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ABSTRACT
This paper introduces Trellis — a low-cost Wi-Fi-based in vehicle
monitoring and tracking system that can passively observe mobile
devices and provide various analytics about people both within and
outside a vehicle which can lead to interesting population insights
at a city scale. Our system runs on a vehicle-based edge computing
platform and is a complementary mechanism which allows oper-
ators to collect various information, such as original-destination
stations popular among passengers, occupancy of vehicles, pedes-
trian activity trends, and more. To conduct most of our analytics,
we develop simple but effective algorithms that determine which
device is actually inside (or outside) of a vehicle by leveraging some
contextual information. While our current system does not provide
accurate actual numbers of passengers and pedestrians, we expect
the relative numbers and general trends to be fairly useful from an
analytics perspective.

We have deployed Trellis on a vehicle-based edge computing
platform over a period of ten months, and have collected more than
30,000 miles of travel data spanning multiple bus routes. By combin-
ing our techniques, with bus schedule and weather information, we
present a varied human mobility analysis across multiple aspects
— activity trends of passengers in transit systems; trends of pedes-
trians on city streets; and how external factors, e.g., temperature
and weather, impact human outdoor activities. These observations
demonstrate the usefulness of Trellis in proposed settings.
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Figure 1: The on-board edge computing platform. The key
challenge for Trellis is to determinewhether an individual is
located inside the vehicle (passenger) or outside of it (pedes-
trian). Based on the fact that pedestrians will eventually
be out of monitoring range, Trellis solves this problem by
observing device signal strength coupled with the vehicle’s
speed of movement.

1 INTRODUCTION
A public transit system is an important part of public infrastruc-
ture provided by local governments. According to the American
Public Transportation Association’s report [33], 10.6 billion public
transportation trips were taken by Americans in 2015. An efficient
and high quality public transportation system both benefits pas-
sengers and also has a large impact on city development. Hence,
public transit operators have always looked for mechanisms that
allow them to improve their services regarding issues such as what
new routes or stops should be introduced, how peak and off-peak
behaviors are handled, and much more.

Traditionally, these decisions are often based on limited surveys
— metro transit operators would recruit volunteers and ask them
about their experiences and transit preferences. However, just as
mobile devices have transformed crowd-sourced data collection in
a whole range of domains, we believe that transit systems can also
benefit significantly from them. In this paper, we advocate a fairly
low-cost and simple system through which a transit operator can
gather significant user and usage analytics about its operations at
a scale never possible before.

Transit systems need to learn much about transit usage to eval-
uate current transit routes/schedules, and to make decisions on
adjustments [12]. Therefore, transit operators are actively seeking
approaches that can answer questions such as: What are the most
popular stops at different times of the day? How long do people
at bus stops wait for the next vehicle? How occupied are different
vehicles at different times of the day? What do public mobility pat-
terns look like throughout a year, especially during hot summers
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and cold winters? Some of these questions are significantly related
to funding allocations— in particular, operators sometimes receive
government funds based on how many passenger-miles they carry
annually [6, 19, 29]. Transit operators use a number of low fidelity
methods to collect such information. However, existing solutions
either failed to answer this question or have been too expensive
to be widely deployed. For instance, most ticketing systems on
metro buses can infer where passengers get on a bus, but they
do not record where/when passengers get off a bus. Some public
transit operators rely on expensive sensor systems to count the
number of passengers as they get on and off the bus. But these
systems are not able to detect the specific origin and destination
of individual passengers. Camera-based solutions involve costly
hardware and may generate privacy concerns when customers’
facial identities are captured by the cameras. Even cameras are
deployed, it is still very challenging to track individual passen-
gers [13, 14]. What’s more, pedestrian flows could eventually affect
traffic conditions [23, 25–27]; however, there is not an effective
method to estimate the number of pedestrians on the street. The ap-
proaches above tend to provide incomplete data or data with fairly
low fidelity. In this paper, we propose a low-cost, wireless-based
mechanism to conduct spatial-temporal public transit analytics and
answer these unresolved questions.

The usage of edge computing platform: In-vehicle comput-
ing platforms are becoming increasingly important as they enable
advanced safety, efficiency, and diverse services such as entertain-
ment, navigation, and much more. Compared to cloud computing
platforms, such computing platforms in the vehicles provide unique
edge services with a lower latency, greater responsiveness, and
more efficient use of network bandwidth. These characteristics
create such in-vehicle computing platforms as unique locations
in which edge computing can be effectively implemented. For ex-
ample, the massive amount of data generated by the sensors on a
self-driving vehicle needs to be processed in a timely manner. A
vehicle-based edge computing platform would be an ideal place to
execute these kinds of computing tasks. In our efforts, we use a
previously developed edge computing platform — ParaDrop [30] —
as the platform of choice for deployment inside vehicles to flexibly
provide computing and storage resources, allowing developers to
create various kinds of services.

We use the ParaDrop platform as a computing platform in vehi-
cles because of its flexibility and its benefits in this environment.
The ParaDrop platform, implemented on low-end Wi-Fi Access
Points (APs), supports multi-tenancy and a cloud-based back-end
through which computations can be orchestrated across many such
APs. ParaDrop also provides APIs through which developers can
manage their services across diverse ParaDrop APs. In this work,
we installed a ParaDrop AP into a public transit vehicle in order
to focus on our desired problem — conducting transit analytics.
Various kinds of analytics can be done on this vehicle-based edge
computing platform, such as video analysis and obstacle sensing. By
loading computation tasks from the cloud to ParaDrop, our system
achieves greater traffic efficiency while accomplishing our desired
goals. Using ParaDrop, various relevant transit analytics can be
quickly derived on-board and sent back to transit operators without
incurring high data requirements from the vehicles. Additionally, it
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Figure 2: Different RSSI patterns between passenger and
pedestrian.

is easy to deploy and manage such applications in multiple vehicles
across a whole city using ParaDrop.

A first look at Trellis:Wi-Fi-enabled mobile devices have sky-
rocketed in most parts of the world, and many reports point to
their deep penetration among their populations [38]. Our proposed
system, Trellis, takes advantage of these widely available mobile de-
vices among passengers and pedestrians to quickly gather various
forms of usage information at a significantly large (city) scale. AWi-
Fi-based monitoring system has been widely used in many related
scenarios, such as tracking human queues [44], estimating vehi-
cle trajectories [36], and understanding network performance [15].
Trellis uses this kind of mechanism in a similar but much simpler
way. As shown in Figure 1, our system uses a low-end Wi-Fi moni-
toring unit mounted on the vehicle to distinguish passengers from
pedestrians and determine when a certain passenger gets on and
off the vehicle. The approach relies on the fact that many mobile
devices typically have their Wi-Fi function turned on, which makes
them trackable by another Wi-Fi observer. Most analytics in Trellis
are based on the ability to distinguish between which individual
is actually inside the vehicle and which is actually outside. While
one may be tempted to utilize any one of a slew of Wi-Fi based
localization techniques [11, 21, 22], the accuracies of these systems
are often not sufficient to distinguish between a passenger seated
inside the vehicle and a person who is just outside.

The approach in Trellis to make this distinction is fairly simple —
when the vehicle is in motion, the signal strength of a passenger’s
Wi-Fi device as perceived by a vehicle-mounted Wi-Fi observer is
likely to be fairly stable; while the signal strength of an outside
pedestrian will vary in a predictable way before eventually disap-
pearing (Figure 2). Thus, by simply observing the signal strength
trends ofWi-Fi devices while a vehicle is in motion, this localization
problem becomes quite simple and can be solved fairly accurately.
This basic observation forms the core of many of our analytics
presented in Trellis.

Obviously systems such as Trellis will not be able to count for
passengers who travel without mobile devices or those with their
Wi-Fi function turned off, but our observation shows that we can
still track general trends in transit behavior quite effectively 1.

1Beginning with iOS 8, Apple introduced randomized MAC address techniques. Google
also implemented similar techniques in Android version 6.0 or above. MAC random-
ization may lead to miscounting, but the trends still hold. We will discuss this effect
more in section 8.1.2.
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We recommend our current version of Trellis be used to track
relative trends in transit systems, as opposed to using it for exact
and absolute counts.

We believe that a simple and low-cost infrastructure such as
Trellis mounted on public transit vehicles can be effectively used
to perform transit analytics as well as answer questions regarding
human mobility behavior studies. For the purpose of this work,
we demonstrate how such a system may be used from three major
perspectives. First, we focus on passenger riding habits, i.e. what
are the origin-destination pairs of the user population and how does
the popularity of these origin-destination pairs vary for different
stations, at different locations, and at different times of the day.
Next we study patterns of people on city streets: For example, how
busy city streets are, and where hotspots are during different times
of day and periods of the year. A system such as Trellis can provide
such insights. Finally, we study the impact of weather on outdoor
human mobility. Specifically, we observe how inclement weather
(snow and rain) and outside temperature affects the number of
people in transit vehicles or out on city streets.

In the end, Trellis provides a unique approach to collect transit
information (in addition to other kinds of information) in real-time
and can potentially be combined with other existing or comple-
mentary approaches. Overall, Trellis provides a new lens of human
mobility at large scales. While we provide some initial aspects one
can learn from this system, we believe many significant opportuni-
ties potentially exist.

Contributions.This chapter presents a low-cost in-vehiclewire-
less monitoring system that can track passenger movements and
study pedestrian behaviors to assist transit operators, and poten-
tially city planners, with various forms of human mobility analytics.
We develop several simple heuristic algorithms that can effectively
separate passengers from pedestrians and identify where passen-
gers get on or off a vehicle. To test the efficacy of our system, we
deployed Trellis on vehicle-based edge computing platforms over
a period of ten months and collected data from 3 bus routes. We
evaluate how it can be used to infer origin-destination pairs that
are popular among passengers over time and space. We demon-
strate and quantify different impacts on human activities caused by
different factors (e.g., weather and temperature). As we continue
to work with our local transit partners, we continue to evaluate
how such a system can be used to identify where to add new bus
routes, or when to add non-stop services between various stations
throughout the city at different times of the day and under different
weather conditions.

2 TRELLIS SYSTEM DESIGN AND
IMPLEMENTATION

In this section, we discuss the overview, design, implementation
and deployment of the system.

2.1 System Overview
Trellis tracks people by tracking their Wi-Fi-enabled devices. It
achieves this goal in two steps. First, our system performs device
detection tasks by capturing Wi-Fi transmissions from each device.
As long as its Wi-Fi function is turned on, a device will send out
probe request packages scanning for available access points. Our

system takes advantage of this feature to capture Wi-Fi enabled
devices. The system distinguishes devices by checking their MAC
addresses. Once the system successfully detects a device, it will
determine whether the device is inside or outside a vehicle. Our
system determines the position of the device by observing RSSI
coupled with the vehicle’s speed of movement. After these two
steps, the system records the device data into databases.

2.2 System Design
Our system uses a front-end monitoring module to collect Wi-Fi
devices’ signals and transit GPS information, and it uses a back-end
processing module to reconstruct transit schedules and human mo-
bility patterns. The monitoring module performs sniffing tasks and
collects the data from mobile devices. The collected data will be
saved in a local database along with corresponding GPS location
information. Meanwhile, the sniffing module can send calculated
passenger and pedestrian numbers to a remote server in real-time
through a cellular link, i.e., for the purpose of real time monitoring.
Although our system supports real-time communication, we use a
separated program to send the data from the databases to a remote
back-end server. The back-end server reconstructs public transit
schedules and human mobility patterns from the collected data.
It further combines the data from multiple transit sniffing system
instances to provide a more complete view of the transit schedules
and human mobility patterns. On top of the abstraction and ag-
gregation modules, we construct an origin-destination matrix and
pedestrian flow heat map to analyze transit efficiency in spatial and
temporal domains.

2.3 System Implementation
The Wi-Fi monitoring system is operated on the Ubuntu 14.04.1
64 bit distribution (with Linux kernel version 3.19.0-28-generic),
that runs on PC Engines APU platform [2]. The APU platform is
a mobile embedded platform that is equipped with a 1GHz dual
core CPU and 4G DDR3 DRAM. We conducted the sniffing tasks
by using a multi-thread program written in C/C++. One thread
runs the monitoring module to collect Wi-Fi packets from the spec-
ified wireless interfaces. Another module checks the correctness
of received packets by validating the Cyclic Redundancy Check
(CRC). The GPS module senses location changes and sends the GPS
location information to a third thread. Both packets and GPS data
are stored in SQLite database files. To protect public privacy, the pri-
vate information included in each packet, e.g. MAC addresses, are
hashed before saving into databases. And the real data is dropped
immediately. The data analysis modules are written in Java.

2.4 System Deployment
We deploy our Wi-Fi monitoring system in two city buses. Those
two buses have been assigned to three bus routes that are illus-
trated in Figure 3. The bus routes cover a large public university’s
main campus area as well as a residential area that accommodates
graduate students and visiting scholars. The details of each route
are shown in Table 1. The two city buses are operated by one local
bus company.

These two buses are usually scheduled to be on the road from
6am to 6pm on route 80. Buses are also occasionally scheduled to
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Region 1

Region 2

Region 3 Region 4

Region 5

Region 7

Region 6

Figure 3: Bus routes with labeled bus stops. Route 80 (blue)
map on the left, Route 81 (red) & 82 (green) on the right. The
map size is roughly 1.5 mile × 2 mile. We segment the route
for bus line 80 into seven disjoint regions for easy analysis.

Table 1: Route Statistics

Route 80 Route 81 Route 82
Trip Distance

(miles) 7.91 5.65 5

Trip Time
(mins) 451 30 30

Service Span 6am-3am 6:30pm-3am 6pm-3am
Total Station
Number 47 31 34

Frequency
(mins) 7-502 30 30

1 The actual trip time ranges from 40 to 50 minutes
during different hours of a day.

2 The frequency will change during different hours of
a day, e.g. during rush hours, it will have a higher
frequency to satisfy high volume riding demands.

operate during night hours on route 81 and 82. Detailed statistical
information about recorded data is summarized in Table 2. We
collected data from both buses for around 300 days for 12 hours
per day. In total, during these 300 days, two buses travel more than
32,000 miles. Among the collected data traces, the two buses ran
on route 80, 81 and 82 for 258, 23, and 24 days accordingly. More
than 300,000 unique Wi-Fi devices were detected by our system.
By looking at the Organizationally Unique Identifier (OUI) [5] of
the MAC address (the first three octets), we are able to compare
the distribution of various vendors. As shown in Figure 4, Apple
dominates all other vendors.

Starting from iPhone 5s and iOS 8, Apple introduces randomized
MAC address in probe requests under certain settings to protect
user privacy. According to Zebra Technologies’ white paper [46],
the MAC randomization can only be triggered when both cellular
data and location service are off, with Wi-Fi turned on but not
connected. We also performed the same kind of experiments using
iPhone 6 with iOS 8 and Wireshark toolkit. And we have similar
observations. According to recent studies [17, 32, 43], both iOS and
Android devices can be re-identified and tracked. MAC random-
ization certainly overestimates the number of users, but it exposes
limited impacts on statistical transit analytics.
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Figure 4: Distribution of devices by vendors in log scale.

Table 2: Collected Data Statistics

Route 80 Route 81 Route 82
Days 258 23 24
Hours 3,225 126 65

Distance
Covered (miles) 31,510 1,425 510

3 OUR APPROACH TO TRACK INDIVIDUAL
In this section, we describe how to reconstruct bus schedules and
passenger riding patterns.

3.1 Passenger and Pedestrian Tracking
Trellis keeps track of each individual by tracking their Wi-Fi en-
abled devices, and it separates different devices based on the MAC
addresses included in the Wi-Fi packets. Figure 5 illustrates the
architecture of Trellis. Trellis first determines the type of the device
based on received 802.11 packet type, that is, Trellis identifies that
the device is a Wi-Fi access point or a mobile device. If the device is
a mobile device, further analysis will be conducted. As discussed in
previous sections, when the vehicle is in motion, the signal strength
of a passenger’s Wi-Fi device as observed by a vehicle-mounted Wi-
Fi observer should be fairly stable; while the signal strength of an
outside pedestrian will vary in a predictable way before eventually
disappearing. We developed two schemes to discern which device
is inside the bus and which is not. A feature driven scheme is a
straight forward identification mechanism. We set different thresh-
olds on RSSI, distance and duration to determine who is inside the
bus. However, it is hard to select one set of thresholds that can
work under different scenarios. Hence, we extracted features from
GPS and RSSI data, then used a hierarchical clustering algorithm to
distinguish passenger and pedestrian.

Some unpredictable factors certainly affect our system accuracy.
For example, some people may still use feature phones or have more
than one smartphone; some people will turn off theirWi-Fi function
to save power. Under these circumstances, our system will either
overestimate or underestimate the total device number. However,
we are focusing on the statistical trends of human activities, not
the exact number of passengers and pedestrians. Our observation
shows that we can still quite effectively track general trends in
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Figure 5: Trellis architecture. The raw GPS and RSSI is pro-
cessed together to identify passenger and pedestrian. Pas-
senger and pedestrian are sent to correspondingmodules for
further information extraction.
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Figure 6: Illustration of two schemes and how to keep track
of each passenger.

transit behavior from a long-term view. Next, we explain howTrellis
gathers enough information for transit usage analysis.

3.1.1 Passenger Detection. The most challenging task for pas-
senger detection is to extract useful information from collected data.
First, the RSSI readings are highly fluctuating. Therefore, we cannot
use RSSI alone as the indicator to identify if one passenger is on the
bus. Second, the Wi-Fi signals are opportunistically received. The
Wi-Fi signals’ transmitting frequencies are based on user activities,
such as screen being on and off. We have developed two schemes, a
feature driven scheme and a clustering scheme to identify whether
one subject is on the bus or not. Figure 6 provides an overview of
the two schemes.
Feature Driven Scheme:We use multiple RSSI readings observed
at different locations to determine the location of that subject. If
there are consistent high RSSI readings from a specific device af-
ter the bus has been traveling a certain distance (or readings that
appear for a certain period), this device is on the bus with high
probability. We will discuss how to find the RSSI threshold δon ,
distance threshold βon and duration threshold θon in section 3.1.4.

Clustering Scheme: As shown in Figure 10, emission power of on-
bus devices varies greatly. Since the feature driven scheme uses a
threshold-based algorithm, the classification results may be affected
by some bias factors. To resolve this potential problem, we use a
clustering algorithm to classify passenger and pedestrian. Here is a
list of features we used for a hierarchical clustering algorithm.
Packet: Mean, Median, Standard deviation, Percentage of RSSI
readings greater than -70, Packet receiving rate,

∑
RSSI

Duration
GPS: Total Distance

Duration , Total DistancePacket Size , Average speed, Speed stan-
dard deviation
To eliminate potential bias, all features are normalized to values
between 0 and 1.

3.1.2 Passenger Tracking. We divided the entire bus route into
continuous road segments, and each road segment is between two
consecutive adjacent bus stations. Hence, each passenger travels
with a bus for at least one road segment. Ideally, we can observe
an increasing trend of RSSI values which would indicate that the
passenger gets on the bus. Then RSSI readings stay stable for a
period of time and then decrease when the passenger gets off the
bus. Based on observation, RSSI & speed patterns can be catego-
rized into four types. Figure 8 demonstrates four possible types of
inference from RSSI & speed patterns.
Type 1: An ideal RSSI & speed pattern, the place and time that a
passenger gets on and off the bus can be clearly identified. (Fig-
ure 8a)
Type 2: Only boarding information can be inferred. (Figure 8b)
Type 3: Only leaving information can be inferred. (Figure 8c)
Type 4: Neither boarding nor leaving information can be inferred.
(Figure 8d)
Boarding and leaving information are hard to infer for patterns
Type 2, 3, and 4. A prediction method has been developed to handle
imperfect cases. (Figure 8d)
Determine Pattern Type:We determine the type of RSSI & Speed
pattern by checking RSSI slopes with vehicle stop points (where
vehicle speed is zero). First, we calculate the slopes of RSSI values
using equation 1.

Slopei =
△RSSI
△Time

=
RSSIi+1 − RSSIi

ti+1 − ti
(1)

Ideally, the slope values should be positive at the beginning indi-
cating the passenger gets on the bus and the slope values should
be negative at the end. RSSI slope values are close to zero while
the passenger is on the bus. Then, we extract vehicle stop points
based on vehicle speed. Combining vehicle stop and RSSI slope
information, passenger boarding and leaving points can be inferred.
Figure 7 shows an example of RSSI slopes with vehicle stop points
of Type 1 pattern. Slope values are positive in the beginning and
negative in the end. The vehicle stops when the peaks appear, in-
dicating the stations where the passengers get on and off the bus.
Couple RSSI patterns with vehicle speed of movement, passenger
riding information can be clearly inferred for this example. For
Type 2 and 3 patterns, only positive or negative RSSI slope values
could be observed in the beginning period or at the end of the trip
correspondingly. All RSSI slope values are close to zero for Type 4
pattern.
Handling Type 1: For this scenario, the starting bus stop of the
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Figure 7: An example of how to determine Type 1 pattern
from RSSI slopes and vehicle stop information.

first road segment is recognized as the location where the passenger
gets on the bus. The ending bus stop of the last road segment is
recognized as the location where the passenger gets off the bus.
Handling Type 2, 3 and 4: When the phone screen is off, the
system will reduce the frequency of sending out probe request
packets to save power. Figure 10 illustrates the transmission rate
for different brands of devices. Theoretically, the device should send
out a probe request every τ seconds, which means we could detect
that device at least once every τ seconds. It is possible that the
passenger could get on and off the bus during this τ second period.
This is why Trellis fails to identify the boarding or leaving or both
locations for Type 2, 3, and 4 scenarios. To handle these scenarios,
we developed a model to predict when the passenger gets on or off
the bus. First, based on frequencies of the received packets from
that specific device, we estimate τ using equation 2.

τ = Σni fi ∗ Durationi (2)
where Durationi is the time difference between i-th and (i + 1)-th
packets, and fi is the appearance frequency of Durationi . Note
that we eliminate the Durationi when it is less than 10 seconds. To
determine boarding time, we begin by using the first half of the
received packets to derive τ , and vice versa. Second, we explore all
the places that the bus traveled during τ seconds (looking ahead
for boarding station predictions, and looking behind for leaving
station predictions). The system chooses the bus stop where the
bus stops before/after τ seconds as the boarding/leaving bus stop.
Figure 8b, 8c, and 8d show the estimated τ and predicted boarding
and leaving time.

3.1.3 Pedestrian Detection. Pedestrians can be detected any-
where along the bus route. Our pedestrian identification algorithm
first checks the total distance a bus traveled. If the travel distance
is less than a distance threshold βof f , then it will check the RSSI
readings. In contrast to the passenger RSSI readings, a portion of
α readings should be less than the threshold δon . If an individual
satisfies the above two conditions, it has a high probability of being
on the road. As shown in Figure 10 (left), the RSSI readings from a
device in a car tailgating the bus are much less than those from a
passenger’s device. Therefore, this device cannot be classified as
a passenger device. What’s more, the total distance a given bus
traveled should be much longer than βof f . Thus, this device will
be treated as a pedestrian device.
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(a) An example data trace showing where a passenger gets on and
off the bus.

 0
 10
 20
 30
 40
 50
 60

 0  100  200  300  400  500  600

-80

-60

-40

-20On Off

Predicted

τ

S
p

e
e

d
(k

m
/h

)

R
S

S
I(

d
B

m
)

Time (s)

RSSI Speed(km/h)

(b) An example data trace showing only a passenger’s boarding in-
formation can be inferred.
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(c) An example data trace showing only a passenger’s leaving infor-
mation can be inferred.
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(d) An example data trace showing that no passenger detailed infor-
mation can be inferred.

Figure 8: Four possible types of inference from RSSI and
speed data patterns for detected passenger.

3.1.4 Parameter Selection. Figure 9 summarizes the cumulative
distribution functions (CDF) of station to station travel time and
the distance of the three routes. Detailed information of each route
is acquired from the GTFS [3] data published by the local metro
company. From the figure we can see that 80% of the travel time
between stations is more than 50 seconds. More than 80% of travel
distance between stations is longer than 150 meters. For a feature
driven scheme, we set the distance threshold βon as 200 meters,
choose 100 meters for βof f , and assign 1 minute to θon .

After we recognize one detected device is a passenger device, we
can study the Wi-Fi module emission power and compute packet
transmission rates for different devices of various vendors. The CDF
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Figure 9: The CDF of station to station travel time (left) and
distance (right).
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Figure 10: TheCDFofmobile deviceWi-Fi signals’ RSSI read-
ings (left) and transmission rate (right).

of emission power of on-bus devices are summarized in Figure 10
(left). To plot this CDF, we use RSSI readings observed from on-
bus devices. Due to limited space within this paper, we show only
devices made by the four most popular vendors. In general, the
signal strength for on-bus devices are greater than -65 for around
90% of time. In order to deal with the case of a car following the
bus for multiple stops, we collected some data by driving a car
tailgating the bus. We put an iPhone 6s Plus and a Nexus 5X in
the car, and followed the bus at a close but safe distance. We did
this experiment twice, each time for around a half an hour. The
RSSI readings are shown in Figure 10 (left). The signal strengths
from a device in the car following the bus are between -90 to -65.
Hence, both the feature driven and the clustering scheme will not
consider such a device to be a passenger device. What’s more, with
the speed and GPS information, our system could tell this is not
a pedestrian device (For normal people, it is very hard to run as
fast as a bus for a long distance). Therefore, we test the feature
driven scheme with δon ranging from -70 to -60 db. The CDF of
the Wi-Fi signal transmission rates is shown in Figure 10 (right).
Since the transmission rate is within 50 seconds for 90% of the time,
this transmission resolution suggests that our individual tracking
algorithm has the ability to handle corner cases such as when a
passenger is on the bus for only one road segment.

3.2 Transit Schedule Reconstruction
In order to perform public transit analytics, e.g., route design, sched-
uling, etc., we track each bus on the route to record when it passes
each stop. To reconstruct the transit schedule from collected data,
we build stop tables for each route. Each bus stop in the table is
labeled by an index, GPS location information and direction. All the
information is gathered from the published GTFS feeds. Based on
the vehicle driving direction as well as the location information, we

can infer when the buses pass each station. This module essentially
establishes when the bus arrives at each station and how long it
stays there. This information is important for transit operators to
evaluate the on-time performance of each bus.

3.3 Origin-Destination Matrix
For most kinds of analyses in the field of traffic planning and anal-
ysis, there is a need for origin-destination (OD) matrices, which
specify the travel demands between the origin and destination
nodes in the network. Hence, we built an origin-destination ma-
trix, which essentially records how many passengers ride from one
bus station to another. We divide the 47 bus stations in route 80
into seven geographically adjacent regions for easy analysis (as
illustrated in Figure 3). Within each of the seven regions, there
are 11, 4, 6, 7, 7, 5 and 7 bus stations, respectively. Based on this
matrix, we can analyze passenger region-to-region movement pat-
terns. Additionally, we may add other dimensions to understand
passenger behaviors, i.e., time domain and weather conditions, to
analyze passenger riding patterns during different periods of the
day or under different weather conditions.

4 PASSENGER ACTIVITY TRENDS
In this section, we evaluate Trellis by demonstrating various transit
usage analysis results.

4.1 Tracking Bus Occupancy
Bus occupancy is an important factor for transit operators to make
transit plans, improve the transit efficiency and seek government
funding. After reconstructing the transit schedules and identifying
passengers, we gathered enough information to count passenger
and record how many (essentially which) passengers get on and
off at each bus station. Traditional methods such as questionnaires
and bus driver counting could help transit operators understand
riding patterns. However, these methods require a lot of human
labor work, and are time consuming.

Our system provides a low-cost approach to assist or even replace
existing counting methods. We evaluate the counting algorithms
by comparing estimated passenger numbers and ground truth. To
get ground truth data, we recruited several volunteers, and asked
them to take the bus and count the number of passengers getting
on/off the bus at each bus stop. Volunteers counted the numbers
and recorded them using a customized Android application. We
collect the ground truth data in 20 trips on 20 different days. For
each trip, each volunteer stayed on the bus for around one hour.
The aggregated ground truth data covers every hour from 9am to
9pm, including weekdays and weekends. The ground truth data was
then synchronized with the data collected by the sniffing system
based on time and GPS location.

Based on our observation, Trellis can, on average, detect 65%
of the total passengers. Wang et al. reports that their system can
discover around 40% of customers waiting in a queue [44]. Musa
et al. claims that their system can detect a passing smartphone 69%
of the time if the Wi-Fi is turned on [36]. Consider the increasing
trend of smartphone penetration rates [40], we believe 65% is a
fairly reasonable discovery rate. Hence, Trellis scales the estimated
passenger number by 1.5. We summarize the calculated passenger
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Figure 11: Onboard passenger number ground truth and automatic passenger counting results.
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Figure 12: The CDFs of passenger number estimation error
with different schemes.

numbers and the ground truth passenger numbers in Figure 11.
The x axis represents the number of bus stops counted for that trip;
the y axis shows the passenger number on the bus between two
consecutive bus stops. Due to space limitations, we only show 10
trips in this figure. Each red point represents the actual number of
passengers on the bus at that bus stop. The ground truth passenger
numbers were counted at each station where the bus stopped, after
existing old passengers left the bus and new passengers got on. The
total passenger numbers stay the same between two consecutive
stops. Each blue point refers to the total number of passengers
calculated by Trellis. The estimated passenger number is the total
number of passengers on the bus between two consecutive bus
stops. Figure 11 shows that the major estimation error is caused by
passenger bursts. The bursts usually occur when a large volume
of students finishes one class together, gets on the bus at one stop,
then gets off the bus at next stop together to take another class in
a nearby building. Some students may not turn on phone screen
during this short trip, so we may lose track of them. However, we
still can see the rising and falling trends from estimated passenger
numbers when bursts happened. Hence, the loss of tracking has
little effects on long term statistical analysis.

Figure 12 summaries the passenger number estimation errors of
different schemes. For the feature driven scheme, when the RSSI
threshold δon is set to -65db, Trellis has the best performance. We

tested with five clustering algorithms, namely the Affinity Propaga-
tion, Mean Shift, Spectral Clustering, DBSCAN and Agglomerative
Clustering. Due to space limitations, we show the results of only the
best three algorithms in Figure 12. Agglomerative Clustering has
the best estimation performance. The passenger number estimation
error is within 7 for around 80% of the time.

KeyObservations:Regarding the evaluation of passenger count-
ing algorithms, Trellis can discover 65% of total passengers. Passen-
ger counting error is within 7 for 80% of the time.

4.2 Transit Riding Patterns
The ability to track each individual allows us to conduct transit
statistical analysis. For instance, we can study passenger riding
behaviors and discover various types of passenger riding patterns
at different stops. As previously noted, the bus route covers a resi-
dential area and a main campus area, and our analysis shows that
passenger riding habits are periodic during weekdays among bus
stops in different regions. We summarize the average number of
passengers getting on and off at two specific bus stops located in
two regions during each hour of one week in Figure 13. The top
graph shows the passenger riding patterns at a bus station located
in the residential area (region 1 in Figure 3) and the bottom graph is
for a bus station located in the main campus (region 5 in Figure 3).
There are two main observations generated from these two figures.
First, same riding patterns (including getting on and off) repeats
from Monday to Friday, and changes during weekends. Second, bus
stops located in different regions have different riding patterns. For
instance, in the residential area, people are going out for work in
the morning and going back home in late afternoon. Hence, there
are obvious riding peaks during those hours. Further, undergradu-
ate students live on campus. They travel between dormitories and
campus buildings for different classes throughout the day, so there
are peaks in the number of passengers getting on and off the bus
throughout the day.

Key Observations: Regarding the study of passengers’ riding
behaviors at stops in a residential area as well as in the main campus
area, at a residential bus station, most people get on the bus in the
morning and get off the bus in the evening whereas in the main
campus area, people get on and off the bus throughout the day.
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Figure 13: Riding patterns of different bus stops in the resi-
dential area (top) and the main campus (bottom).

Figure 14: Original-Destination matrices during morning
hours (left), and evening hours(right).

4.3 Transit Scheduling Analytics
Webuild OD-matrices using passenger region-to-regionmovements
data. Figure 14 shows two OD-matrices during morning hours (7am
to 9am) and evening hours (5pm to 7pm).

Suppose OD represents this OD-matrix and ODi j denotes each
element in the matrix (i represents the index of y axis and j rep-
resents the index of x axis). The value of ODi j refers to the total
number of passengers getting on the bus at bus stops located in
region i and getting off at bus stops located at region j. Darkening
colors correlate to increases in passengers. As can be seen from
Figure 14 (left), most of the passengers travelling from region 1
are going to region 3 or region 6 during morning hours. From this
observation, we can provide suggestions to operators. For example,
extra direct buses connecting region 1 and 3 (or 6) can be added
to the route during morning hours, which could reduce the travel
time for passengers who want to go to region 3 or region 6 since
the bus stops less frequently, while the rest of passengers can have
a better riding experience due to less passengers being on the bus.
During the evening rush hours, most of the passengers get on the
bus from different regions and are going back to region 1, which
means passengers are going back home.

Key Observations: By building OD-matrices for transit sched-
uling analysis and evaluation it is discernable that during morning
hours, Regions 1 and 3 and Regions 1 and 6 are the most popular

Figure 15: The impacts of temperature on daily average
pedestrian (left) and passenger (right) number.

origin-destination pairs. Most traffic goes to Region 1 between 5pm
and 7pm.

5 IMPACTS OF EXTERNAL FACTORS
In this section, we discuss how external factors, such as weather
and temperature, impact human outdoor activities.

The weather data was collected using the Dark Sky Forecast API
[8]. We requested hourly weather data and stored those data in a
database. The requested weather data contains the following prop-
erties: icon (rain, clear, snow, etc.), precipitation intensity (inch/hr),
precipitation probability, precipitation accumulation (inches), tem-
perature (Fahrenheit), wind speed (mph), humidity and visibility
(miles). Each hour’s weather information entry in the database is
indexed by a time integer key, e.g. 201512251300 represents Dec.
25, 2015 at 13:00.

5.1 Overview
Trellis was deployed in a northern city in the US. The data was
collected through a mild summer and a severe winter. The tempera-
ture could be as high as 90° Fahrenheit in the summer but as low as
−10° Fahrenheit during the winter. Therefore, outdoor temperature
could be a key factor that affects human behaviors as well as traffic.

We built region-temperature matrices to show howwould people
react to different outdoor temperatures. We counted passenger and
pedestrian numbers region by region, then, for each data entry, we
queried the temperature at the time it was detected. Finally, we
built the region-temperature matrices shown in Figure 15. The left
one demonstrates pedestrian behaviors while the right one shows
passenger behaviors. For the left figure, each box in the color map is
the average daily number of pedestrians detected in that region at a
certain temperature range, e.g. suppose the matrix is RT , then RT 1

50
indicates the average daily pedestrian number in region 1 within
the temperature range of 45° to 55° Fahrenheit. Similarly, for the
right figure, each box in the color map is the average daily number
of passengers that get on the bus from the station in that region at a
certain temperature range. Darkening colors correlate to increases
in the daily average number of people. As can be seen from these
two figures, temperature affects both passengers and pedestrians
in a similar way. For each region, there is an increasing trend of
numbers as the temperature increases. When the temperature is 0°
Fahrenheit (around −17° Celsius), we can rarely see people outside.
As the temperature increases, the number of people increases, and
reaches a maximum when temperature is around 70° Fahrenheit
(around 21° Celsius).
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Figure 16: Quantify temperature andweather impacts on hu-
man activities in region 7.

Key Observations: The results of this evaluation of temper-
ature’s impacts on human outdoor activities indicate a positive
correlation between temperature and human outdoor activities.

5.2 Quantitative Analysis
To have a numerical intuition of the weather and temperature im-
pacts, we conducted a quantitative analysis of these two factors
based on the data we have. We compared the impacts of temper-
ature on human mobility between rush hours and regular hours.
Temperature has similar impacts on the human mobility during
different time of the day (higher temperature, more human outdoor
activities). One potential reason may be the temperature will not
change too much during a day. As a result, we quantify the weather
impacts using average daily number of people in this section. The
figure on the left side of Figure 16 shows the relationship between
the temperature and the number of people in region 7. We can see
a positive correlation between the temperature and the number of
people, i.e. as the temperature increases, more and more people
are willing to go outside. To be more specific, when temperature
increases ten degrees, around 15% more pedestrians show up on
the street, and around 10% more passengers are present on the bus.

According to the Dark Sky Forecast API [8], we define weather
conditions based on precipitation intensity. If it is raining or snow-
ing and the precipitation intensity is greater than 0.35, we treat it
as an inclement weather condition. If the intensity is between 0.05
and 0.2, then we regard it as bad weather. Finally, we identify good
weather only when it is clear or sunny. We only tend to use these
three conditions as a showcase for quantifying weather impacts.
The figure on the right side of Figure 16 indicates there is a positive
correlation between weather conditions and the number of people.
More people participate in more outdoor activities as the weather
improves.

Key Observations: Temperature and weather changes affect
human outdoor activities.

5.3 Impacts on On-Time Performance
Traffic conditions vary dramatically during different times of the
day and are affected by various factors. Under inclement weather
conditions, especially when weather is snowy or icy, drivers in-
crease headway, decrease acceleration rates, and reduce speeds,
which collectively results in traffic congestion and schedule delay.
Providing an efficient public transportation system can essentially
alleviate traffic congestion.
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Figure 17: The comparison of on-time performance between
different hours(left) and weather conditions(right).

In Figure 17, we summarize the on-time performance under
different scenarios. For this comparison, we focus on the data col-
lected from route 80. The figure on the left shows the difference
between peak and off-peak hours. A negative value means that the
bus arrived earlier than the scheduled time while a positive value
represents how late the bus was. During rush hours, bus drivers
need to reduce speeds and brake frequently due to the high vol-
ume of vehicles on the road. What’s more, passenger demands also
increase. Hence, schedule delay is likely to happen during rush
hours. In the left figure, we can see the difference between two
CDFs, which shows a longer delay during rush hours. Compared to
regular hours, early or late arrivals happen more frequently during
rush hours. During regular hours, the bus may arrive early or late
within a 3-minute interval. For worst case scenarios during peak
hours, passengers would experience an 8 minutes’ wait, or the bus
may arrive 7 minutes earlier than scheduled. One thing that needs
to be mentioned is that the transit schedule already takes traffic
conditions into consideration, i.e., transit operators schedule more
buses on the road during rush hours. Hence, from the CDFs we
can see the difference is not that significant, which reflects the
effectiveness of current transit schedules. The right figure shows
the CDFs of lateness under inclement, bad and good weather condi-
tions. When bad weather happens, traffic slows down and drivers
drive more carefully, which all may contribute to a schedule delay.
It is shown that as the weather worsens, the delay increases. Under
inclement weather conditions, the bus could have a 7 minutes delay
for a worst case scenario.

KeyObservations: Passengers experience a longer delay during
rush hours or when bad weather happens.

6 PEDESTRIAN ACTIVITY TRENDS
Pedestrian activities are of great importance for both the design
and evaluation of public transit. Traditional transit evaluation ap-
proaches lack ways to gather pedestrian information. Our system
brings the possibility of using human mobility patterns to evaluate
transit systems.

6.1 Pedestrian Activity Analysis
Pedestrian flows have been shown to be in close relationship with
traffic flows [37], i.e. pedestrian flow can reflect and affect traffic
conditions. Detecting pedestrian activity could help transit opera-
tors have a better understanding of traffic conditions.

6.1.1 Overview. Trellis conducts pedestrian detection concur-
rently with passenger tracking. As opposed to passengers on the
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Figure 18: The CDF of pedestrian number estimation error.

bus, pedestrians are far away from the Wi-Fi monitor. Thus, the
RSSI readings from a pedestrian device would be smaller than those
of a passenger. Based on this fact, Trellis identifies pedestrians
by checking the RSSI readings. Details of the detection algorithm
are discussed in section 3.1.3. While this simple mechanism can
miscount some people in a nearby building, this is a very limited
negative effect. Based on our experiment results, the chance of
such a person being detected is limited, since the distance between
the bus and the building is long and the bus passes that building
within seconds. To evaluate the accuracy of the pedestrian detec-
tion algorithm, we conducted two different kinds of experiments.
First, we evaluated the detection accuracy by comparing the es-
timated pedestrian number with ground truth data. Second, we
conducted experiments in an open field area, to study how people
inside nearby buildings influence the estimation accuracy. Along
route 80, there is an open field area where there are no buildings
on both sides of the street. This area runs along a large lake, and
it also contains a marsh and a softball field. This area is shown in
Figure 18 (right); the bus route in this area is labeled in red. For the
rest of route 80, buildings are located on both sides of the street.
To get ground truth data, we asked volunteers to take the bu, and
count the pedestrians on the street as the bus passed by. Figure 7
(left) shows the CDFs of the pedestrian number estimation error. In
general, Trellis performs better in the open field area. Around 80%
of times, the estimation error is within 7 people. The evaluation
results show that Trellis performs well for most cases and will not
be affected heavily by people inside a nearby building. Again, in
this work, we focus on the general behavior of passengers and
pedestrians, not exact numbers.

6.1.2 Time Impacts. Figure 19 explains the daily average pedes-
trian number along route 80 during the day and night. We used
data collected from route 80 to plot these heat maps 2. The top left
part in each map represents the residential area while the bottom
right part is the main campus. University hospitals and medical
schools are located in the middle left. We can see major population
centers appear differently throughout a day.

During the daytime, high population density areas are mainly
distributed in the residential area, the hospital and some parts of
the main campus. This is because various kinds of activities happen
in those areas, such as going to school for classes and traveling
between different campus areas. During the night hours, the library
area is the only active area. Students gather in the library to do
homework or participate in group studies. From the GTFS feeds,
2Route 81 and 82 only operate during night hours (6pm to 2am).

15 40 70

NightDay

Figure 19: A comparison of the daily average pedestrian
number on the street during daytime (10am-3pm) and night
(9pm-11pm) hours.

service frequency varies from 7 minutes to 50 minutes during a day
for route 80. During the morning and evening rush hours, the fre-
quency is 7 minutes. And after rush hours, the frequency decreases
from 7 to 14, and then to 25 minutes. Finally, the frequency shifts
down to 50 minutes at night. Transit operators carefully design this
schedule to serve public efficiently. Our pedestrian activity analysis
observations follow and support these facts. We believe Trellis is
reliable to perform these transit analytics effectively at a large scale.

Key Observations: By identifying pedestrian activity patterns
during different times of day, we can locate several popular areas
during the daytime and see that the library area is the only active
area at night.

7 RELATEDWORK
The concept of using a wireless-based approach for transit analytics
was first considered in a recent position paper [28]. However, the
prior work did not consider the broader opportunity of using this
platform for analyzing pedestrians in city streets, nor did it consider
the ability to analyze human mobility across different external
factors, such as weather and changing temperatures, etc. More
importantly, it did not conduct a significant evaluation of these
opportunities in practical settings.

7.1 Passenger Counting
Transit operators need to collect transit usage statistics either by
manually counting or using expensive sensor systems. They are
required to submit usage information to national transit database
[7]. APC presents a passive, non-radiating infra-red technology to
detect and count people moving through a door or gate [19]. The
system has the ability to detect the number of passengers, but it
needs expensive hardware and is not able to track each individual
that is riding between each pair of stations. Chen et al. [14] use
a video based algorithm to count passenger numbers. Meanwhile,
some Asian cities use a system that requires each passenger to
tapping IC card when gets on and gets off the bus [4, 48]. These
systems cannot count those passengers who are paying cash. More
importantly, tapping card may cause extra delays and queues at
each bus station. Trellis does not require any passenger operations.
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7.2 Human Mobility Study
Many applications such as traffic engineering and urban planning
need to understand humanmobility [10]. Gonzalez et al. [20] demon-
strated the regularity of human trajectories by tracking user smart-
phone. Zhang et al. [47] studied human mobility based on multiple
data resources, e.g., cellphone and transit data, to avoid biased judg-
ment by single data resources. [18] infers human mobility by using
taxicab location traces. Our work did similar things and proposes
new applications by performing individual monitoring. However,
we propose a novel way to conduct public transit analytics by us-
ing Wi-Fi monitors on city buses, which separate our work from
existing ones.

7.3 Human Tracking by Wi-Fi
Wang et al. proposed a system that can track human queue length
based on received Wi-Fi signal features and analyze the waiting
time in the queue [44]. Depatla et al. [16] estimate the total number
of people in an area based on Wi-Fi device power measurements.
However, this technique requires customers’ smartphones to be-
come connected with APs and to generate network traffic. VTrack
[42] uses smartphone inertial sensors to estimate people’s trajec-
tory, which is fundamentally different from our approach. Musa
et al. [36] deploys multiple monitors on the road to estimating the
trajectory of smartphone holders.

7.4 Traffic Monitoring
Research work has been done on traffic monitoring using instru-
mented probe vehicles to get sparse probe data. Herring et al. [24]
use an HMM based probabilistic modeling framework to estimate
arterial travel time distributions using collected sparse probe data.
Thiagarajan et al. [41] proposed a smartphone based system that can
shorten the expected waiting times. The study uses smartphones’
accelerometer sensors and GPS to determine user position, and
estimate traffic conditions. VTrack [42] also uses smartphones as
sensor platforms and presents an energy efficient algorithm to pre-
dict traffic delay. It proposes an HMM based map matching scheme
and travel time estimation model. In contrast to Thiagarajan’s work,
the VTrack method uses Wi-Fi data instead of inertial data. Nericell
[35] takes advantage of mobile phones’ multiple sensor readings
and proposes a system that can monitoring road and traffic condi-
tions. It requires the smartphone to send various sensor data, which
may not work on all phones, and it is energy inefficient. In our
study, we use a low-cost passive Wi-Fi monitoring system to get
sparse probe data, and we are focusing on the different factors that
can help improve transit efficiency.

8 DISCUSSION
In this section, we discuss the limitations of our system and propose
other potential applications.

8.1 Limitations
These limitations expose challenges for our tasks, but they do not
affect the practicability of our system.

8.1.1 Tracking Accuracy. As has been previously noted, passen-
ger tracking and pedestrian detection accuracy are limited by some

unpredictable factors. For example, some passengers are still using
feature phones or their Wi-Fi function is turned off. For these cases,
the Trellis system is not able to detect the presence of the individ-
ual. Some passengers may have multiple Wi-Fi enabled devices,
e.g., a tablet and a smartphone. In this case, Trellis may overesti-
mate the number of passengers. Although we use distance and RSSI
thresholds to filter passengers and pedestrians, people driving a car
following or parallel to the bus may be detected and cause overesti-
mation. Either overestimated or underestimated device numbers
will affect the system accuracy. However, since our goal focuses
on the statistical trends of transit systems, such impacts can be
ignored from a long-term view.

8.1.2 MAC Randomization. Apple introduced MAC random-
ization in iOS 8. Full implementation of MAC randomization is
available in Android version 6.0 and above [1]. The key idea of
this technique is to use fake MAC addresses in their probe request
packets. It is hard for our system to identify this fake MAC address.
However, from our own observations, the randomization feature in
iOS requires several prerequisites to be triggered. Various discus-
sions and reports [34, 46] also claim the similar findings. According
to recent studies [17, 43], iOS devices can be re-identified by check-
ing sequence numbers and timing information contained in the
probe request packets. According to US Naval Academy’s recent
study [32], most Android phones simply do not have this technol-
ogy enabled, despite the fact that they are running new versions
of the operating system that should allow for it. It is even possible
to track 100% of all test smartphones, despite the devices using
randomized MAC addresses. Again, our work focuses on provid-
ing statistical analysis on transit efficiency to assist public transit
operators instead of tracking every single passenger.

8.1.3 Pedestrian Detection. Our system can detect pedestrians
along the route, but it has no capability of tracking each detected
pedestrian. However, if we could deploy Trellis on more buses in
the city metro network, we might have the ability to track pedestri-
ans by building a communication network among buses. Therefore,
several buses can track a single pedestrian and rebuild the pedes-
trian movement pattern. Our pedestrian detection algorithm may
miscount some people in a nearby building along the routes. Ac-
cording to our evaluation results, such counting errors have little
affect from a long-term view.

8.1.4 Smartphone Penetration. Another issue to note is the pen-
etration of smartphones with built-in Wi-Fi through the passenger
community. While it is hard for us to measure the true distribution
of Wi-Fi devices within the passenger community, we can expect
that older people and babies are less likely to carry smartphones.
However, smartphones with built-in Wi-Fi are increasingly popular
and accessible to larger populations. From a long-term view, the
riding demand and trend of the passenger community will hold.

8.2 Tap-based Fare System
Tap-based fare systems are available all over the world [45]. Transit
operators employ two strategies to collect riders’ payments. One
way is to set a fixed price for the whole route; the other way is to set
the price based on the distance traveled. For the first mechanism,
passengers only need to "tap in" to the transit system at their origin
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station. A distance-based pricing strategy requires passengers "tap
in" at their origin station and then "tap out" at their destination
station. Tap-based fare systems are more efficient than traditional
conductors but cause customer delay during peak hours [9]. More
recently, Metro Transit riders are able to pay transit fares using
their smartphones [39]. Mobile applications have been developed
for passengers to buy tickets online. Trellis could be part of such
mobile applications. When a passenger enters the station, Trellis
could determine his/her origin and destination, then calculate the
price for each trip the passenger has taken. In the meantime, Trellis
could evaluate transit usage and send real time statistics to transit
operators. Since the whole process can be done automatically by
the mobile application, passengers do not need to physically "tap
in" and "tap out", thus minimizing queuing delays.

8.3 Other Applications
Currently, Trellis is deployed on two city buses, and it has been
assigned to three routes. As we continue to cooperate with the local
metro transit, Trellis will run on more buses and routes simulta-
neously, which will further extend its applications. For instance,
with data collected from several buses on different routes, we could
provide evaluation on transit interchange performance.

We mainly focus on providing transit analytics in this work,
however, many more applications could be developed given this
rich data set. For example, it is possible to predict the riding route
of each individual passenger. Wi-Fi related applications can also
benefit from an accurate predication of a passenger’s presence [31].

9 CONCLUSION
This paper presents Trellis, a low-cost, vehicle-mounted wireless
monitoring system that can track passenger movements, detect
pedestrian flows, and evaluate how external factors impact human
mobility, thereby providing useful analytics to transit operators,
and potentially urban planners. Trellis uses a passive approach to
gathering individual mobility data. The system uses RSSI readings
coupled with vehicle location information to distinguish passengers
from pedestrians, and it can monitor each detected individual. This
capability gives us the flexibility for evaluating a public transporta-
tion system across a city in a very cost effective manner.

In this paper, we attempted to provide analytics of specific as-
pects of passengers on transit vehicles and of human mobility as
observed from these vehicles. With ParaDrop, Trellis can be easily
deployed and managed in vehicles at a large scale. Various transit
analytics can be derived on-board quickly. We believe this approach
of observing human populations at city scales has many more inter-
esting and useful applications. Such explorations will form a part
of our future work.
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