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Abstract—With the proliferation of hand-held devices in re-
cent years, wireless video streaming has become an extremely
popular application. Internet video streaming to mobile devices,
however, faces several challenges, such as unstable connections,
long latency, and high jitter. Bitrate adaptive streaming and
video transcoding are widely used to overcome such problems.
However, there are still several shortcomings of these approaches.
Bitrate adaptive streaming cannot provide fine-grained adapta-
tion. Moreover, video transcoding is expensive and is hard to
apply for live streaming.

In this work, we propose to use a low-cost video transcoding
solution running at the wireless edge, such as home WiFi
Access Points (APs). Instead of having expensive server-based
transcoding, we designed and implemented a real-time video
transcoding solution on a low-cost hardware, Raspberry Pi. By
running our transcoding solution at the wireless edge, it can
provide more agile adaptation to sudden network dynamics and
is able to incorporate clients’ feedback quickly. Our transcoding
solution is transparent, low-cost, and scalable. Thus it allows
broad and quick deployment in home WiFi APs (and also in
cellular base stations). The evaluations reveal that our system
enhances the performance of video streaming compared with
other bitrate adaptive solutions. It provides higher video bitrates
(at least 2.1×) without causing video stall or rebuffering.

I. INTRODUCTION

HTTP traffic constitutes a significant percentage of network
traffic, especially multimedia usage over HTTP accounts for an
increasing portion of today’s Internet traffic [29]. Worldwide
smartphone sales overtook PCs in 2011 [17], and video
streaming on handheld devices (e.g., smartphones, tablets) is
one of the most popular applications. With the rapid increase
in mobile device usage, the amount of traffic destined to
mobile devices is also exponentially growing, and online video
streaming constitutes the majority of this traffic [13], [1].
Given the popularity of mobile streaming, demand for high
bandwidth in wireless mobile network continues to grow. The
key to success for internet video streaming is to deliver high
quality and provide interruption/distortion-free and continuous
playback with an immediate start. In spite of the increasing
demand for mobile video streaming, current wireless networks
cannot keep up and provide satisfactory video streaming qual-
ity to mobile users. This is due to several factors; the wireless
link is dynamic because of link fluctuation and user mobility, it
provides limited capacity in multi-client deployments, and the
wireless channels are prone to being unstable. These factors
lead to undesirable outcomes such as user dissatisfaction.

Downsides of source-based adaptation. The challenges
and limitations caused by wireless connections have been
addressed by proposals for better video delivery approaches,
such as adaptive bitrate streaming [5], scalable video coding
(SVC) [7], and progressive downloading [6]. In the adaptive
bitrate approach, the media server maintains multiple profiles
of the same video, which are encoded in different bitrates and
qualities before they are delivered to the end users. However,
the wide variety of bitrates, codecs, and formats makes it
difficult for the video service provider to predict and pre-
process numerous videos in advance. It also imposes higher
overhead on content providers and the delivery infrastruc-
ture such as media server and storage. For instance, Netflix
maintains 120 different versions of each video to deal with
different screen sizes and bandwidth requirements [39]. The
limited selection of pre-processed bitrates can not provide an
agile adaptation because channel instability frequently occurs
with user mobility in wireless networks. Even worse, it is
hard to pre-process live media sources like breaking news,
popular sports events, and teleconferences in real-time. Other
shortcomings of these schemes include the following: they are
not dynamically configurable in sudden network changes, and
some of the content may be wasted if it is not watched (e.g.,
progressive download used in YouTube or Hulu).

Video transcoding. Given the difficulties of pre-processing
various formats of video streams and the challenges of fine-
grained bitrate adaptation, video transcoding has emerged as
an alternative technology for optimizing video data. Video
transcoding encodes or converts the input stream to a pre-
configured format (e.g., codec, resolution, bitrate) to overcome
the diversity and compatibility issues presented by the multiple
formats of video streams. It is commonly used in the area
of mobile device content adaptation, where a target device
does not support the format or has a limited storage capacity
and computational resource that mandates a reduced file
size. However, video transcoding is a very expensive process
requiring high computational power and resources, thus it is
usually performed in the media server in an off-line manner.

Several research papers published recently [8], [4] use video
transcoding solutions in order to provide video streaming
service to a wide range of devices. They propose a cloud
transcoder to offload transcoding work in the cloud and make
the reusing of transcoded videos possible by storing them in
the cache. This approach requires storage and causes additional
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delay as video traffic is redirected from the cloud system. It
does not support real-time video streaming because it is based
on an off-line transcoding. In short, video transcoding is a very
effective way to optimize video data, however, it is expensive
and is hard to apply for live streaming.

TransPi. In this paper, we introduce a cost-effective, real-
time video transcoding solution, TransPi, at the wireless edge
where it can be agile to adapt to sudden network changes
in order to provide a better streaming experience to the user.
Instead of running on expensive transcoding process in the
media server, we utilize a low-cost hardware, Raspberry Pi,
for video transcoding running at the wireless edge, e.g., co-
located or embedded in home WiFi AP. The Raspberry Pi is
a cheap, credit card sized computer that includes a graphics
processing unit (GPU) and a hardware decoder and encoder
that is able to accelerate the video transcoding process. By
running our transcoding solution at the wireless AP, it can
provide more agile adaptation to sudden network dynamics
and is able to quickly incorporate client feedback.

To achieve real-time transcoding on live streaming, we
partition the input stream into multiple small segments and
apply our transcoding solution on-the-fly. Then we provide
the continuous transcoded video stream to the client in real-
time with minimal delay. TransPi provides a seamless, flexible
bitrate streaming service to the user, while taking into account
the user’s profile (e.g., downlink bandwidth). In contrast to
other transcoding work and previously existing systems, we
propose a storage-less, on-the-fly, and seamlessly adaptive
transcoding solution. Our evaluations show TransPi provides
a better streaming service to the user.

Wireless edge. In TransPi, we take a channel-aware ap-
proach for providing a better streaming service while incorpo-
rating instantaneous feedback from the client. Given the ben-
efits of cloudlet architecture [27] for video streaming service,
we deploy our transcoding solution at the wireless edge where
it can monitor the client’s profile from the nearest vantage
point in order to maximize the QoS. Moreover, deploying
video transcoding solution at the wireless edge provides more
affordability to the end user and allows speedy deployment in
existing systems (e.g., simply connecting the Raspberry Pi to
the home WiFi AP). In this sense, TransPi is agile to network
changes.

In a residential environment with dense WiFi deploy-
ments and severe interference (microwaves, Bluetooth de-
vices, etc.), high variation in wireless network and sudden
network changes play a bigger role and directly affect the
user’s experience of video streaming. Having higher network
capacity is beneficial in some cases where many people share
the bandwidth. However, it cannot directly help the cases
where network is highly variable or unstable. Instead of
high bandwidth, quick adaptation to the network changes can
overcome such problem. Our video transcoding is deployed
at the wireless edge where it quickly monitors the last hop
changes. TransPi can instantaneously adapt the video bitrate
according to the network changes so that it can provide
interruption/distortion-free streaming service to the user.

Contributions. The most important contribution of our sys-
tem is a practical implementation of real-time video streaming
optimization based on a low-cost, hardware-assisted trans-
coding solution at the wireless edge (i.e., connected to the
wireless AP). Our contributions in this work are multi-fold:

• We design and implement a cost-effective transcoding
solution on low-cost hardware running at the wireless
edge.

• Our solution is transparent, low-cost, and scalable, thus it
allows wide and quick deployment in a home WiFi APs
(or cellular base-station).

• TransPi partitions the input stream into small segments
and applies transcoding solution on-the-fly, and hence it
handles live streaming in real-time without interruptions.

• TransPi provides seamless bitrate switches with fine time
granularity and efficiently utilizes available bandwidth
by adapting bitrates of transcoded video to the network
conditions.

The remainder of this paper is organized as follows. We
introduce background of video streaming solutions widely
used today in Section II. Section III motivates the transcoding
solution in the cloudlet by comparing the performance to con-
ventional bitrate adaptive streaming. Section IV describes the
overview of TransPi, details of our transcoding solution and
its implementation. We evaluate the performance of TransPi
in Section V. We discuss related and future works in Section
VI and VII, respectively. Section VIII concludes the paper.

II. ADAPTIVE BITRATE STREAMING

Traditionally, video streaming solutions utilize either a
UDP-based (RTP/RTSP and IP-layer multicast) or TCP-based
(RTMP) approach while optimizing video data to promote
high efficiency. HTTP-based solution is widely used these days
due to the advantages of its extensive infrastructure, servers
and caching. Many challenges, however, arise in delivering
video data over HTTP; it is required to have various video
formats to support diverse end users and maintain a stable
connection between server and client, and the latency has to
be carefully controlled for streaming live media. Especially
in highly variable wireless channels, it is critical to adapt
quickly to the channel conditions in order to provide the
user with a good viewing experience. To overcome such
challenges, many solutions utilize bitrate adaptive mechanism,
HLS [9], MPEG-DASH [10], Adobe Dynamic Streaming[12]
and Microsoft Smooth Streaming [11], however, they are not
fully functional across different platforms which makes their
usage very limited.

HTTP Live Streaming (HLS). HLS is an HTTP-based
media streaming protocol implemented by Apple and sup-
ported by all Apple smart devices (iOS and Safari) and
Android devices (Android v3.0 or higher). HLS is an open
standard and provides great flexibility for implementation. A
schematic view of HLS processes is depicted in Fig. 1(a). The
media encoder downloads original video stream, encodes it
into H.264 video format and generates an MPEG-2 Transport
Stream (TS). Then, the stream segmenter takes the MPEG-2
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(b) Video transcoding example

Fig. 1. The bitrate adaptive streaming takes the original video and turns
it into multiple version of various bitrates, whereas the video transcoding
solution in TransPi generates a single stream.

TS and produces a series of equal-length files (TS segments)
from it that are suitable for use in HLS. It also generates
an index file (i.e., playlist) that contains a list of the media
files. The client player reads the index file, requests the listed
transcoded video data, and displays it without any pauses
or gaps between segments. The client also switches between
streams dynamically if the available bandwidth changes.

Dynamic Adaptive Streaming over HTTP (DASH).
DASH uses HTTP web server infrastructure to deliver web
content and allows many devices, such as Internet connected
TV, TV set-top boxes and many mobile devices. Similarly
to HLS, DASH works by breaking the overall stream into
a sequence of small chunks. Before the client player (e.g.,
dash.js) begins downloading media segments, the client first
requests the MPD, which contains the metadata for the various
sub-streams that are available. As the stream is played, the
client may select from a number of different alternate streams
containing the same material encoded at a variety of bitrates,
allowing the streaming session to adapt to the available net-
work capacity.

Supporting both HLS and DASH formats in TransPi.
In TransPi, we support the two most widely used streaming
formats, HLS and DASH, while following their specifica-
tions, however TransPi does not employ their rate adapta-
tion algorithms. In a nutshell, we use the video transcoding
solution to generate video data whose bitrate spontaneously
switches according to network variations (Fig. 1(b)). In our
implementation, we use a hardware decoder and encoder to
transcode input video data to a single-rate output stream based
on the user’s network connectivity. Unlike adaptive streaming
solutions, TransPi only provides a single transcoded stream
and thus it does not provide a list of various bitrates for
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Fig. 2. (A) The video streaming is provided from a remote media server.
(B) The video segments are directly downloaded from a media server at the
wireless edge.

adaptation.

III. INEFFICIENCY OF HLS/DASH AND MOTIVATION FOR
TRANSCODING

In this section, we first evaluate the performance of HLS
and DASH’s adaptive algorithms in terms of bitrate, bandwidth
utilization, stall, and rebuffering time. We present results that
show the benefits of deploying video streaming service at
the wireless edge. We then motivate the necessity of video
transcoding solution at the wireless edge in order to provide
better streaming service to the user by addressing several key
questions.

A. Bitrate Selection and Bandwidth Utilization
In adaptive bitrate streaming (HLS and DASH), the server

maintains multiple profiles of the same video encoded in
various bitrates and quality levels. Further, the video object
is partitioned into multiple segments each of which has a
duration of one second. A client player then requests different
segments at different encoding bitrates, depending on the
underlying network conditions and adaptation algorithm.

We created a network testbed to evaluate the performance
of HLS and DASH. For our experiments, we first set up
media servers that provide adaptive streaming service with
HLS standards. The media server hosts pre-processed HLS
video segments of the same video encoded in bitrates of 0.5,
0.8, 1, 1.5 and 2 Mbps. We deployed one such media server in
a remote location where the end-to-end ping latency between
a client and the server (HLS-remote) is around 58 msec (see
line A in Fig. 2).

The cloudlet-based system is introduced to support services
that require low-latency, such as real-time applications. By
providing the service from the vicinity of the end user or the
wireless edge, cloudlet architecture has multifold benefits: (i)
reduce the network latency, (ii) provide more agile service
adapted to the network changes and (iii) have a vantage point
from which to monitor the status of the client. Cloudlet archi-
tecture would be beneficial for delay-sensitive applications,
especially over wireless networks, since it could address low
latency requirement and quickly incorporate network dynam-
ics. To realize the cloudlet-based system, we have deployed
the same HLS server in the wireless edge which is directly
connected to the AP as depicted in Fig. 2 (red dashed line
B). In this setup, the ping latency to the HLS-edge server is
around 4.2 msec.
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Fig. 3. The adaptive steaming solutions under-utilize the available bandwidth
by selecting lower video bitrates.

The client player sends a request to the media server and
adaptively downloads the video segments according to its
wireless capacity and buffer level. In this set of experiments,
we assume the last wireless hop is the bottleneck wherein
many devices connect to the same AP in the home wireless
environment and compete for bandwidth. We have used a
programmable AP, Paradrop AP [22] and injected network
variations by controlling the downlink capacity between the
AP and the client. While the client receives video streaming
service, we adjust wireless capacity with 30 second time
intervals (at 2.1, 1.2, 0.5, 1.5 and 2.1 Mbps) and trigger the
client player to adapt the video bitrates. The client receives
video segments via the AP according to the HLS’s adapta-
tion algorithm considering the client’s channel condition and
profile (e.g., buffer level, network capacity and etc.).

Similarly, we have also tested the same experiment with
the DASH protocol for comparison. We used the most recent
client player (DASH.js [35]) and publicly available DASH
test streams [34]. In DASH configuration, the available video
bitrates are 0.35, 0.6, 1, 2 and 3 Mbps1 and the ping latency
from the client to the DASH stream server is ∼62 msec which
is similar to that of HLS-remote.

Bitrate selection. In Fig. 3, we present the selected video
bitrates of two adaptive bitrate streaming solutions, HLS
and DASH, along with available network capacity bandwidth
between AP and the client (black solid line). We notice that
the HLS (HLS-remote and HLS-edge) conservatively under-
utilizes available bandwidth, and hence the user experiences a
lower video quality. That quality could have been improved,
given that network bandwidth is much higher than the selected
bitrates. This observation clearly corroborates findings from
prior studies that compare the performance of several adaptive
HTTP streaming players [15], [3]. Perhaps one might argue

1The tested DASH stream only provides five different bitrates. The media
provider generally prepares a small number of bitrates for adaptive bitrate
streaming for several reasons (storage, cost, efficiency, policy and etc.)

Bandwidth utilization
HLS-remote 39.7%
DASH 30.6%
HLS-edge 56%

TABLE I
BOTH HLS AND DASH SIGNIFICANTLY UNDER-UTILIZE AVAILABLE

BANDWIDTH, HOWEVER EDGE-BASED STREAMING COULD IMPROVE THE
BANDWIDTH UTILIZATION.

that the client selects lower bitrates due to the unavailability
of other bitrates, however, this might not be true. For instance,
the client could have picked a video segment of 1.5 or 2 Mbps
bitrate during 120-150 seconds while the available bandwidth
is around 2.1 Mbps, however, 0.5 and 1 Mbps was the highest
bitrate that was actually selected by HLS-remote and the HLS-
edge, respectively.

In contrast, DASH aggressively selects a higher bitrate (3
Mbps) at the beginning, even though the channel bandwidth
(2.1 Mbps) is not capable of downloading such segments.
This causes a freeze of significant duration during playback
(we will elaborate in the next subsection). After aggressive
selection, DASH switched to the lowest bitrates (0.35 Mbps)
regardless of channel changes. Both HLS and DASH were not
able to incorporate accurate bandwidth estimation, therefore,
their adaptation decisions are either too conservative (HLS) or
too aggressive (DASH).

One interesting observation is that selected bitrates are
higher when the client receives video segments from the media
server connected to AP (HLS-edge) than they are from the
remote server (HLS-remote). Note that HLS-edge, however,
still under-utilizes the available bandwidth. Higher bitrates
could be beneficial for users since they could provide better
streaming service. There are many network factors that have
an impact on the quality of video streaming service. For
example, high bandwidth and low network latency are required
to provide satisfactory service (e.g., no stalls, no glitches) to
users. In this sense, there are two advantages of deploying
video streaming service near the AP; (i) it can reduce the
latency by providing service close to the user and (ii) it is agile
to network changes since it can instantaneously incorporate
client feedback (wireless channel condition). The performance
of video streaming over wireless could be improved when it
is serviced from the vicinity of the AP for the above reasons.

Bandwidth utilization. The bandwidth utilization can be
inferred by selected video bitrates and the time duration of
video segments. In other words, the area of bitrate plotted in
Fig. 3 corresponds to the bandwidth utilization for each adap-
tive scheme. We obtained the average bandwidth utilization
of HLS-remote, HLS-edge, and DASH by repeating ten runs
with the same condition and summarized these results in Table
I. It can be seen that both HLS and DASH only use less than
60% of the total network capacity. Again, we confirm that
the cloudlet improves HLS’s performance by 41% in terms of
bandwidth utilization. We can see that the selection of lower
bitrate in turn leads to the under-utilization of given network
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Fig. 4. Inaccurate bitrate selection leads to frequent stalls and rebuffering.
The client player freezes at 36.5-39.2 and 66.3-81.8 seconds due to the buffer
depletion (marked in the red circles).

capacity.
Thus, carefully selected video bitrates are indeed important

to maximize the bandwidth utilization and to provide higher
streaming quality to the users. In addition, providing video
streaming at the wireless edge (AP) could also help to improve
the quality of video streaming.

B. Rebuffering and Stall
Here, we focus on how bitrate selection affects video quality

with respect to video freezes and rebuffering time. The client
player utilizes the buffer for storing video frames ahead of
time in order to prevent stalls due to unexpected networking
malfunctions. Besides the network capacity, the player’s buffer
occupancy is one of the factors for adaptively determining the
bitrates of video segments when downloading. For example,
when the player’s buffer level is above threshold, then the
client picks higher bitrates to enhance the video quality,
whereas when the buffer is low, the client selects lower bitrates
to fill the buffer again. However, if the bitrate decision is not
carefully managed based on buffer occupancy, then it could
lead to unpleasant results such as frequent stalls and long
rebuffering times.

Rebuffering. In this set of experiments, we used the same
HLS remote server and controlled the wireless capacity at the
AP in the same manner as described in the subsection III-A to
trigger rate adaptations in the client. During the experiments,
we measured the instantaneous buffer level at the client player
and its bitrate decisions. Fig. 4 presents one particular example
of both buffer level (in terms of seconds) and selected bitrate
while streaming video on the client (we have observed the
same behavior from other experiments and presented one
of them for the sake of brevity). We have observed two
buffer depletions from 36.5 to 39.2 and from 66.3 to 81.8
seconds as marked in circles. During these periods, the client
player stalled and rebuffered for about 2.7 and 14.5 seconds,
respectively. The main reason that the player stalled comes
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Fig. 5. DASH aggressively selects higher bitrates and eventually this causes
significant stalls, 14.6-42 seconds.

from the fact that the client selected inaccurate (too high)
bitrates. Specifically, we can see that the buffer level decreases
from 25 to 36.5 seconds, whereas the selected bitrate jumps
from 1 to 1.5 Mbps. The aggressively selected bitrate depleted
the buffer and eventually led to stall. In consequence, the client
lowered the bitrate from 1.5 to 0.5 Mbps at around 40 seconds,
and thus filled up the buffer again. This late switching is
due to the inappropriate decision of the adaptive algorithm;
an algorithm that is based on a mixture of buffer occupancy
and inaccurate channel estimation. Note that the client could
have avoided such stall and rebuffering by selecting the lower
bitrate (e.g., 1, 0.8 or 0.5 Mbps) earlier instead of selecting 1.5
Mbps. We observed the same behavior during the second stall
at around 60-81 seconds. The sudden bandwidth changes in the
middle of downloading video segment could trigger the client
to switch to a different version of segment. This also leads
to buffer depletion because the partially downloaded segment
cannot be used.

Similarly, we have run the same experiment with the DASH
client and server. We present the buffer occupancy and chosen
bitrates in Fig. 5. Notice that DASH’s adaptation algorithm
is more aggressive than that of HLS; it immediately tried the
highest bitrate (3 Mbps) at the beginning (at 8 seconds) even
if the bandwidth (2.1 Mbps) was lower than that bitrate. This
decision made the player freeze for almost 30 seconds (marked
in the red circle) until 42 seconds when the buffer replenished
enough to play again.

Stall. We also present the average number of stalls and
their duration as obtained from 10 runs under the same
configuration in Table II. Even with different settings, e.g.,
different downlink capacity and bitrates of segments, we were
able to find the same conclusion. The frequent stalls and the
rebuffering time immediately impact the quality of streaming
service and user engagements [19]. This result shows that the
inaccurate bitrate adaptation used in HLS and DASH does not
work well in a highly variable network, and could therefore
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Number Rebuffering Buffering
of stalls duration ratio

HLS-remote 1.3 13.7 sec 9.1%
DASH 1 25.7 sec 17.1%
HLS-edge 0 0 sec 0%

TABLE II
AVERAGE NUMBER OF STALLS, REBUFFERING DURATION AND BUFFERING

RATIO DURING MULTIPLE RUNS OF 150 SECONDS PLAYBACK.

hinder users from achieving the QoS requirement of streaming
video in their wireless networks. The HLS-edge does not
introduce stall or rebuffering. However, it is not able to utilize
bandwidth efficiently while selecting for lower bitrates. Again,
better bitrate adaptation logic and carefully selected bitrates
based on accurate channel estimation could prevent video stalls
and hence enhance QoE.

This in turn motivates us to design a channel-aware bitrate
decision approach that does not incur stalls or freezes. We also
consider the edge-based system for streaming service given the
benefits of the cloudlet in wireless networks.

C. Motivating Video Transcoding at the Wireless Edge
The inefficiency of current bitrate adaptive solutions as

discussed and shown in the previous two subsections (III-A
and III-B) motivates us to design a new approach for streaming
video. Several inferences from our experiment results are
summarized as follows: (i) bitrate adaptive algorithms imple-
mented on HLS and DASH are not as efficient at adapting
to the network changes, given that selected bitrates are not
optimal, (ii) the number of video bitrates of pre-processed
segments are not sufficient to handle the network dynamics,
and (iii) bitrate adaptation does not work well in the wireless
environment, especially where the last hop to a client is
wireless. Regarding the first inference, one of the reasons
that bitrate decisions are not optimal is due to the inaccurate
channel estimation and subsequent reactions based on that
estimation. There are several approaches to improve the adap-
tation algorithm, however, they have focused on application
layer solutions (e.g., accurate channel estimation and better
adaptation algorithm) which do not involve changes to the
media source itself. Second, it is challenging to pre-process
and store numerous bitrates of segments for providing fine-
grained bitrate adaptation because of the fact that there are
many video codecs and platforms of diverse users, and pre-
processing requires additional storage for outputs. A limited
choice of bitrates frequently causes under-utilization of net-
work capacity, and this leads to lower quality of streaming
service. It is hard to pre-process live media sources (e.g.,
sports games, news, and teleconferences) in real-time, thus
pre-processing is limited to certain purposes such as video on
demand. Third, the cloudlet or edge-based system would be
beneficial for video streaming service especially over wireless
networks since it could address low latency requirement and
quickly incorporate high variations of wireless network.

These inferences motivate us to design a channel-aware
transcoding solution that directly modifies the media source

on-the-fly instead of providing multi bitrates. We propose
TransPi, a video transcoding system running at the wireless
edge that enhances user experience with the video streaming
while providing seamless streaming service to the user in
a varying wireless environment accounting for the user’s
profile. Considering the difficulty of storing multiple versions
of the same video with various bitrates in a media server,
we leverage a video transcoding scheme that generates a
single stream whose bitrate is instantaneously determined.
Instead of adapting within given bitrates of segments, TransPi
transcodes the original source to the most appropriate bi-
trates and provides streaming service. It thereby eliminates
inefficient bitrate adaptations for the client. TransPi takes
a channel-aware approach for determining the bitrates of a
transcoded stream (details in Section IV). Unlike HLS or
DASH, TransPi adaptively switches the video bitrates while
receiving instantaneous client’s bandwidth feedback from the
AP, therefore it is more agile to network changes. Knowing the
benefits of cloudlet architecture for video streaming service,
we deploy our transcoding solution at the wireless edge where
it can monitor the client’s profile from the nearest vantage
point in order to maximize the QoS. In addition, having the
video transcoding solution at the wireless edge provides more
affordability to the end user and allows speedy deployment
in existing systems. Since TransPi changes the media source
directly, it does not require additional storage for hosting
various bitrates of segments.

IV. SYSTEM DESIGN AND IMPLEMENTATION

A. System Overview

Our system consists of four components; media source
(DATN), video transcoder on Raspberry Pi (RPi) [21], band-
width monitor running on AP and client’s video player as
depicted in Fig. 6. The basic operations of system are as
follows:

1. On the client’s video player, the client selects a channel
to watch. This will trigger the transcoding process by
sending a channel request to the video transcoder on RPi.

2. The bandwidth monitor running on AP periodically (100
msec) sends the client’s information (e.g., downlink band-
width) to the encoder on RPi. This information is used
for determining transcoding parameters instantaneously.

3. The video transcoder fetches the requested TV stream
from the media source (DATN) and then decodes and
encodes the requested stream. While encoding, the video
transcoder adapts the video bitrates (once every one
second) for transcoding based on the received client’s
information.

4. The transcoded output segments are consistently deliv-
ered to the client over the TCP connection (between
transcoder and client player). The client then plays them
in real-time.

We describe the details of each procedure and their implemen-
tations in the following subsections.
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Fig. 6. TransPi interacts with the client to determine the parameters (e.g., bitrate) for video transcoding and provides seamless streaming service in real-time.
TransPi switches the encoding bitrate according to changes in the network.

B. Video Transcoding

Four entities are involved in the video transcoding.
DATN, live media source. The University of Wisconsin-

Madison campus network provides the IP-based Digital Aca-
demic Television Network (DATN) service in the area of
campus dormitories and University housing so that users are
able to access TV streams with their mobile devices or com-
puters [20]. DATN is a TV network that carries 27 channels
(e.g., CNN, NBC and ABC running 24/7) operated by the
University. However, due to the scarce resources in wireless
capacity and the high volume of demand, users may experience
unsatisfactory video quality. To remedy this problem, we apply
our transcoding solution on DATN channels to enhance the
user experience. We make the incoming DATN TV streams to
have either HLS or DASH format to support various methods
in TransPi implementation, however other formats can be also
incorporated.

Raspberry Pi. We use Raspberry Pi for transcoding DATN
TV streams. The RPi is a low-cost, credit card sized com-
puter that includes a graphics processing unit (GPU) and
a hardware video decoder and encoder. The hardware de-
/encoder can support HD (1080p) video de-/encoding with
low power consumption (maximum 3.5W). The RPi provides
OpenMAX APIs [38] to access the video de-/encoder for the
video transcoding process. For instance, hardware de-/encoder
can improve the performance of transcoding process more than
4 times faster with 18 times less CPU utilization comparing
to the software-based video transcoding [14].2

The transcoding process is accelerated by the hardware
video de-/encoder on RPi. The open source project gst-omx
provides a wrapper of the OpenMAX API and can be used
with the GStreamer framework [36] to develop a video trans-

2Note that different hardware implementations lead to various performance
gain. We observed from our experiments that the performance gain would be
much higher with fine-tuning and optimization.

coding application on RPi. The hardware video de-/encoder
on RPi can transcode both 720p HD and one SD streams or
three SD streams simultaneously. Therefore, a single RPi can
provide independent transcoding service to multiple users (up
to three) at the same time. We build a RPi cluster consisting of
multiple RPis and a transcoding manager in order to support
a large number of users (details of PRi center can be found in
[41]). Note that, if multiple users share the same transcoded
stream, a single RPi can support more than three users. In a
typical home environment, one RPi is sufficient for providing
transcoding service.

Video transcoder. We have implemented a video transco-
der on RPi to utilize the hardware de-/encoder for video
transcoding in TransPi. We use GStreamer, an open source
multimedia framework, to develop our video transcoding
application running on RPi. In the GStreamer application,
different plugins are connected to form a pipeline to process
media data. For instance, the HLS demux plugin is used
to manage the connection with the HLS media server and
download video segments while the TS (Transport Stream)
demux plugin is used to separate video and audio data from
the video stream. GStreamer plugins for the hardware decoder
and encoder are then connected to transcode the video data.
After the transcoding process, the video data and audio data
are muxed again to generate the TS stream and then the client
downloads that TS stream over the TCP connection. Based on
basic functionality of GStreamer framework, we modified and
optimized plungins to realize our on-the-fly transcoder.

The transcoding procedure is described as follows. The
transcoder periodically receives the client’s profile (e.g., down-
link bandwidth) from the AP for determining the parameters
of video transcoding. The video transcoder running on RPi
first receives a TV channel request from the client and fetches
the TV stream from the DATN. At this stage, the incoming TV
stream is segmented (duration of one second). The transcoder
then decodes the segment and encodes it with the selected
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Algorithm 1 Bitrate decision for transcoding
1: Input: client’s profile
2: Output: transcoding bitrate for next video segment
3: bi: bitrate for client i, pi: client i’s bandwidth
4: for i ∈ [1 : |I|] do
5: if (pi > bi × (1 + α)) || (pi < bi × (1 − α)) then
6: bi = pi, si = pi
7: end if
8: end for
9: si: selected bitrate for client i

transcoding parameters (e.g., bitrate, profile, level, IDR in-
terval). While encoding, the video transcoder instantaneously
adapts the bitrates (once every second) based on the received
client’s information. The output of the transcoding process
is pipelined to the output queue in the transcoder, then the
transcoder converts it to a continuous video stream before it
is delivered to the client (we maintain the output queue size
of 400 msec in order to minimize the delay to the client). The
client receives the transcoded stream over the TCP connection
from the transcoder and plays it in real-time.

The embedded video decoder and encoder in RPi are highly
efficient for real-time video transcoding. The reason TransPi
is able to transcode live streaming in real-time is that it first
transcodes the incoming video segments immediately and then
concatenates transcoded outputs into a single stream. The
delay caused by the transcoding process is very minimal; there
is only about 400 msec delay for live TV streaming. TransPi
shows the feasibility of low latency, on-the-fly and real-time
transcoding service with live TV channels.

One problem of RPi’s video encoder is that it is designed
for real-time communication applications, therefore it is inad-
equate to support generating B-frames in H.264 format. As a
result, the compression ratio is limited, and hence it leads to
the degradation of video quality. We believe such issue does
not affect the performance of TransPi.

Channel-aware bitrate decision. Inaccurate channel es-
timation due to the significant channel variation in wireless
network lead to poor performance in adaptive streaming ser-
vice [23]. In TransPi, video transcoding parameters have a
great impact on video quality. For instance, bitrate selection
is critical for efficiently utilizing available bandwidth and
enhancing video quality. The AP passively monitors the wire-
less bandwidth of each client to determine video encoding
parameters. We use the commercial off-the-shelf AP and run
a python script on it to realize the bandwidth monitoring. In
TransPi, we use the client’s downlink bandwidth to decide the
bitrates of transcoding outputs. The downlink bandwidth for
each client is recorded every 100 msec and reported to the
encoder on RPi as depicted in Fig. 6. Based on the received
client’s profile, the video encoder runs the bitrate decision
algorithm as described in Algorithm 1 once every second.
We set α = 0.1 to switch the bitrate of encoding when
the network bandwidth changes more than 10% compared
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Fig. 7. TransPi’s channel-aware approach keeps the transcoding bitrates close
to the client’s downlink capacity, thus fully utilizes bandwidth. In contrast,
both the DASH and HLS-edge under-utilize the network capacity and cannot
adapt to the network changes.

to the previous configuration. We have tried other parameters
and bitrate selection algorithms, however their gains are not
significant considering complexity. Our goal is to enhance
the user experience (e.g., achieve higher bitrate and eliminate
stalls and rebuffering) by providing the most appropriate video
bitrates according to downlink capacity, thus Algorithm 1 is
simple but effective for real-time video streaming.

C. Client Player

We tried multiple open-source video players (e.g., ffmpeg
and gstreamer) on clients for playback, which does not require
any modifications to play received transcoded stream. The
video player on the end user’s device initially creates a TCP
connection to the video transcoder on RPi and requests a
TV stream. The transcoded video segments are consistently
delivered to the client as a single, continuous stream and the
client plays them in real-time. Note that we only adapt the
HLS and DASH formats for playing video on the client player
without having their bitrate adaptation algorithm since TransPi
only provides a single stream at a time.

V. PERFORMANCE EVALUATION

We have shown the inefficiency of HLS/DASH streaming
solutions in section III. In this section, we present and compare
the performance of TransPi in the same network setting that
we evaluated HLS and DASH.

A. Micro-Benchmark

Bitrate and bandwidth utilization. To show how accu-
rately TransPi adapts bitrates for transcoding according to
the network changes, we present video bitrates of transcoded
output and network bandwidth in Fig. 7. We can clearly see
that the video bitrate is very close to the downlink capacity
while TransPi incorporates the client’s instantaneous channel
condition to determine the video bitrates of transcoding. We

136



Time (sec) Bandwidth Avg. bitrate Stdev.
0-30 2.1 Mbps 2.08 Mbps 0.08 Mbps
30-60 1.2 Mbps 1.19 Mbps 0.14 Mbps
60-90 0.5 Mbps 0.57 Mbps 0.07 Mbps
90-120 1.5 Mbps 1.43 Mbps 0.13 Mbps
120-150 2.1 Mbps 2.07 Mbps 0.13 Mbps

TABLE III
THE AVERAGE VIDEO BITRATE OF TRANSCODED OUTPUT IS VERY CLOSE
TO THE NETWORK CAPACITY AND STANDARD DEVIATION IS RELATIVELY

SMALL.

point out that the small variation of video bitrates of trans-
coded output is due to the behavior of the hardware video
encoder in RPi. This video encoder sets the range of video
bitrates during the encoding process instead of a constant
bitrate value. For this reason, even if the measured bandwidth
is stable (constant) and we set the video bitrates to constant,
the video encoder is not able to set the output video bitrates
to constant. The variation of bitrate across I/P-frames in a
group of picture (GoP) inherently propagates to the bitrate
of transcoding. As a result, this introduces some inevitable
variations in output bitrates as shown in Fig. 7. We present the
average bitrate and standard deviation of the transcoded stream
in Table III. The averages of bitrates during each 30 second
period (with respect to the network changes) are very close
to that of the bandwidth and the standard deviations remain
relatively small3. TransPi spontaneously switches the bitrates,
however, this does not break (or interrupt) video playback
nor affect the user experience at all because the client player
seamlessly plays continuous video stream. There is no sudden
scene change or freeze during playback.

We also evaluate the bandwidth utilization of TransPi and
compare it to that of HLS and DASH. TransPi almost fully
utilizes the available network capacity while the bandwidth
utilization is 99%. We can tell from Fig. 7 that TransPi’s output
video bitrates are very close to downlink capacity. Compared
to HLS and DASH, TransPi improves the bandwidth utilization
by 150% and 224%, respectively, while TransPi has much
higher bitrates than HLS or DASH. These higher bitrates of
output stream can lead to higher video quality assuming the
same compression ratio of the video encoder.

Buffer. The size of the transcoder output buffer eventually
introduces some delay to real-time streaming while playing
on a video on the client side. We maintain the output queue
of the transcoder at 400 msec, which is not only enough for
compensating for sudden changes in the wireless network but
also sufficient for providing real-time streaming service to the
clients with minimal delay (eventually TransPi adds a 400
msec delay. We empirically set the output queue to 400 msec;
a lower threshold could cause stall and a higher value could
introduce a longer delay, 400 msec strikes a good balance).
In Fig. 8, we plot both the transcoder’s output queue and
the client’s input buffer during 120 second playback (while

3In this experiment, we switch the bandwidth for every 30 seconds, however
finer grained switch (e.g., 1 second) is also possible since our transcoding
solution adapts video bitrates every one second
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Fig. 8. The transcoder keeps the size of output queue to 400 msec to minimize
the delay. The client’s input buffer remains stable (30-50 Kbytes).

controlling bandwidth in the same manner). This shows that
TransPi constantly keeps the output buffer level close to 400
msec while the client’s buffer occupancy is slightly affected
by the network changes. There are small variations (50-100
msec) in the transcoder’s output buffer size; this is mainly
due to the variation of bitrates across the GoP. We present
the transcoder’s queue size in terms of second (in Fig. 8) to
highlight the minimal delay caused by the transcoder (i.e.,
400 msec), however it can be represented in KB, buffer size.
For instance, 300 and 400 msec correspond to 57 KB and 75
KB, respectively. The transcoder’s queue size is maintained on
average 67 KB during 120 second playback which is slightly
higher than the client’s buffer size.

The buffer size of the clients’s player also remains stable
(at between 30-50 KB) because the incoming data rate of
video segments is equals to the playback bitrate. The player
also can slightly adjust the playing speed according to the
buffer size without causing any noticeable difference to the
human eye; e.g., increase (decrease) the speed when the buffer
level is higher (lower) than the threshold. We can observe
that bandwidth changes do not affect the client’s buffer level.
The client’s buffer neither dries out nor overflows because of
that TransPi switches video bitrates according to the downlink
speed. Due to this, we do not observe either stall or rebuffering
time during playback.

The buffer size of the transcoder is related to the periodicity
of the bitrate decisions. TransPi makes a bitrate decision once
every second incorporating the client’s channel information.
One of the reasons for keeping a large buffer for current
state-of-the-art video players is to prevent stall and rebuffering
time due to network changes, however, this is not necessary in
TransPi because our channel-aware bitrate decision accounts
for unexpected network variations immediately. Moreover, a
larger buffer would increase the delay in real-time streaming
service, thus we keep the transcoder output queue low in
TransPi. We plan to investigate optimizing buffer management
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and the periodicity of bitrate decision for better operation in
our future work.

Fairness. Significant unfairness between clients has been
observed for bitrate adaptive streaming solutions when mul-
tiple clients share the network bandwidth [16]. Providing
bandwidth fairness is important to guarantee the QoS in multi-
client deployment. TransPi determines the bitrates for trans-
coding based on the client’s downlink capacity, thus selected
bitrates allocate the bandwidth for clients in the network. This
eventually ensures fair sharing of bandwidth across multiple
clients.

To evaluate the performance of TransPi under a competing
scenario, we repeat similar experiments with four clients. In
this setup, each client receives transcoded video streaming
from a dedicated transcoder (RPi) and shares downlink band-
width while associating with the same AP. Each transcoder
incorporates its client’s network bandwidth to decide the
output bitrates. To evaluate the fairness under multiple clients
deployment, we first set the downlink bandwidth in a symmet-
ric manner. Fig. 9 shows the selected bitrates of four clients
while applying network bandwidth changes configured to 20,
15, 10, 15 and 20 Mbps for 10 seconds each (the shared
bandwidth for each client is 5, 3.75, 2.5, 3.75 and 4 Mbps
during each time interval). We can clearly see that the selected
bitrates for each client remain same; four clients equally share
the available bandwidth, 1/n where n is the number of clients
in the network. This ratio of bitrates for clients remains the
same even when the network’s bandwidth changes. The sum
of selected bitrates for both clients equals to the network
capacity, thus TransPi efficiently utilizes bandwidth (utilization
is around 99%). In this experiment, we set the time interval
to 10 seconds to characterize the network dynamics, however
even smaller time interval (e.g., 1 second) is feasible, because
TransPi configures the transcoding bitrate every 1 second. We
omit the result for the sake of brevity.

Similarly, we control the downlink bandwidth in an asym-
metric manner; client 1 receives two times the downlink
bandwidth compared to other clients. We confirm that the ratio
of the selected bitrates for each client stays at 2:1:1:1 as we
configure the downlink bandwidth for four clients, and the
ratio remains same while the network’s bandwidth changes
(we omit the results for the sake of brevity). In this set of
experiments we have confirmed that both fair-sharing and
controlled configuration are feasible in TransPi by adapting
the bitrates for the clients in the network.

Providing higher video quality. Higher bitrate and effi-
cient network utilization could yield better video quality. In
addition, the Peak Signal-to-Noise Ratio (PSNR) is a standard
metric of video quality and is a function of the mean square
error between the original and received video frames. It is
one widely used metric for evaluating video quality. However,
PSNR calculation is not adequate to evaluate the adaptive
bitrate scenario because of the fact that PSNR is used to
measure the quality of reconstruction of lossy compression
codecs and capture the pixel losses. Due to this reason, the
PSNR value is not representative in evaluating the quality of
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Fig. 9. Regardless of the bandwidth changes in the network, the transcoding
bitrates for each client remain same. Four clients equally share the bandwidth.

adaptive streaming where the pixel difference between two
video streams with different resolution (or bitrates) is almost
negligible. PSNR difference is 1-2 dB when comparing the
streams of 0.5 Mbps to 2 Mbps bitrate. However, we have
experienced much higher video quality when watching higher
bitrate streaming of TransPi compared to lower bitrates of
HLS or DASH. For instance, 2.1 Mbps streaming of TransPi
provides better quality of service than 0.5 or 1 Mbps of HLS
or DASH at the first 30 seconds. The higher average bitrate
implies higher video quality and results in increased user
engagements [18]. In addition, no stall or rebuffering time
in TransPi also contributes to a better experience in real-time
streaming service.

B. Video Quality and User Experience
The quality of the original video is obviously higher than

the transcoded one, since transcoding downgrades the video
quality in terms of accuracy and resolution. There are many
evaluation metrics for gauging user experience of streaming
video, and video quality is one of them. However, higher
video quality does not always guarantee better user experience.
For example, even if the provided video quality is high,
frequent stalls and long buffering time could lead to lower
user engagement and satisfaction because several metrics are
interrelated. This eventually lowers the quality of service to
the users.

The authors in [19] observed that there is a non-monotonic
relationship between video quality and user engagement (e.g.,
higher average video bitrate does not always results in higher
user engagement). As shown in many previous researches
[19], [24], [25], user engagement and quality of experience
depend on many factors; video bitrate, rebuffing time, delay
at startup and bitrate switches. In addition, video streaming
service providers prefer to lower the quality of the video
delivered rather than cause an interruption in its playback.
The main purpose of utilizing video transcoding in this work
is to provide better streaming service to the user when the
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wireless network cannot provide successful transmission of
original video data on time. TransPi can enhance the user
experience by eliminating stalls, buffering and start time,
therefore compensating for some loss of video quality. In
addition, TransPi efficiently utilizes the available bandwidth by
instantaneously adapting bitrates of transcoded stream to the
wireless capacity, thus it can provide higher bitrates compared
to other bitrate adaptive streaming solutions.

C. Characteristics of TransPi
The transcoding solution implemented in TransPi is unique

in several ways. First, and most importantly, is that TransPi
leverages a hardware assisted transcoding solution and is com-
patible with both the HLS and DASH standards. It provides
seamless bitrate switching while transcoding video in fine time
granularity, which means that end users are not interrupted
during playback. It also utilizes available wireless bandwidth
more efficiently because the transcoded video bitrates are
determined by instantaneous bandwidth measurements. More-
over, the client does not need to wait until the whole video
has been transcoded since the transcoded output is immedi-
ately delivered to the client to support real-time streaming.
Unlike other transcoding systems (e.g., [4]), TransPi does not
require pre-processing or additional storage for the transcoded
video since TransPi provides an on-the-fly transcoding service.
TransPi takes the user’s profile instantaneously to determine
the bitrates for transcoding, thus it quickly adapts to the
user’s current network condition as opposed to other bitrate
adaptation solutions [2], [5] that only serve a limited choice
of pre-processed bitrates. In contrast to progressive downloads,
our streaming scheme barely fills up the buffer at the client,
and it thereby avoids the waste of network resources caused
by unviewed downloads.

Our transcoding solution can be applicable to other video
streaming applications and to online video streaming with
various formats. Since our transcoding system can transcode
live streaming video on-the-fly with very minimal delay, the
benefits can be maximized when TransPi is used with live
video, such as a broadcast sports game, breaking news, and
camera streaming. Recall that TransPi’s bitrate switches do not
break video playback and it provides seamless adaptation.

VI. RELATED WORK

Adaptive streaming. Adaptive bitrate streaming is a tech-
nique used in streaming video over HTTP where various ver-
sions of the source video are pre-encoded at different bitrates
[10]. Dynamic adaptive streaming over HTTP (DASH) helps
to maintain user perceived quality while adapting the video
quality based on the available network bandwidth. Several
measurement studies [3], [2] presented the in-efficient per-
formance problems of major players, e.g., Smooth streaming,
Netflix, and Adobe HTTP Dynamic Streaming. They show
that none of these players is good enough; they are either too
conservative or too aggressive and hence they do not efficiently
adapt to the network variations. The authors in [23] show
the difficulty of accurately estimating capacity and propose a

rate adaptation algorithm based on the instantaneous playback
buffer at the client.

Several papers [15], [16] analyze the clients behavior with
respect to efficiency, fairness and stability when multiple
clients are in the same network contention domain. Inaccurate
bandwidth measurements caused by the temporal overlap of
downloading chunk causes under/over-estimation of under-
lying bandwidth and results in incorrect bitrate selections.
The authors in [16] present a guideline for designing better
scheduling and bitrate selection logics in the client player,
however, such design requires significant modifications to the
client and hence hinders broad deployments. Similarly, we
have observed in-efficiency of the rate adaptation mechanism
implemented on HLS and DASH. As described, there are
many performance issues on widely used adaptive streaming
solutions, thus work in [37] proposed two rate adaptation
algorithms of serial and parallel fetching methods for DASH.
The main difference from such works is our system involves
changing the media source itself through video transcoding
instead of having better adaptations. Odyssey [42] proposed
a general application-aware adaptation framework for mobile
devices. The proposed solution is very similar to our system.
Rather than running the adaptation on a mobile device, we
propose to deploy the transcoding solution at the wireless edge
(e.g., WiFi AP) that is close (just one hop) to the mobile
devices.

Video transcoding. Much of recent research on video
transcoding has been in the context of cloud platforms [8], [4].
The authors in [8] proposed a cloud-based proxy for delivering
high quality transcoded videos while allowing adaptation to
network dynamics. They built a framework for parallelizing
multi-level transcoding and showed the efficacy of their system
on a cloud testbed. Li et al. [4] presented cloud transcoder
which takes user-specified parameters and transcodes videos
to various formats (e.g., bitrate, resolution and codec) to the
user. They store all transcoded videos and their metadata,
and leverage cloud cache for reusing the transcoded video
in case other users request the same video again. Cloud
transcoder requires additional storage in the cloud for saving
such transcoded videos for future usages. In contrast, TransPi
does not require storage for transcoded video since it handles
transcoding on-the-fly and directly delivers streaming video to
the end user. In addition, we can minimize the network latency
by deploying our transcoding solution near the WiFi AP.

Edge computing. Mobile cloud computing (MCC) has
become a promising technology for mobile services while
establishing a cloud infrastructure featured with vast compu-
tational resources and power [26], [30]. The authors in [28]
proposed the concept of cloudlets to handle the high latency
between the client and the resources in the cloud. Researches
in [32], [33] showed the importance and benefits of offload-
ing computation to nearby cloudlets for resource intensive
applications. Fesehaye et al. [31] evaluated the performance
of applications exploiting nearby resources in the cloudlet and
showed that cloudlet service outperforms that of typical cloud-
based approach. Especially, edge computing could reduce
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transfer latency and increase throughput for interactive mobile
cloud applications such as video streaming, file editing and
chatting [31].

Hardware video encoding. Video encoding is a computa-
tionally intensive task for general purpose processors. Hameed
et al. have shown that ASIC implementation of H.264 encoder
could improve power efficiency up to 500× compared to the
software-based implementation running on general purpose
processors[40]. In spite of the power efficiency, hardware
video encoder is not flexible. Video encoders on FPGA strikes
a good balance between them, in terms of efficiency and
flexibility.

VII. DISCUSSION

Performance. We have implemented our hardware-assisted
video transcoding solution using a commercial off-the-shelf
device, Raspberry Pi (RPi). The performance of hardware
transcoding clearly outperforms the software-based solution.
However, a single RPi can handle a very limited number of
video transcoding processes in parallel due to the limitation of
its GPU and a hardware decoder and encoder. For example, the
video decoder and encoder in RPi can transcode one 720p HD
(high definition) and one SD (standard definition) streams or
three SD streams simultaneously. Such a hardware limitation
requires multiple RPis in order to support a large number of
users at the same time. To overcome such scalability issue,
we build an RPi cluster (a rack of RPis) and transcoding
manager which manages multiple RPi for transcoding various
DATN TV channels and supports numerous users simultane-
ously (having tens of RPi is still cheaper than one dedicated
transcoding server). We parallelize the multiple transcoding
processes to support various requests from multiple users. The
RPi cluster can provide video transcoding service to hundreds
of users concurrently.

As described in Section IV, we have optimized the GSt-
reamer pipelines for efficient video transcoding, but there are
certain limitations that our software implementation cannot
Overcome. We are in the middle of the process for integrating
our video transcoding solution into the AP which has a
powerful graphics processor unit (GPU).

Caching. TransPi provides video transcoding service on-
the-fly and does not store transcoded video for future usage.
Reusing transcoded video streams could be economical, given
that the transcoding process requires high computational power
and resource. For example, popular video clips on YouTube
that have many views could be reused after transcoding.
Incorporating transcoded videos with cloudlet storage, we can
integrate the caching scheme to reduce the workload on the
transcoder server and increase the reusability of transcoded
videos. The amount of data traffic traversing the core network
can be reduced by deploying caches at the network edge.
Moreover, latency will also be reduced with the optimized
caching mechanism.

Limitations. We have shown the design of TransPi and
present its performance improvement comparing with other

bitrate adaptive solutions, however, there are still some lim-
itations. i) TransPi provides the best performance when the
last hop wireless link is the bottleneck in the network because
of the fact that it instantaneously incorporate client’s channel
feedback for quick adaptation. In practice, we can easily
find such use cases, e.g., public WiFi networks, cellular
networks, home networks with channel quality issues due to
high variation and wireless interference caused by microwaves,
Bluetooth devices, walls, etc.. However, if the link between the
transcoder and source is the bottleneck, e.g., home network
has a relatively slow speed for its broadband link while the
WiFi AP supports faster protocol (802.11ac), then TransPi
no longer provides the same performance improvement in its
current form because TransPi focuses on the wireless edge.
ii) We build a RPi cluster to overcome a scalability issue,
however the problem still remains. Specifically, TransPi works
best when there are smaller number of users compared to
the number of streams. However, if the number of users
exceeds the number of streams (e.g., many users watch same
video), then there is a point where per-user transcoding (our
solution) starts to become expensive even with a RPi cluster.
In this case, transcoding to multiple rates and reusing them
across users may be a cost-effective solution instead of user
specific transcoding. We plan to address above-mentioned two
limitations in our future work.

VIII. CONCLUSIONS

We present the design, implementation and evaluation of
TransPi for enhancing the performance of video streaming
service to wireless users. TransPi leverages a cost-effective
video transcoding solution on a low-cost hardware, Raspberry
Pi, running at the wireless edge where it provides agile
bitrate switches in response to network changes. We have
demonstrated its superiority over bitrate adaptive streaming
approaches through experiments in various wireless envi-
ronments. TransPi provides quick bitrate adaptation under
unstable wireless conditions and efficiently utilizes available
bandwidth. It is also capable of transcoding live streaming, on-
the-fly, with minimal delay. Our solution is transparent, low-
cost, and scalable, thus it allows broad and quick deployment
in home WiFi AP or cellular base-station.
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