and
increases fault tolerance.

Our key observation is that this functionality decomposition is
made possible by the existence of a common storage layer. Cloud-
Path simplifies the development and deployment of path computing
applications by enforcing a clear separation between computation

2Some carriers deploy applications that are only available to their customers on their
own network, but this is a much less attractive deployment model for third-party
applications.

SEC ’17, October 12-14, 2017, San Jose / Silicon Valley, CA, USA

and state, and expanding the common storage abstraction to a hier-
archy of datacenters deployed over the geographical span of the
network.

CloudPath applications consist of a collection of short-lived and
stateless functions that leverage a distributed storage service that
provides transparent access to application data. CloudPath func-
tions are implemented using high level languages, such as Java or
Python. Since CloudPath functions are small and stateless, they
can be rapidly instantiated on-demand on any datacenter that runs
the CloudPath framework. CloudPath provides a distributed even-
tual consistent storage service that functions can use to read and
store state through well-defined interfaces. CloudPath automati-
cally migrates application state across the multiple datacenter tiers
to optimize access latency and reduce bandwidth consumption.

Developers determine where their code will run by tagging their
application’s entry points (i.e., functions) with labels that reflect
the topology of the network (e.g. edge, core, cloud) or performance
requirements, such as latency bounds (e.g. place handler within
10ms of mobile users). For example, Figure 2 shows annotations
that indicate that the authentication can run on any datacenter,
whereas face detection and recognition need to run in a datacenter
that can be reached within 10ms and 50ms of the mobile client,
respectively.

CloudPath does not migrate a running function between data-
centers. Instead, CloudPath supports code mobility by terminating
an existing instance (optionally waiting for the current request to
finish) and starting a new instance at the desired location. Similarly,
for mobile users, network handoff between cells may result in a
change in the network path with traffic flowing through a different
set of CloudPath datacenters. CloudPath does not migrate network
connections between datacenters. Instead, it terminates existing
connections and leaves it to the application to establish a new con-
nection with the new datacenter. While this approach requires
application modifications, CloudPath provides a client library that
automates the re-connection process.

The next section describes the design and implementation of
CloudPath in detail.

4 DESIGN AND IMPLEMENTATION

CloudPath organizes datacenters into a simple tree topology over-
laid over a collection of underlying mobile networks and the public
Internet. We refer to a datacenter that is part of the CloudPath
deployment as a node. The CloudPath tree can have arbitrary depth,
and does not have to be balanced; different branches of a CloudPath
network can have different height. New nodes can be attached to
any layer of the existing tree.

While simple, this structure can accommodate different classes
of applications, including workloads that aggregate data (such as
IoT applications), or content delivery applications that cache data
at different layers. This simple topology is a natural fit to the way
mobile networks are currently organized in the physical substrate,
and it also simplifies routing and configuration, as a node only needs
to know its parent to join the network. However, other topologies
may improve fault tolerance, are more robust to failures and allow

S. H. Mortazavi et al.

for optimizations (e.g., direct data transfer between siblings, or load-
balancing between siblings). We leave the exploration of alternative
designs for future work.

CloudPath nodes are expected to differ widely in the amount
of resources at their disposal, with storage and execution capacity
expected to decrease as we descend levels in the hierarchy and move
closer to the end-user device. Irrespective of size, each CloudPath
node is comprised of the following modules:

e PathExecute: Implements a serverless cloud container
framework that supports the execution of lightweight state-
less application functions.

e PathStore: Provides a distributed eventual consistent stor-
age system that manages application data across CloudPath
nodes transparently. PathStore is also used internally by
PathDeploy and PathRoute to fetch application code and
routing information.

o PathRoute: This module routes requests to the appropri-
ate CloudPath node. The user’s location in the network,
application preferences, and system state (e.g., application
availability, load) are considered when making routing
decisions.

e PathDeploy: Dynamically deploys and removes applica-
tions from CloudPath nodes, according to application pref-
erences and system policies.

o PathMonitor: Provides live monitoring and historical an-
alytics on deployed applications and the CloudPath nodes
they are running on. Aggregates metrics from other Cloud-
Path modules in each node, collects them using PathStore,
and presents the results in a simplistic web interface.

In addition to the modules above, the root node located in the
wide-area cloud also contains a module called Pathlnit. Developers
upload their application to CloudPath through this module.

4.1 PathExecute

PathExecute implements a serverless cloud container framework
that supports the execution of lightweight stateless application
functions in each CloudPath node. Function as a Service (FaaS), also
known as Serverless Computing, is a cloud computing approach
in which the cloud provider fully manages the infrastructure used
to serve requests, including the underlying virtual machines or
containers, the host operating system, and the application run-
time. Despite the Serverless moniker, FaaS applications do require a
server to run. Serverless reflects the fact that the application owner
does not need to provision servers or virtual machines for their
code to run on. FaaS applications are composed of a collection
of light-weight stateless functions that run on ephemeral isolated
environments. We argue that the small size and stateless nature of
FaaS functions make them ideal candidates for our multi-tier path
computing deployment.

Our current prototype requires functions to be implemented as
Java Servlets and requests for these servlets arrive using HTTP.
For each application running on a node, we spawn a separate
Docker [30] Ubuntu container running Jetty web server [3]. Func-
tions of the same application can share the same container, and
the same container is reused across multiple requests; however,
a container may be terminated by the framework without notice

CloudPath: A Multi-Tier Cloud Computing Framework

public class ClockService extends Action {
public String getTimeZone() {
Select s = QueryBuilder.select().all().from("clock");
s.where(QueryBuilder.eq("userId", CurrentUserID));
ResultSet results = pathstore.execute(s);
Row row = rowList.results.one();
int tzOffSet = row.getInt("tzOffset");
return "<p>The zone is:" + tzOffSet + "</p>";

public String getPreferences() {

(a) Function definition

SEC ’17, October 12-14, 2017, San Jose / Silicon Valley, CA, USA

<CloudPath_app>
<mapping>
<uri_pattern>/timeZone</uri_pattern>
<function>ClockService.getTimeZone</function>
<loc_pref>edge</loc_pref>
</mapping>
<mapping>
<uri_pattern>/prefs</uri_pattern>
<function>ClockService.getPreferences</function>
<loc_pref>core</loc_pref>
</mapping>
<sub-domain>clockapp</sub-domain>
</CloudPath_app>

(b) Function registration

Figure 3: CloudPath application example. The application consists of two functions: getTimeZone() and getPreferences(). These
functions are registered as CloudPath entry points(/timeZone and /prefs) by mapping the function to a URI using the web.xml
file shown in part (b). The location where each function needs to run is also specified in this file. The full URI will include the
application name and CloudPath.com, e.g., clockapp.cloudpath.com/prefs.

and developers should not make any assumption about the local
availability of state generated by previous function invocations.
Our applications can scale horizontally in a datacenter by adding a
load balancer for the application.

We implement PathExecute based on Nomad [5], a cluster man-
ager and task scheduler that provides us with a common workflow
to deploy applications across each of our CloudPath nodes. Nomad
interacts with Consul [2], a highly available service registry and
monitoring system inside each node. Information about running
applications required for running Nomad is stored in Consul.

While we anticipate that most CloudPath applications will be
written from scratch to take advantage of the unique execution
environment afforded by the platform, PathExecute lets application
developers leverage existing code and libraries by including them in
their deployment package as statically linked binaries. In addition,
PathExecute containers can be configured by the CloudPath admin-
istrator to include popular binary libraries, such as OpenCV [25].

Cloudpath uses URIs (Uniform Resource Identifier) to identify
individual functions. These URIs consist of the application’s name
concatenated with the suffix CloudPath.com followed by the name
of the function. Developers determine how URIs are mapped to
functions using a deployment descriptor file that should be included
in the application package. In addition, developers also specify their
preferences for where functions should be deployed in CloudPath
hierarchy using the deployment descriptor file. In our current im-
plementation, the standard Java deployment descriptor for web
applications (the web.xml file) is used to describe how and where
the application and its functions should be deployed. Figure 3 illus-
trates how two URIs are mapped to functions and their preferred
location to run (edge for /timeZone, and core for /prefs).

4.2 PathStore

PathStore provides a hierarchical eventual consistent database that
makes it possible for CloudPath functions running in PathExecute

containers to remain stateless by automatically replicating applica-
tion state close to the CloudPath node where the function executes.

PathStore’s target environment poses three interesting chal-
lenges. First, most nodes can only store a small fraction of the
data stored on the wide area cloud nodes that are at the root of
the hierarchy. Nevertheless, most reads and writes executed by a
CloudPath function should be executed locally; running code close
to the edge of the network has little benefit if most data accesses
have to go to the cloud. Second, the large number of nodes in the
system requires keeping to a minimum the amount of meta-data re-
garding the current location of data replicas. Third, the geographic
distribution of nodes, and the high network latency typical of many
paths between nodes requires minimizing coordination and the
ability to operate (albeit at diminished capacity) even in case of
temporary network or node failure.

To address these challenges, we structured PathStore as a hier-
archy of independent object stores. The database of the PathStore
node at the root of the hierarchy is assumed to be persistent, while
all other levels act as temporary partial replicas. To simplify the
implementation, PathStore requires the data replicated by a node
to be a superset of the data replicated by its children. To provide
low-latency, all read and write operations are performed against
the local database node to which an application server is attached.
PathStore supports concurrent object reads and writes on all nodes
of the database hierarchy; updates are propagated through the node
hierarchy in the background, providing eventual consistency.

Figure 4 shows a sample three layer PathStore deployment. Path-
Store consists of three main components: a native object store, the
PathStore server, and the PathStore driver. The native object store
provides persistent storage for objects that are temporarily (or
permanently in the case of the root) replicated at a node. In our
prototype we use Cassandra [26], but the design can be adapted
to other storage engines (see 4.2.7). As the figure illustrates, the
size of the local Cassandra cluster can differ between nodes. The
PathStore server copies data between its local Cassandra instance
and the Cassandra instance of its parent node. Finally, the PathStore

SEC ’17, October 12-14, 2017, San Jose / Silicon Valley, CA, USA

CloudPath Node (Cloud)

Marbles [PathStore
Server

Purple Query Cache

Green

Cassandra Cluster

CloudPath Node (Core) CloudPath Node (Core)

PathStore PathStore
Server Server
Cassandra Cluster Cluster

PathExecute Container || PathExecute Container PathExecute Container

PathStore /" Query PathStore /* Query PathStore /" Query
Driver Cache Driver Cache Driver Cache

l Application ‘ Application Application

CloudPath Node (Edge) /

PathStore

Server
Cassandra | Query Cache
Cluster

PathExecute Container

PathStore /"~ Query
Driver Cache

Application

Figure 4: PathStore Architecture

driver provides an API that third-party applications running inside
PathExecute containers can use to query the local PathStore node.
Our prototype is based on CQL, Cassandra’s SQL dialec, which
organizes data into tables, and provides atomic read and write oper-
ations at row granularity. CQL lets users read and write table rows
using the familiar SQL operation SELECT, INSERT, UPDATE, and
DELETE; however, CQL operations are limited to a single table —
there is no support for joins.

4.2.1 On-Demand Replication. PathStore replicates data at row
granularity on demand in response to application queries. Applica-
tions issue queries using the PathStore driver which executes them
against the local PathStore node; however, before a CQL query is
locally performed, PathStore server replicates from the parent node
all objects that match the query as determined by the conditions in
the where clauses of the CQL statement. To prevent a node from
fetching data on each query from its parent, the PathStore server
keeps a query cache consisting of all recently executed CQL queries.
Subsequent CQL queries that match an existing entry in the cache
are directly executed on the local node. Queries in the query cache
are periodically executed in the background by a pull daemon to
synchronize the local node’s content with that of its parent (i.e.,
fetch new and updated records from the parent node). To reduce
unnecessary processing, PathStore keeps track of the coverage of

S. H. Mortazavi et al.

cache entries and the pull daemon bypasses queries that are oth-
erwise subsumed by other queries that have a wider scope. For
example the query select * from marbles subsumes the query select
* from marbles where color = red.

Figure 4 illustrates this process for a simple table that keeps track
of marbles of different colors. In the example, an application running
at the edge node issues a query for the purple marble (select * from
marbles where color="purple’). Assuming that this query does not
match an existing entry in the edge node’s query cache, the query
is propagated to the core node’s PathStore server, which in turn
propagates it to the cloud node’s PathStore server. Since the cloud
node is the root of the hierarchy, it is assumed to contain all the
data and the query does not propagate any further. The core node
then executes the query against the Cassandra cluster of its parent
node, stores the matching row(s) in its local Cassandra cluster, and
stores the query in its query cache. This process is repeated by the
PathStore server running on the edge node. Finally, the PathStore
driver executes the query against the edge’s Cassandra instance. As
an optimization, the PathStore driver also keeps a query cache with
recently execute queries. Since the driver’s cache is guaranteed to
be a subset of the server’s cache, queries that match the driver’s
can run directly against the local Cassandra instance bypassing the
need to first contact the PathStore server.

The obvious disadvantage of fetching data purely on demand in
response to application queries is the significant latency associated
with fetching data across multiple levels of the hierarchy. It is easy
to imagine alternative approaches that pre-fetch data in anticipation
of its use. PathStore could leverage its fine grain knowledge about
the data used by applications in the past to predict future usage.
For example, it may be possible for PathStore to identify data that
is requested for each user served by an application. When a new
user connects to a node, PathStore could eagerly fetch the data
associated with the new user in anticipation of its use. We leave
the exploration of prefetching alternatives for future work.

4.2.2 Update Propagation. PathStore applies all modifications
locally, and a push daemon periodically propagates local updates
to higher levels of the hierarchy. PathStore keeps track of modifi-
cations using a write log. In Cassandra, every table has a partition
key that determines the host(s) in the Cassandra cluster where a
given row will be stored. In addition a Cassandra table can have
one of more clustering keys. Rows with the same partition key, but
different clustering keys are stored together on the same Cassandra
host, in a local order determined by the clustering keys. PathStore
implements a write log for each row of a table by adding a ver-
sion column as the last element of the table’s clustering key. The
version, is a UUID timestamp that records the time the row was
inserted, and the ID of the PathStore node where the modification
was originally recorded. PathStore assumes that nodes are tightly
synchronized using some accurate mechanism, such as GPS atomic
clocks. As modifications get propagated through the hierarchy (up
by the push daemon and down by the pull daemon), PathStore uses
the version timestamp to determine order between modifications.
In the current prototype the modification with the most recent
timestamp wins.

PathStore’s write log is not visible to applications, and therefore
developers do not have to modify their application queries. Instead,

CloudPath: A Multi-Tier Cloud Computing Framework

user | movie version rating

d33d7fe0-195f-5d569c585662 | 10
John | Toy Story 825968c0-195d-5d569¢585662 | 8
John Cars 7adf7210-1958-59€16851d966 | 9

John | Toy Story

Susan | Finding Nemo | 6833¢850-1958-59¢16851d966 | 8

Figure 5: Sample PathStore table.

the PathStore Driver automatically collects the multiple versions
of a row that match an application’s query and returns the most
recent data. For example, Figure 5 shows a table that keeps track
of personalized movie ratings. Columns user and movie are the
original partition and clustering keys, respectively. Column version
is added by PathStore to implement the write log. The table show
that user John initially assigned a rating of 8 to the movie Toy Story,
but later updated this rating to 10. Running the query select * from
movies where user = "John’ produces the tuples [’John’, "Toy Story’,
d33d7fe0-195f-5d569¢585662, 10] and [John’,Cars’, 825968c0-195d-
5d569¢585662, 8]; however, the PathStore driver returns only the
most recent version of each row and hides any PathStore meta
columns, i.e., ["John’, *Toy Story’, 10]. Finally, to prevent the log
from growing unbounded, PathStore runs a daemon at the root of
the hierarchy that periodically trims the log.

4.2.3 Data Eviction. Cold query cache entries are deprecated
periodically preventing the pull daemon from fetching unnecessary
data. Similarly, locally replicated rows that do not match any query
in the query cache are periodically deleted. In case of resource
contention, our prototype uses a simple LRU policy to free space.
Exploring other approaches is the subject of future work.

4.24 Local Table. PathStore also provides local tables for tem-
porary storage. Updates to local tables are not propagated to other
nodes. In Section 5.1 we describe an application that uses local
tables to aggregate sensor data at the edge of the network.

4.2.5 Consistency Model. At the individual node level, Path-
Store preserves the storage semantics of its underlying native object
store. Our current prototype, which is based on Cassandra provides
local durability, row-level isolation and atomicity, and strong con-
sistency based on Cassandra’s quorum mechanism. Across nodes,
however, PathStore propagates updates at row granularity follow-
ing an eventual consistency model. The PathStore driver guarantees
that code executing on a specific PathStore node will see mono-
tonically increasing versions of a row (i.e., the driver returns only
the most recent version of the row in the write log), and that given
enough time without new modifications all replicas of a row on all
PathStore nodes will converge to the same most recent value.

Whereas PathStore does not enforce system-wide strong consis-
tency, an application can nevertheless achieve stronger consistency
for requests emanating from a subset of the CloudPath hierarchy by
instructing the platform to execute its sensitive functions at a com-
mon ancestor node. For example, a function running at city-level
nodes will provide a consistent view of the data for all users in any
given city, irrespective of the edge node they each use to connect to
the network; users in different cities, however, may see inconsistent
data while updates propagate through the hierarchy. An application

SEC ’17, October 12-14, 2017, San Jose / Silicon Valley, CA, USA

can enforce global consistency by limiting its functions to run at the
root of the hierarchy. The stronger consistency, of course, comes at
the cost of increased network latency and obviates the benefits of
path computing. In the future, we plan to explore other consistency
models that will enable applications to control how updates are
applied across the storage hierarchy.

4.2.6 Fault Tolerance. PathStore can continue to serve read
queries for data that is locally replicated even in the event of net-
work partition; however, queries that are not already in the query
cache (of the current node and its reachable ancestors) will fail if
an ancestor becomes unreachable. On the other hand, write queries
should be able to execute as long as the local Cassandra instance
is reachable. A write returns when it is persisted in the local Cas-
sandra instance, and it is guaranteed to remain stored in the local
instance until it is propagated to the parent node. A row is marked
dirty when it is inserted into the local Cassandra instance. Path-
Store only marks the row as clear when the parent acknowledges
reception and storage of the write. If there is a failure, PathStore
retries propagating the write. If a PathStore node experiences a
temporary failure, upon recovery it will retry propagating all writes
locally marked as dirty. Data is only permanently lost if a PathStore
node experiences a permanent failure before a dirty update is suc-
cessfully propagated to the parent. We anticipate that permanent
PathSore node failure will be an very rare occurrence as PathStore
relies on replication in Cassandra to handle individual machine
failures.

4.2.7 Other Storage Engines. Whereas the current PathStore im-
plementation leverage Cassandra other similar object stores could
be adopted as long as they provide (at the local node level) persistent
object storage, row-level isolation, and atomic timestamps.

4.3 PathRoute

PathRoute is responsible for routing CloudPath requests to running
functions using the URI included in the request. In our current
implementation, which uses HTTP to transfer requests to func-
tions, CloudPath applications gets a unique sub-domain within
the CloudPath.com name-space after registration. CloudPath re-
quests should consist of the application sub-domain concatenated
with CloudPath.com followed by the function name in the web-
address such as in: app_name.CloudPath.com/function_name. In the
clock application example of Figure 3, requests to the getTimeZone()
function should be made to the clockapp.CloudPath.com/timeZone
web-address.

To divert CloudPath traffic from other traffic flowing in the
network, we use a DNS A record entry for CloudPath.com to map all
CloudPath sub-domains to a single IP address. Hence, all CloudPath
application requests across the entire network will have the same
destination IP address which is the IP address of the PathRoute
module on every edge node. The network operator is required to
route all packets destined for this IP address to the edge CloudPath
node connected to the user. The major benefit here is that by using
only one static route on the edge routers, CloudPath traffic can be
diverted to the PathRoute module.

For each new HTTP request received by the proxy, a look-up
is made on a local in-memory state cache using a small script to

SEC ’17, October 12-14, 2017, San Jose / Silicon Valley, CA, USA

determine whether a deployment request for that application on
the node has been previously made or not. If not, the application
identifier is extracted from the request and sent to the PathDeploy
module where a decision for application deployment is made. When
PathDeploy decides to deploy the application on the node and
PathExecute completes the application deployment, the proxy cache
is updated. Future requests are then proxied to the PathExecute
container running the application (the function preferences should
also match the node’s location).

If PathDeploy decides against deploying the application on the
node, subsequent requests will be proxied to the next CloudPath
node in the hierarchy (we assume each PathRoute proxy has the
address of the PathRoute module of its parent node). In CloudPath,
requests can only move upwards towards the root cloud node. We
implemented PathRoute using a NGINX [32] proxy.

4.3.1 Handover. When the user moves between edge nodes (e.g.,
handover), the IP address of the source client and the destination
which is the PathRoute module on the edge node node is still valid,
but the traffic will flow through a different set of routers and will
therefore lead to the execution of the function at a different Cloud-
Path node. In case of a hard handover the existing TCP connections
would be terminated, and the client is forced to reconnect and restart
their request. When a soft hand over happens, the connection is
restarted at the edge CloudPath node. Because of the short-lived
nature of the requests, restarting the connection would not lead to
significant overhead.

4.4 PathDeploy

PathDeploy is responsible for initiating the process of deploying
an application and its functions on a node. Application deployment
decisions are triggered by PathRoute requests. The decision on
whether to deploy the application on a particular node depends
on higher level system policies, user preferences and the resource
status on that node. One policy that we include in our prototype
is that functions specified by the user to run on a certain level of
the CloudPath hierarchy can also run on any higher level and all
functions by default run on the cloud node.

Our PathDeploy prototype is a Java HTTP server. When new re-
quests for an application and function deployment arrive at PathDe-
ploy, it retrieves the application and function information, including
user preferences from PathStore to decide if the application and
function should be running on the node or not. If the decision to
deploy an application is positive, PathDeploy deploys the applica-
tion locally by fetching the application code from PathStore and
passing it to PathExecute along with the application meta-data. In
parallel, it fetches the application database schema from PathStore
and creates the application data tables on the node.

At present, when we deploy an application on a node, all its
functions are deployed at once, but requests are only forwarded to
a subset of functions that should be deployed on that node. A fine
grain deployment scheme will be implemented in future versions
of CloudPath.

4.5 PathMonitor

PathMonitor is designed to provide insight into the lifecycle of a
deployed application as well as the status of the CloudPath nodes

S. H. Mortazavi et al.

themselves. It consists of both a back-end module that collects data
from the various modules and third party applications of CloudPath,
as well as a front-end web application to present the collected data.

PathMonitor pulls stastics such as CPU and memory metrics for
containers and hosts from the PathExecute module. This data is
preprocessed, aggregated, and stored on the PathStore module in the
node. In addition, the various CloudPath modules and third party
applications create logs depending on the application function;
such as access, status, and error logs. PathMonitor acts as a central
point for collecting and storing logs that are created by these other
modules.

The front-end web interface lets us visualize the current and
past state of the CloudPath system through various graphs and
infographics, such as; the topology of the system, including the
hierarchy of nodes; CPU and memory metrics for application con-
tainers; and the same metrics for the hosts and nodes themselves.

4.6 Pathlnit

In the root cloud node, the Pathlnit module is responsible for receiv-
ing the applications from the developers through a web interface,
extracting application and function properties from the web.xml
file, and saving them along with the application’s code and database
schema file on PathStore.

PathlInit also creates augmented tables from the submitted ap-
plication database schema file, and deploys the application on the
root node. The augmented schema files and the information about
the application are used by PathDeploy to deploy the application
on other nodes.

5 EXPERIMENTAL SETUP

Our experiments emulate a CloudPath deployment consisting of
a cloud node, and two mobile networks each with one core node
and two edge nodes. Figure 6 depicts this topology. Each CloudPath
node is implemented in a separate computer. The network between
the clusters is emulated using Linux’s Traffic Control, that enabled
us to configure the Linux kernel packet scheduler. Network latencies
are chosen based on results from the paper by Hu et al. [24], and
we use a normal distribution to describe the variation in delay. The
average round trip times of the links is included in Figure 6.

5.1 Test-Cases

We created a series of microbenchmarks to measure deployment
time, routing overhead, and the latency and throughput of PathStore.
We have also implemented a series of sample user applications to
show how our platform supports different categories of applications
that can benefit from the architecture:

Face detection: Computational resources on edge nodes can be
suitable for offloading resource-intense functions from the mobile
end-user device. When offloaded to the edge, applications can ben-
efit from an increase in execution speed and battery lifetime [10].
Our face detection application is deployed as a Servlet and uses the
image processing library OpenCV [25] through its Java interface
JavaCV to detect faces in an image. The input to this application is
an image sent in an HTTP request. The application finds faces in
the image and saves them in PathStore.

CloudPath: A Multi-Tier Cloud Computing Framework

SEC ’17, October 12-14, 2017, San Jose / Silicon Valley, CA, USA

Deployment | PathDeploy Nomad Container Application Consul Database Total
Location Processing Processing Spawning Initialization Update Initialization | Time
Cloud 463.9 131.6 1754.9 841.0 33.1 234.3 3531.2
(118.1) (29.7) (28.3) (22.8) (13.6) (22.1) (133.8)

Core 823.0 129.7 1772.1 887.0 36.6 622.5 3849.8
(140.1) (32.8) (53.6) (27.6) (19.5) (35.2) (154.5)

Edge 1005.2 133.6 1709.3 866.4 39.4 974.3 4084.3
(155.5) (45.3) (45.4) (18.9) (20.2) (55.4) (181.3)

Table 1: Breakdown of average time required to deploy an application in milliseconds on different locations. Standard deviation

in parenthesis.

15ms 15ms 1 15ms 19ms

1
1
110ms 1 110 ms
1
1
1
1
@ I @
1
1 1
1 1
1 1
- 1
1830ms
1
1
1
1

20 ms
Edge 4

(D
204

5ms 5ms 5ms

O

O
-

1
1
1
1
1
1
1
1
1
1
1
!

O+
O

Figure 6: Topology of our experimental setup network with
average round trip times of the links

Localized face recognizer: Using PathStore, applications can
push localized content to edge nodes based on the geographic
location of end-users. One example is face recognition classifiers
which have been trained on a specific dataset, relevant to a given
geographical location. We use the AT&T face dataset [1] consisting
of a total of 400 face images, of 40 people (10 samples per person) and
divide it into 4 separate smaller datasets. We then train 5 different
classifiers using the FisherFaces algorithm in OpenCV on these
smaller datasets. We store the classifiers in PathStore and the face
recognizer application running on each edge node retrieves them.

IoTStat aggregator: Another important benefit of having mul-
tiple processing edge nodes close to the user is their ability to filter
and aggregate streams of data. As the number of IoT devices using
the Internet is likely to raise significantly in the future, processing
and filtering data on the edge will decrease the amount of traffic
from these devices that need to go through the Internet. We imple-
mented a sample application that performs aggregation functions
(average, min, max) on data received from sensors on edge nodes.
The first handler of this application receives and parses HTTP/JSON

requests containing the sensor data, and stores the extracted in-
formation onto a local PathStore table. A second handler, that can
be called periodically using HTTP requests, then performs MIN,
MAX and AVERAGE queries on the data stored by the first function
within specific time frames. This processed data is then saved in
another regular PathStore table, which is pushed to the core and
cloud.

6 RESULTS

We evaluate CloudPath and its applications from different aspects:

o The deployment time of applications on a specific node
e The minimum routing time for applications

e The performance of PathStore and its overhead

o Connection handover between edges

o Benefits for applications

6.1 Deployment Latency

We measure the performance of our system in terms of average de-
ployment time of a sample Hello World application with one table.
The process is initialized by an HTTP request received by PathRoute,
which triggers a container deployment request in PathDeploy as
the application is not already deployed on that node. Table 1 shows
the amount of time required by PathDeploy and PathExecute to
retrieve and deploy an application on a particular node. Each exper-
iment was repeated 15 times. The initial time to retrieve application
and function information from the database and make a deploy-
ment decision is shown in the first column (PathDeploy Processing).
Then the next steps (Nomad Processing, Container Spawning and
Application Initialization) are done in PathExecute while the appli-
cation database initialization from the stored schema file is done
in parallel. As shown in this table, as we move from the cloud to-
wards the edge, the average database initialization time and the
PathDeploy processing time increases. We assumed the worst case
scenario where the application data has to be fetched all the way
from the cloud. In practice, an edge deployment will likely get a
hit on the core tier. However the overall processing time is still
between 3.5 seconds in the cloud to 4.08 seconds in the edge. If
developers have larger applications with more complex databases,
this time is likely to increase because more data should be retrieved
from PathStore.

A non-Faa$S approach requires the full VM or container to be
downloaded on the edge node each time it is required. To compare
that approach with ours, we measured the overhead time required

SEC ’17, October 12-14, 2017, San Jose / Silicon Valley, CA, USA

S. H. Mortazavi et al.

Execution Direct DlrecF . L7 Routing
. . Connection | L7 Routing
Location | Connection (no latency)
(no latency)
Edge 538 (0.38) | 0.413(0.2) | 5.755 (0.411) | 0.89 (0.22)
Core 2033 (1.37) | 0.465(0.32) | 20.96 (1.64) | 1.23(0.77)
Cloud | 130.46 (6.65) | 0.443(0.38) | 132.20 (7.45) | 1.45(0.93)

Table 2: Average RTT for HTTP requests in milliseconds. Standard deviation in parenthesis

to download a minimal container with only Java installed from a
cloud repository, which on average was 13.2 seconds. In CloudPath,
this time is saved during each deployment because all clusters are
pre-loaded with the executing container.

6.2 Routing Overhead

To calculate the overhead that our systems adds to each packet,
we measure the average response time of requests using an HTTP
benchmarking tool called wrk [17]. We compare the latency of a
baseline approach where no proxies exist between the user and the
container (direct connection) to our method, where we use layer 7
routing using PathRoute. In our experiment, after creating a single
TCP connection with the proxy, a new request is sent when an ac-
knowledgment for the previous request is received. This is repeated
for 10 seconds for 16 concurrent connections. The average round
trip times (RTT) and standard deviation is presented in Table 2. Fur-
thermore, we compare our L7 routing with the baseline approach,
when their isn’t any emulated latency in the network. As shown
in this Table, our routing method only introduces a slight increase
in latency compared to the baseline approach where packets are
routed on layer 3. This is specially evident when no emulated la-
tency exists in the network and shows the overhead introduced by
our PathRoute proxies is about 0.9ms for the first layer and about
0.3ms for each additional layer.

6.3 PathStore Performance

We next measure the performance of PathStore using micro bench-
marks. We present the time required to execute different types
SELECT and INSERT queries both when data is located locally or is
available on a parent node.

6.3.1 Local Read Latency. We compare the time to execute SE-
LECT queries on a local node using PathStore versus using the
native Cassandra driver. In Figure 7, we depict the Cumulative Dis-
tribution Function (CDF) of the time it takes to execute these queries.
The blue line shows the performance of the native Cassandra driver
while the green line shows the performance of the PathStore driver
when we execute 1000 SELECT queries with WHERE clauses that
match individual rows and result in a miss in the local client query
cache. Each row of our table contains 1KB of data. The red line
shows the performance of the PathStore driver with the difference
that before 1000 individual SELECT queries, a single SELECT query
without any clauses on the same table is made so that data would
be cached locally. This results in hits on the client query cache. As
shown in Figure 7, the PathStore driver is on average 1.6ms slower
than the native Cassandra driver when it misses the client query

1 e N -
T T T

Y

o

©o
ELD

.0

Probability
o
w

=Pathstore

=Native

= Pathstore with prefetch

0 5 10 15
Time(ms)

Figure 7: CDF chart for 1000 select queries on a local node.

cache. However the performance of our drier is close to the baseline
if we have hits in the query cache.

6.3.2 Local Write Latency. We also measured the time required
for executing local INSERT queries and there were no noticeable
difference in terms of performance between the PathStore driver
and the Cassandra driver. For INSERT queries, our PathStore driver
does not add extra overhead to the native Cassandra driver.

6.3.3 Remote Read Latency. We next analyze the time required
to retrieve data to the edge and core from the cloud node using
SELECT queries that match individual rows. These queries are
executed from the core and edge nodes where there is a miss in the
client and server query cache of the PathStore unit . We measure
The retrieval time for 1000 queries and present the CDF in Figure 8.
The green and red figure show PathStore’s execution time from the
core and the edge. The blue and orange lines show the execution
time for the native Cassandra driver from the core and the edge. We
can see that in Figure 8, PathStore (red and green lines) is nearly
twice as slow as the Cassandra driver (blue and orange lines) in
retrieving the data. This is because PathStore first checks to see
whether data is present on the parent node or not. Then when it
gets the response back, it fetches the data from the remote node.
This adds one RTT time to each query.

We next measure the time required to fetch different number of
entries (a whole table) from edge, core and cloud nodes when the
data is only initially located on the cloud node. Again each row or
entry is 1KB. We do a SELECT query with no clauses to fetch the

CloudPath: A Multi-Tier Cloud Computing Framework

SEC ’17, October 12-14, 2017, San Jose / Silicon Valley, CA, USA

100 Entries 1000 Entries 10000 Entries
PathStore PathStore Native PathStore Native PathStore PathStore Native
Deployment . PathStore .
. First Consequent Cassandra | _. Consequent Cassandra First Consequent Cassandra
Location] . First query
query queries driver queries driver query queries driver
Edge 529.1 4.7 506.4 1664.2 29.5 1035.5 8857.5 113.0 2640
& (9.7) (0.4) (7.4) (177.1) (9.3) (181.9) (123.9) (8.4) (195.0)
510.4 4.4 398.9 1121.8 24.8 869.0 5244.8 111.1 2268.7
Core
(13.8) (0.1) (15.9) (47.3) (0.7) (34.3) (282.1) (2.1) (147.4)
Cloud 6.3 4.9 6.1 29.7 26.9 27.1 137.5 112.8 124.9
(0.6) (0.2) (0.1) (0.9) (1.6) (1.78) (6.7) (6.4) (3.1)
Table 3: Time required for querying full tables in milliseconds (standard deviation in parenthesis)
1- t) _260.6, _
09 g : (40.9)
’ -
osf I : 18827 + ,' \ 370
o7p Il : (@.5) 6,7'4 K 9 8
- \
. ’
gos !l : ! (5.48) PR \
205 ! H /2966 S,)
g i i 2636 (822
1 -
04y ; (39.1)
] . 4
e] N o718 ! ’
I
0.2 - =Native - Core N . ’
I H PasthStore - Core 828\ Y393 356.6
o1t 1J H =Native - Edge (8.2) N , (112.8)
’ .: mPathStore - Edge \ 7
ol dt . . K . ‘ ‘ ;
100 150 200 250 300 350 400 450
Time(ms) .56.95 _
(10.63)

Figure 8: CDF chart for individual select queries on a remote

node.

whole table at different nodes with PathStore and the native Cassan-
dra driver. The experiment is repeated 20 times and the results are
presented in Table 3. As shown in the table, PathStore’s first query
takes more time than the native Cassandra driver to retrieve the
data, but for consequent queries, as the data is already fetched, we
will have a hit on the local client cache and the queries would take
the same time as a local SELECT. Furthermore consequent queries
that are a subset of the first query will also be fetched locally.

6.3.4 Update Propagation Latency. We also measure the propa-
gation latency of a single INSERT query. In this scenario we execute
a single INSERT query at different nodes of the hierarchy and mea-
sure the time that the single row update takes to propagate to all
other nodes that have previously issued a SELECT query. Figure 9
illustrates the results of this experiment . The links shown in this
Figure are logical links between nodes from Figure 6. Meaning a
query travelling between Edgel and Core2 has to traverse nodes
Corel, Cloudl. As shown in this Figure, moving down on the tree
takes more time than moving up. This is because pull operations
require 2 RTT’s while push operations only need half an RTT. IN-
SERT and UPDATE operations on a node get pushed all the way
to the cloud, while nodes can express their interest in a certain
query with a SELECT query. This results in periodic data pulls from

Figure 9: Propagation time (in milliseconds) of an INSERT
query between nodes (standard deviation in parenthesis).
Links are logical links between nodes from Figure 6.

parent nodes when updated information on the parent about the

query exists.

6.3.5 Data Overhead. Finally we measure the total overhead of
each table in PathStore. We add 5 columns to each of our PathStore
tables and in total, 38 bytes is added to each entry.

6.4 Handover Latency
We examined the effects of a soft handover in case of mobile move-
ment between two edge nodes A to B. When a soft handover hap-
pens, then TCP packets will continue to be sent from the user device
(as explained before, all PathRoute modules on every edge, have
the same IP address) however the data arriving at the PathRoute
module of edge will not accept such packets because no such TCP
connection exists, so it sends a TCP packet with the RST flag set and
the connection will be re-initiated by the user device. We emulate
a soft handover in our environment and measure the time required
to re-initiate the connection. On average it takes 16.56 millisec-
onds (4.03 standard deviation for 100 experiments) for the device
to start re-initiating the connection, and another 15.2 milliseconds

to establish a new TCP connection.

SEC ’17, October 12-14, 2017, San Jose / Silicon Valley, CA, USA

.

0.9+¢
0.8¢
0.7

y

£'0.6
0.5

obabil

y 0.4

P

TEeNEEEEEEEEsssreEsEs R R R Eanana,

0.3F
0.2

=Cloud
=Core

0.1
=:Edge

N e o oo - oo - o — o

75 100 125 150 170
Time(ms)

o
o
N
w
wv
o

Figure 10: CDF for response time of the Face Recognition
application.

6.5 Application Performance

In this section, we will show the benefits of running applications
on CloudPath. These benefits come in the form of greatly reduced
response time or reductions in data and network traffic.

6.5.1 Face Detection. We measure the average response time
of the face detection and face recognition programs when they
are deployed at different locations. For the face detection program,
the average response time for 100 different requests when the pro-
gram is running on the edge, core and cloud is: 13.6(2.1), 32.6(1.8),
141.9(6.4) milliseconds (standard deviation in parentheses). The
same image was used and the file size was 2K B. There is a substan-
tial reduction in response time when running on the edge (closer
to the client) compared to running on the core and cloud.

6.5.2 Face Recognition. The Face Recognizer program labels an
input image (received through HTTP requests with a file size of
11KB) based on a trained model. The results for processing 100
requests are illustrated in Figure 10. Similar to the Face detection
program, running on the edge lowers the latency by 88 percent.

6.5.3 loTStat Aggregator. For the IOTStat aggregator applica-
tion, the average processing time of each query received at the
edge node is 1.6 ms for 3 different sensor values in the same re-
quest. This means that an application running on the container
(1 core) can handle up to 900 queries per second. The processing
time required for aggregating 1000 queries, is about 10ms. If their
were no aggregation, then n sensors sending k requests per second
will send n X k messages to the cloud for processing. However if
we assume a single layer of aggregation (p edge nodes), assuming
that aggregation results are required every second, then the total
number of messages sent to the cloud would only be: p. In our
example we insert a row containing the aggregation results of each

edge node on to PathStore which would push this data to the cloud.

7 RELATED WORK

Early edge computing systems have relied on virtual machines (VM)
as the unit of application deployment [19, 33]. These systems rely

S. H. Mortazavi et al.

on optimizations, such as VM synthesis [22] and uni-kernels [29],
to reduce the network traffic and deployment time. More recently,
several research platforms have switched to operating system con-
tainers as the unit of deployment [11, 27]. While operating system
containers are smaller than VMs, they can still require the transfer
of hundreds of megabytes to instantiate a container.

In contrast, this proposal leverages a new cloud computing model
known as Function as a Service (FaaS). Examples of FaaS systems in-
clude Amazon Lambda [36], OpenLambda [23], IBM OpenWisk [9],
and AppScale [14]. All these systems target the wide-area cloud
environment, and assume a flat replicated environment with a rela-
tively small number of large datacenters accessible over the Internet.
Our work differs in that it is the first application of FaaS to be run-
ning code on a hierarchy of datacenters stretched from the network
edge to the wide-area cloud.

Path computing has similarities to previous approaches that
have infused networking nodes with processing, such as active
networks [13] and the intentional naming system [6]. These previ-
ous effort, however, focused on low-level network processing (e.g.,
encryption, routing, load balancing), whereas CloudPath targets
full server workloads.

Previous work has explored automatic application partitioning
and migration [15, 16, 18]. In comparison, our approach requires
application developers to explicitly partition their applications into
clearly-defined functions. We argue that this approach is consistent
with existing best practices for web back-end design, which man-
date the use of stateless REST functions for scalability and fault
tolerance.

A large body of research exists about replicated databases for geo-
graphically distributed datacenters both in industry and academia [20,
28, 34, 37]. These systems offer stronger consistently models, but
assume a flat overlay structure. In this paper, we use Cassandra
as an existing widely used system and use it as the basis for our
hierarchical storage system.

8 CONCLUSION

We presented path computing, a new paradigm that enables process-
ing and storage on a progression of datacenters interposed along
the geographical span of the network. Path computing gives appli-
cations developers the flexibility to place their serve functionality
at the locale that best meets their requirements in terms of cost,
latency, resource availability and geographic coverage.

We also described CloudPath, a new platform that implements
the path computing paradigm. CloudPath minimizes the complexity
of developing path computing applications by preserving the fa-
miliar RESTful development model. CloudPath applications consist
of a collection of short-lived and stateless functions that can be
rapidly instantiated on-demand on any datacenter that runs the
CloudPath framework. CloudPath makes this functional decompo-
sition possible by providing an eventual consistent storage service
that automatically replicates application state on-demand across
the multiple datacenter tiers to optimize access latency and reduce
bandwidth consumption.

Our experimental evaluation showed that CloudPath can deploy
applications in less than 4.1 seconds and has negligible read and

CloudPath: A Multi-Tier Cloud Computing Framework

write overhead for locally replicated data. Moreover, our test ap-
plications achieve up to 10X reductions in response time when
running on CloudPath compared to an alternative implementation
running on a wide-area cloud datacenter.

In the future we plan to improve support for user mobility by
leveraging application access patterns to pre-populate data, as well
as new consistency models that improve control over update prop-
agation. Finally, we plan to explore more sophisticated network
topologies.

REFERENCES

[10]

[11]

[12]

[13]

[14]

[17]

(18]

[19]

[21]

2008. AT&T Database of Faces. http://www.cl.cam.ac.uk/research/dtg/attarchiv-
e/facedatabase.html. (2008).

2017. Consul by Hashicorp. https://www.consul.io/. (2017).

2017. The Eclipse Foundation. http://www.eclipse.org/jetty/. (April 2017).
2017. Huawei Service Anchor. http://carrierhuawei.com/en/products/wireless-
network/small-cell/service-anchor. (2017).

2017. Nomad by Hashicorp. https://www.nomadproject.io/. (2017).

William Adjie-Winoto, Elliot Schwartz, Hari Balakrishnan, and Jeremy Lilley.
1999. The design and implementation of an intentional naming system. ACM
SIGOPS Operating Systems Review 33, 5 (1999), 186-201.

Michael Armbrust, Armando Fox, Rean Griffith, Anthony D Joseph, Randy H
Katz, Andrew Konwinski, Gunho Lee, David A Patterson, Ariel Rabkin, Ion Stoica,
and others. 2009. Above the clouds: A berkeley view of cloud computing. Technical
Report. Technical Report UCB/EECS-2009-28, EECS Department, University of
California, Berkeley.

Paramvir Bahl. 2015. Cloud 2020: The Emergence of Micro Datacenters for
Mobile Computing. http://tinyurl.com/hylpmgl. (may 2015).

Toana Baldini, Paul Castro, Perry Cheng, Stephen Fink, Vatche Ishakian, Nick
Mitchell, Vinod Muthusamy, Rodric Rabbah, and Philippe Suter. 2016. Cloud-
native, event-based programming for mobile applications. In Proceedings of the
International Workshop on Mobile Software Engineering and Systems. ACM, 287-
288.

Michael Till Beck, Martin Werner, Sebastian Feld, and S Schimper. Mobile edge
computing: A taxonomy. Citeseer.

Ketan Bhardwaj, Ming-Wei Shih, Pragya Agarwal, Ada Gavrilovska, Taesoo Kim,
and Karsten Schwan. 2016. Fast, scalable and secure onloading of edge functions
using AirBox. In Proceedings of the 1st IEEE/ACM Symposium on Edge Computing.
Washington, DC.

Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. 2012. Fog
computing and its role in the internet of things. In Proceedings of the first edition
of the MCC workshop on Mobile cloud computing. ACM, 13-16.

Kenneth L Calvert, Samrat Bhattacharjee, Ellen Zegura, and James Sterbenz. 1998.
Directions in active networks. IEEE Communications Magazine 36, 10 (1998),
72-78.

Navraj Chohan, Chris Bunch, Sydney Pang, Chandra Krintz, Nagy Mostafa,
Sunil Soman, and Rich Wolski. 2009. Appscale: Scalable and open appengine
application development and deployment. In International Conference on Cloud
Computing. Springer, 57-70.

Byung-Gon Chun, Sunghwan Thm, Petros Maniatis, Mayur Naik, and Ashwin
Patti. 2011. Clonecloud: elastic execution between mobile device and cloud. In
Proceedings of the sixth conference on Computer systems. ACM, 301-314.
Eduardo Cuervo, Aruna Balasubramanian, Dae-ki Cho, Alec Wolman, Stefan
Saroiu, Ranveer Chandra, and Paramvir Bahl. 2010. MAUI: making smartphones
last longer with code offload. In Proceedings of the 8th international conference on
Mobile systems, applications, and services. ACM, 49-62.

Will Glozer. 2017. wrk - A modern HTTP benchmarking tool.
https://github.com/wg/wrk. (2017).

Mark S Gordon, D Anoushe Jamshidi, Scott Mahlke, Z Morley Mao, and Xu
Chen. 2012. COMET: code offload by migrating execution transparently. In
Presented as part of the 10th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 12). 93-106.

Abhimanyu Gosain, Mark Berman, Marshall Brinn, Thomas Mitchell, Chuan Li,
Yuehua Wang, Hai Jin, Jing Hua, and Hongwei Zhang. 2016. Enabling Campus
Edge Computing Using GENI Racks and Mobile Resources. In Proceedings of the
1st IEEE/ACM Symposium on Edge Computing. Washington, DC.

Ashish Gupta, Fan Yang, Jason Govig, Adam Kirsch, Kelvin Chan, Kevin Lai,
Shuo Wu, Sandeep Dhoot, Abhilash Rajesh Kumar, Ankur Agiwal, and others.
2016. Mesa: a geo-replicated online data warehouse for Google’s advertising
system. Commun. ACM 59, 7 (2016), 117-125.

Kiryong Ha, Zhuo Chen, Wenlu Hu, Wolfgang Richter, Padmanabhan Pillai,
and Mahadev Satyanarayanan. 2014. Towards wearable cognitive assistance.
In Proceedings of the 12th annual international conference on Mobile systems,
applications, and services. ACM, 68-81.

SEC ’17, October 12-14, 2017, San Jose / Silicon Valley, CA, USA

[22]

(23]

[24]

[30]

(31]

(32]

(33]

(34]

(35]

[36]

(37]

(38]

Kiryong Ha, Padmanabhan Pillai, Wolfgang Richter, Yoshihisa Abe, and Mahadev
Satyanarayanan. 2013. Just-in-time provisioning for cyber foraging. In Proceeding
of the 11th annual international conference on Mobile systems, applications, and
services. ACM, 153-166.

Scott Hendrickson, Stephen Sturdevant, Tyler Harter, Venkateshwaran
Venkataramani, Andrea C Arpaci-Dusseau, and Remzi H Arpaci-Dusseau. 2016.
Serverless Computation with OpenLambda. In 8th USENIX Workshop on Hot
Topics in Cloud Computing (HotCloud 16).

Wenlu Hu, Ying Gao, Kiryong Ha, Junjue Wang, Brandon Amos, Zhuo Chen,
Padmanabhan Pillai, and Mahadev Satyanarayanan. 2016. Quantifying the impact
of edge computing on mobile applications. In Proceedings of the 7th ACM SIGOPS
Asia-Pacific Workshop on Systems. ACM, 5.

Itseez. 2015. Open Source Computer Vision Library. https://github.com/itseez/
opencv. (2015).

Avinash Lakshman and Prashant Malik. 2010. Cassandra: a decentralized struc-
tured storage system. ACM SIGOPS Operating Systems Review 44, 2 (2010), 35-40.
Peng Liu, Dale Willis, and Suman Banerjee. 2016. ParaDrop: Enabling Lightweight
Multi-tenancy at the Network’s Extreme Edge. In Proceedings of the 1st IEEE/ACM
Symposium on Edge Computing. Washington, DC.

Wyyatt Lloyd, Michael] Freedman, Michael Kaminsky, and David G Andersen.
2013. Stronger Semantics for Low-Latency Geo-Replicated Storage.. In NSDI,
Vol. 13. 313-328.

Anil Madhavapeddy, Thomas Leonard, Magnus Skjegstad, Thomas Gazagnaire,
David Sheets, Dave Scott, Richard Mortier, Amir Chaudhry, Balraj Singh, Jon
Ludlam, and others. 2015. Jitsu: Just-in-time summoning of unikernels. In 12th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 15).
559-573.

Dirk Merkel. 2014. Docker: lightweight linux containers for consistent develop-
ment and deployment. Linux Journal 2014, 239 (2014), 2.

Mugen Peng, Yong Li, Zhongyuan Zhao, and Chonggang Wang. 2015. System
architecture and key technologies for 5G heterogeneous cloud radio access
networks. IEEE network 29, 2 (2015), 6—14.

Will Reese. 2008. Nginx: the high-performance web server and reverse proxy.
Linux Journal 2008, 173 (2008), 2.

Mahadev Satyanarayanan, Paramvir Bahl, Ramén Caceres, and Nigel Davies.
2009. The case for vm-based cloudlets in mobile computing. IEEE pervasive
Computing 8, 4 (2009), 14-23.

Yogeshwer Sharma, Philippe Ajoux, Petchean Ang, David Callies, Abhishek
Choudhary, Laurent Demailly, Thomas Fersch, Liat Atsmon Guz, Andrzej Kotul-
ski, Sachin Kulkarni, Sanjeev Kumar, Harry Li, Jun Li, Evgeniy Makeev, Kowshik
Prakasam, Robbert Van Renesse, Sabyasachi Roy, Pratyush Seth, Yee Jiun Song,
Benjamin Wester, Kaushik Veeraraghavan, and Peter Xie. 2015. Wormbhole:
Reliable Pub-Sub to Support Geo-replicated Internet Services. In 12th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 15). USENIX
Association, Oakland, CA, 351-366. https://www.usenix.org/conference/nsdi15/
technical-sessions/presentation/sharma

Tolga Soyata, Rajani Muraleedharan, Colin Funai, Minseok Kwon, and Wendi
Heinzelman. 2012. Cloud-Vision: Real-time face recognition using a mobile-
cloudlet-cloud acceleration architecture. In Computers and Communications
(ISCC), 2012 IEEE Symposium on. IEEE, 000059-000066.

Mario Villamizar, Lina Ochoa, Harold Castro, Lorena Salamanca, Mauricio Ver-
ano, Rubby Casallas, Santiago Gil, Carlos Valencia, Angee Zambrano, Mery Lang,
and others. 2016. Infrastructure Cost Comparison of Running Web Applications
in the Cloud Using AWS Lambda and Monolithic and Microservice Architectures.
In Cluster, Cloud and Grid Computing (CCGrid), 2016 16th IEEE/ACM International
Symposium on. IEEE, 179-182.

Zhe Wu, Michael Butkiewicz, Dorian Perkins, Ethan Katz-Bassett, and Harsha V
Madhyastha. 2013. Spanstore: Cost-effective geo-replicated storage spanning
multiple cloud services. In Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles. ACM, 292-308.

Rong Yu, Yan Zhang, Stein Gjessing, Wenlong Xia, and Kun Yang. 2013. Toward
cloud-based vehicular networks with efficient resource management. IEEE
Network 27, 5 (2013), 48-55.

