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ABSTRACT
With the popularity of Massively Multiplayer Online Games
(MMOGs) and Virtual Reality (VR) technologies, VR-MMOGs
are developing quickly, demanding ever faster gaming in-
teractions and image rendering. In this paper, we identify
three main challenges of VR-MMOGs: (1)a stringent latency
requirement for frequent local view change responses, (2)
a high bandwidth requirement for constant refreshing, and
(3)a large scale requirement for a large number of simulta-
neous players. Understanding that a cloud-centric gaming
architecture may struggle to deliver the latency/bandwidth
requirements, the game development community is attempt-
ing to leverage edge cloud computing. However, one problem
remains unsolved: how to distribute the work among the
user device, the edge clouds, and the center cloud to meet
all three requirements especially when users are mobile.
In this paper, we propose a hybrid gaming architecture

that achieves clever work distribution. It places local view
change updates on edge clouds for immediate responses,
frame rendering on edge clouds for high bandwidth, and
global game state updates on the center cloud for user scala-
bility. In addition, we propose an e�cient service placement
algorithm based on a Markov decision process. This algo-
rithm dynamically places a user’s gaming service on edge
clouds while the user moves through di�erent access points.
It also co-places multiple users to facilitate game world shar-
ing and reduce the overall migration overhead. We derive
optimal solutions and devise e�cient heuristic approaches.
We also study di�erent algorithm implementations to speed
up the runtime. Through detailed simulation studies, we
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validate our placement algorithms and also show that our
architecture has the potential to meet all three requirements
of VR-MMOGs.
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1 INTRODUCTION
The rapid rise ofMassivelyMultiplayer Online Games (MMOGs)
calls for gaming platforms that support ultra low latency and
intensive 3D world rendering [1]. With emerging Virtual
Reality (VR) technologies (e.g., HTC Vive, Oculus, Google
Cardboard), VR based MMOGs, i.e., VR-MMOGs, are loom-
ing on the horizon, demanding even faster gaming interac-
tion and image rendering. In addition, VR-MMOGs place a
new set of requirements on the underlying system design
due to a union of VR and MMOGs: 1) the need to simulta-
neously render two images with di�erent perspectives for
both eyes, 2) the need to support wider angles of visual
�eld (120° compared to 60° in normal games), 3) the need to
provide ultra-low latency that prevents people from having
motion sickness (<30ms compared to 100–1000ms in normal
games), and 4) the need to render with a higher refresh rate
(60–120 frames per second (fps), compared to 24–60fps in
normal games).
Meanwhile, to enable players with “thin” mobile devices

(e.g., smartphones, pads, TVs) to enjoy high-quality gam-
ing, game creators have proposed and developed a cloud
gaming paradigm (also known as gaming on-demand [1])
that delivers games to players from the cloud. GeForce NOW
(for Nvidia Shield clients [2]), PlayStation NOW [3], Gaming-
Anywhere [4], as the industrial pioneers of cloud gaming, are
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drawing substantial numbers of players from traditional gam-
ing to this cloud-based paradigm [5]. These cloud gaming
services perform game logic computation on cloud servers
and stream encoded views over the Internet to apps on het-
erogeneous mobile devices. Cloud gaming allows users to
access games anywhere via mobile devices without periodi-
cally upgrading their hardware to satisfy the ever increas-
ing hardware demands. It also signi�cantly reduces the en-
ergy consumption incurred by heavyweight rendering tasks
on mobile devices. Finally, high resolution frames that are
cumbersome, if not impossible, to generate locally can be
streamed from the cloud.

While cloud gaming can provide a multitude of bene�ts to
players, its service providers face a set of serious challenges
to ensure quality of service (QoS). The �rst and foremost
challenge stems from the latency between cloud servers and
players. Responses that are not fast enough in VR gaming
can result in dissatisfying game experiences and contribute
to player motion sickness. According to [6], ⇠20ms is an ac-
ceptable end-to-end latency for such applications. A latency
of 50ms can still support responsive services but with notice-
able lagging. Unfortunately, the average network latency in
today’s Internet between the Amazon EC2 cloud and mobile
devices is more than 80ms [1], which exceeds the tolerable
latency level even without performing any computations.
The second challenge is the high bandwidth demand of

MMOGs – they generally require a bandwidth of 100Mbps to
stream VR games with 1080p resolution at 60 fps [7], while
the wireless Internet bandwidth available to a mobile de-
vice is 2Mbps [8]. Network jitters cause decreased refreshing
rates and increased packet delays, both of which worsen user
experience. Moreover, users with mobile devices are more
inclined to move around compared to those connected to
�xed hosts, and some may even play while sitting in cars
or trains. The disconnections caused by changing network
access points can also lead to deteriorated gaming perfor-
mance.

Edge cloud computing [8–10] moves cloud services closer
to the users. It has the potential to bring down unacceptable
network delays and to provide high downlink bandwidth
while taking advantage of high performance computing re-
sources. VR-MMOGs can leverage edge cloud computing to
meet their QoS requirements [11], but simply moving all the
gaming tasks to the edge makes it harder for players to share
games across the network since it is di�cult to synchronize
users’ pro�les and game worlds among widely distributed
edge clouds.
To address the challenges, we take a closer look at the

game �ows in VR-MMOGs and discover that player-initiated
events can generally be classi�ed into two categories based
on the tolerance levels of response latency. The response to
the user’s local view change events (which has e�ect only on

his/her screen, e.g., mouse movements, map scrolls, selec-
tion of a game object without changing it) has much more
stringent timeliness requirements compared to the response
to the game events (which involves global game state up-
dates, e.g., updated scores, bleeding on shot targets). In VR-
MMOGs, view change events occur much more frequently
than in non-VR-MMOGs because the orientation of the VR
device constantly changes and requires immediate (⇠20ms)
feedback on the screen. In game events, on the other hand,
players can tolerate more than 100ms latency, and in some
games this value can be as large as 1 second [6].

Based on the fundamental di�erences between view change
and game events, we believe that they should be treated
di�erently in order to provide the best VR-MMOG user ex-
perience. In this paper, we propose EC+ , an architecture
for Edge Cloud augmented VR-MMOGs. EC+ exploits edge
clouds in view change event rendering to satisfy the ultra
low delay requirement. This rendering on edge clouds can
also provide a higher resolution and refresh rate compared to
rendering on mobile devices because edge clouds have more
computation power. For game events, on the other hand,
EC+ uses a central cloud to manage global game and game
logic. This provides wide coverage with minimal overhead
in maintaining game state consistency.
In addition to proposing the EC+ architecture, we also

devise an e�cient algorithm that selects an edge cloud for
each player in order to handle player mobility and dynamic
edge cloud workload. Modeled upon a Markov decision pro-
cess (MDP), the proposed algorithm periodically makes edge
cloud placement decisions, taking into consideration the
overall QoS (the latency and bandwidth between client and
edge, and between edge and game server), mutual impact
among players (e.g., edge load, game world sharing), and
player mobility patterns. To ensure feasibility, we come up
with an approach that reduces the algorithm complexity in
both storage and execution time. We also design a mech-
anism to ensure seamless hando� when a gaming service
migrates from one edge cloud to another.

We summarize our contributions below:
• A study of the new requirements of VR-MMOGs and ex-
planation of how client-centric and cloud gaming fall short
in ful�lling these requirements (§3);

• A hybrid architecture design that leverages both edge and
central clouds to satisfy the latency and throughput re-
quirements of VR-MMOGs (§4);

• A general edge cloud placement algorithm which maxi-
mizes game performance for a large number of players
with di�erent bandwidth, latencies, edge loads, and game
world sharing scenarios (§5); and

• A comprehensive evaluation using both synthetic and real-
world topologies to quantify the bene�t of the proposed
architecture and algorithm (§6).
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2 RELATEDWORK
We �rst present the background of (VR-)MMOGs and then
review the existing solutions that could potentially support
VR-MMOGS, namely, cloud centric gaming and edge cloud
assisted gaming.

2.1 Massively Multiplayer Online Gaming
Meets Virtual Reality

Virtual reality (VR) has been supported bymultiple industrial
products like PlayStation.VR [3], HTC Vive [12], Oculus [6],
Google Cardboard [13]. VR devices extract players’ sensory
(e.g., eyes and ears) information and accordingly “hijack”
the natural stimulation with the arti�cial stimulation from
a virtual world generator [14]. VR technology remarkably
hands a highly immersive experience with substantial depth
perceptions. Playing MMOGs through VR devices is the nat-
ural next step [15]. In fact, the VR versions of several pop-
ular MMOGs have been developed, e.g.World of Warcraft,
Minecraft Multiplayer, and Grand Theft Auto V Online [16].

As much as VR-MMOGs generate excitement in the gam-
ing community, it also poses the unprecedented demands
and the challenges, especially with respect to providing ultra
low latency and a high refresh rate, on the underlying sys-
tem design. This paper aims to design an architecture that is
carefully tuned to satisfy these demands.

2.2 Supporting Gaming through Cloud
Many cloud gaming solutions [2–4, 17, 18] have been pro-
posed to reduce the computation and/or storage require-
ments on game terminals. These solutions can be broadly
classi�ed into two categories: �le-streaming games and video-
streaming games. In �le-streaming gaming (i.e., progressive
downloading), a small portion of the game is initially down-
loaded to a user device. While this portion runs, the rest of
game can be downloaded and installed in parallel [17, 18].
While it is true that �le-streaming games can reduce the
game boot time and the storage required on game devices, it
still requires devices to process game logic and perform 3D
rendering. Therefore, it is di�cult to support VR-MMOGs
on mobile devices like Google cardboard.
Video-streaming games, on the other hand, place all the

processing in a cloud, including user pro�le management,
game update calculation, game frame rendering and encod-
ing, etc.The cloud then streams the encoded frames to players
over the Internet [2–4]. This mechanism enables players to
enjoy high-quality games even on the devices with limited
computing and power resources (e.g., smartphones, pads,
TVs) – the game terminals merely need to decode frames
just like watching a Youtube video. With the advent of GPU
grids [19], game processing has become more e�cient than
purely using CPU-based clouds.

Many studies have been conducted to further improve
the user experience of video-streaming games. In [20] video
games are classi�ed into CPU-consuming andmemory-consuming
types to increase the resource utilization in a cloud. Lee et
al. [21] use High E�ciency Video Coding (HEVC) to reduce
the bandwidth requirement by 59% without compromising
video quality. Solutions in [22, 23] reduce the response time
by predicting possible game updates and rendering specula-
tive frames ahead of time.

The main disadvantage of cloud gaming, however, involv-
ing both �le-streaming and video-streaming gaming, is the
need to transmit a large amount of data, either a game itself
or game frames, through the core network. Due to the mas-
sively multiplexing nature of the Internet design, the avail-
able bandwidth and latency between a cloud and a player
may change dramatically over time [24]. This often leads
to jitters, lags, frame drops or low-quality frames (glitches)
in the middle of a game, and resulting in a poor gaming
experience, especially for video-streaming games [25].

2.3 Edge Cloud Computing
Edge cloud (or fog computing [8–10]) moves computing
and storage closer to clients, promising to deliver shorter
latency and higher bandwidth. It can bene�t applications
which require high bandwidth, low latency but without large-
scale aggregation, e.g., preprocessing of surveillance camera
data [26], image classi�cation [27], smart tra�c light con-
trol [9], etc. Edge cloud computing also has the potential
to better serve (VR-)MMOGs, if carefully designed to solve
the challenge of large-scale aggregation ( i.e., game state
synchronization among all players).
Work in [28–30] proposes peer-to-peer (P2P) MMOGs

wherein the delegate of the players (game consoles or edge
cloud servers) form a P2P network to synchronize gaming
states shared among the players directly. This distributed
architecture incurs a large amount of synchronization over-
head and may potentially limit the number of concurrent
players in a game. To address these challenges, the authors
in [31] propose to move the rendering process from a cloud
to idle desktops which are close to clients. Indeed, this tech-
nique can reduce the network latency by 20% and reduce the
network tra�c volume by 90%. Nevertheless, any user events,
including those only need local updates, are dispatched to
the center cloud altogether. This solution performs well for
non-VR games because there aren’t many local update events
in these games. However, VR-MMOGs have a signi�cantly
larger number of such events, which makes this solution
ill-suited.
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Figure 1: A game view usually contains both view change updates
local to a player (e.g., change of look direction, immediate feedback
on action like �ring) and game world updates synchronized among
all players (e.g., monsters’ dying, non-player characters’ actions).

2.4 Service Migration Among Clouds
To satisfy speci�c application requirements, tasks have to
be initially placed on assigned machines of a cloud [32–34].
Later, the tasksmay bemigrated (reassigned) to underutilized
machines to meet particular optimization targets. Concern-
ing where to migrate, distinct migration strategies have been
proposed on the basis of expected optimal targets. Lim et
al. [35] propose a performance aware migration schema in
respond to dynamic server workloads. Ghribi et al. [36] inves-
tigate an energy e�cient scheduling to achieve signi�cant
energy savings. With respect to how to migrate, Douglis [37]
comes up with a process migration schema that moves a pro-
cess from a source machine to a destination machine, which
encounters the di�culty of separating a process from its op-
erating system. Clark et al. [38] design a live virtual machine
(VM) migration mechanism that e�ectively overcomes this
barrier. Yet, a core cost of VM migration is a short down-
time during which an application is compulsively paused.
The downtime changes among di�erent applications, rang-
ing from several milliseconds to several seconds [39]. To
reduce the downtime, Jin et al. [40] investigate a memory
compression approach and Ha et al. [41] study a pipelining
processing of VM migration .

3 A CLOSER LOOK AT VR-MMOGS
A VR-MMOG is essentially a large-scale event driven system.
Even though each VR-MMOG may have unique and com-
plicated game logic, they do have similar game events and
share an identical underlying game �ow. In this section, we
�rst study the new features and challenges of VR-MMOGs
and then present several existing MMOG models to help
understand why they fail to satisfy these new requirements.

3.1 View Change Events vs. Game Events
Any game �ow begins with a particular user event. When
playing a game, a player can trigger a user event through
external devices including mouse, keyboard, VR headset,
etc. Clicking a mouse at a certain point in a game world,
pressing a particular key, or changing the orientation of head
(while wearing a VR headset), for example, each entails a user
event. However, players have di�erent delay expectations on
di�erent kinds of events, and therefore a game architecture
should treat these events di�erently.
We realize that there are two fundamental types of user

events, namely, (local) view change events and (global) game
events. The �rst type of user events– view change events
– only causes transient changes to a user’s perspective, but
leaving his/her game world intact. For instance, a user event
of clicking a mouse at the location (153, 85) might be inter-
preted as selecting a troop from a player’s army. The chosen
soldiers will be highlighted on the player’s screen, but this
event is invisible to other players.
The second type of user events– game events – not only

causes changes to a player’s perspective, but also cause per-
manent updates to a player’s game world, which we refer
to as game events. In (VR-)MMOGs, such updates should be
synchronized among all the players who can see this game
event. For example, the same mouse click at (153, 85) might
be interpreted as “player A punches player B” or “player A
collects 100 golds from the ground”, both causing changes to
a game world and deemed as a game event. Since a same user
event can be interpreted di�erently based on a particular
game logic and a particular game world, MMOGs usually in-
clude a module to distinguish the type of user events before
sending them all the way to a game server.

As shown in Fig. 1, all user events, no matter which type,
will eventually be re�ected on a user interface. However,
players do have di�erent expectations on the feedback de-
lay. According to [6], players have di�erent tolerance levels
for game events, ranging from 100 milliseconds (e.g., �rst
person shooting games) to 1 second (e.g., real-time strategy
games). A number of studies have been conducted to reduce
the game event response latency by optimizing server sched-
uling [20], improving rendering algorithm and hardware [19]
and optimizing network dissemination [42].

Compared to game events, we �nd it counterintuitive that
players expect much shorter feedback delays for view change
events. Immediate local view updates lead to a smooth game
control and a seamless user experience. Here, the tolerable
latency varies from tens of milliseconds (e.g., orientation
changes in 3D games) to a couple of hundred milliseconds
(e.g., keystrokes). This latency is much more critical to video-
streaming games since a renderer resides much farther away
in a cloud rather than in a local GPU.
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Table 1: Comparison between event types in VR-MMOGs.

View change Game
Tolerable latency (ms) 20 100
Event size (bytes) 180 90

Frequency (events/sec) 95 5

The high frequency of such events of VR-MMOGs makes
matters even worse. We compare the features between view
change events and game events in Table 1 based on sev-
eral studies on games [6, 43–45]. With constant orienta-
tion changes in a VR-MMOG (view change events), such
changes usually require the feedback delay of less than 20ms
if possible [6], to ensure a pleasant user experience. Players
would experience dizziness when the latency increases be-
yond 50ms. This ultra-low latency makes it almost infeasible
for a central clouds to support VR video-streaming games as
the average latency between Amazon EC2 and clients is al-
ready above 80ms. The amount of orientation change events
is another challenge as games usually try to get accelerome-
ter and gyroscope readings more than 50 times/second, some
high-end devices like HTC VIVE can even reach 100. This
frequency is much higher compared to view change events.
Game events, estimated by game actions per minute (APM),
is usually around 50 and maximized at 300 with pro�cient
players [45].
Therefore, we believe that view change events should be

treated as “�rst-class citizens” and a gaming architecture
should be carefully designed to provide a better support for
these events in VR-MMOGs.

3.2 Overview of Existing MMOG
Architectures

We study the underlying communication and computation
models of the existing MMOG architectures to understand
why these solutions fall short in supporting VR-MMOGs. We
classify them into two categories: traditional client-centric
gaming and cloud-centric gaming, based on where render-
ing happens. While �le-streaming gaming also gets support
from a cloud, its game model is almost equal to client-centric
games as it requires a local powerful game consoles for ren-
dering. The �owcharts of the two game models are shown
in Fig. 2a and 2b.

3.2.1 Traditional Client-Centric Gaming.
A traditional gaming architecture performs most of the

tasks on the client side except the synchronization of a shared
game world. As shown in Fig. 2a, a game loop starts with a
capture of a user event (e.g., mouse click at (153, 85)). This
event is �rstly sent to a local game event calculator (step S1)
that detects whether it is a game event. In most games, a
game event also triggers a view change event (e.g., shooting

Table 2: Refresh rate (fps) comparison between mobile devices and
desktop machines in di�erent games .

Refresh rate (fps)
Game Resolution Desktop Mobile

StarCraft II
1024⇥768 380 55
1280⇥1024 136 13
1920⇥1080 119 5

GTA V
1024⇥768 168 10.8
1280⇥1024 161 <5
1920⇥1080 136 <5

�re in Fig. 1), and therefore, a view change rendering request
is sent to a render (step S20). If the event is a game event (e.g.,
player A punches B), this game event will be forwarded to a
game server (step S2).

Once receiving the game event at the server, a validation
module checks the validity of the event according to a game
logic (e.g., if A is allowed to punch B, if A is close enough
to reach B, etc). It will discard suspiciously cheating events
(possibly generated by a game bot) and stale events (caused
by network delays). A update calculator at the server then
computes the “consequences” (game updates, e.g., A gets 3
points, B retreats by 1 step and looses 20 blood) of each valid
game event and accordingly updates users’ pro�les. A user
pro�le usually consists of individual state information of
a game character (e.g., the current location, the experience
point and the skill level). To avoid transmitting too many
small game updates, the server usually accumulates game
updates for a small period of time and sends all the updates
in the period as a batch (step S3). The length of the period is
usually determined by the smallest frame interval among all
players (e.g., 33ms for 30fps clients). When all players share
a same synchronized game world, the same updates should
reach all of them, and therefore they can be sent via multicast
or broadcast to improve the e�ciency in dissemination.

A renderer on the client side usually renders a game world
periodically (30-60 frames per second) to re�ect outputs of
view change events (from S2) and game updates (from S3). In
most games, a renderer may generate frames even without
any updates to re�ect, for example, variations of luminous
intensity, �owing of water and/or moving of non-player
characters (NPC). Rendering projects geometry, viewpoint,
texture, lighting, and shading upon 3D skeletal objects in
a game world, and �nally outputs a game frame in a game
interface like screens or VR devices (step S4).
This architecture usually requires a game client to have

abundant CPU, GPU and RAM resources since rendering a
frame involves a large number of matrix multiplication and
�oating point operations. Thus, it is not friendly for players
who prefer to enjoy games with their mobile devices. For
example, an average desktop GPU like AMD Radeon HD



SEC ’17, October 12–14, 2017, San Jose / Silicon Valley, CA, USA W. Zhang et al.

Client B

Client C

Client A

Game Server

Core Network

User
pro�les

User event
(Click 153,85)

Game event
calculator

Game event
(A punches B)

GUI updates
(New frame)

Renderer

Game
world

Valid? Update
calculator

Game update (A.score+=3,
B.pos=(20,1),B.blood-=20)

S1

S2

S4

1kbps

Y

S3

5kbps

S2’

(a) Traditional gaming

Client B

Client C

User
pro�les

Client A

Game Server

Core Network

User event
(Click: 153,85)

User event
(Click: 153,85)

GUI updates
(New frame)

Decoder

Game event
calculator

Game event
(A punches B)

Valid? Update
calculator

Game update (A.score+=3,
B.pos=(20,1),B.blood-=20)

Renderer & encoder

New
frame A

New frames
B & C

Game
world

S5S1

2kbps

S2

Y

S3

S4

50Mbps 2⇥50Mbps

S2’

(b) Video streaming gaming

Client A
Client B

Client C

Game Server

User
pro�les

Edge A

Edge B

Edge Network

Core Network

User event
(Click: 153,85)

User event
(Click: 153,85)

GUI updates
(New frame)

Decoder

Game event
calculator

Game event
(A punches B)

New frame A

Renderer
& encoderGame

world

Valid? Update
calculator

Game update (A.score+=3,
B.pos=(20,1),B.blood-=20)

5kbps

S5S1

2kbps

S2

1kbps

Y

S3

S4

50Mbps 2⇥50Mbps

S2’

(c) Edge cloud augmented gaming

Figure 2: Comparison of Di�erent MMOG Architectures (red line: unicast, blue line: multicast).

7970M, can reach 380, 136 and 119 fps for StarCraft II at
resolutions 1024x768, 1280x1024 and 1920x1080 respectively.
However, the refresh rate on Intel HD Graphics Cherry Trail
(a GPU adopted on Microsoft Surface 3 tablets) can only
deliver 55, 13 and 5 fps with the same resolution (see Table 2).
It means that, if a player tries to play this game on aMicrosoft
Surface 3 tablet, he/she can only choose the resolution of
1024x768 or below. A same restriction can be found in most
popular MMOGs like GTA V, Minecraft, etc. Yet, to enjoy
an immersive VR gaming experience, players should not be
constrained by desktop machines and cables.

3.2.2 Cloud-Centric Video Streaming Gaming.
Cloud-centric video streaming gaming [2–4] signi�cantly

reduces the resource requirement on user devices. All ren-
dering tasks will be executed in a central cloud as shown
in Figure 2b. Speci�cally, a client device merely sends user
events directly to a cloud, and receives subsequent updated
frames. This video streaming gaming architecture promises
to enable players to enjoy MMOGs on mobile devices, while
several important challenges must be addressed to support
VR-MMOGs by this architecture.

Firstly, it is demanding for this architecture to satisfy the
ultra low latency requirement of VR-MMOGs. In particular,
a user may desire a view change rendering to be completed
within 20ms [6]. With latency of 50ms, VR games can still
respond to a user’s input, but with noticeable lagging, which
may lead to an undesirable user experience. Unfortunately,
the average network delay between Amazon EC2 and a mo-
bile device is around 80ms [1], which is much longer than
the preferred latency of view change events.

Secondly, it is also challenging for this architecture to sup-
port a high refreshing rate. VR-MMOGs generally require
bandwidth of 50Mbps to stream a video with a 1080p resolu-
tion at 60 fps, while the available bandwidth in the wireless
Internet to a mobile device is merely about 2Mbps [8]. In the
traditional gaming architecture, a game server only needs to
send game updates to clients, which can be multicasted to
minimize the network tra�c. In this architecture, however, a
game server needs to send distinct rendered frames to each
individual client. As a result, unicast is required in this sce-
nario. Everything considered, network bandwidth needed
in this architecture increases signi�cantly compared to the
traditional gaming architecture.

4 EC+: A VR-MMOG ARCHITECTURE
AUGMENTED BY EDGE CLOUDS

In the previous section, we discuss that traditional client-
centric gaming places heavy-weight rendering tasks on the
game client which essentially prevents users from playing
VR-MMOGs on mobile devices. Video-streaming gaming
intends to facilitate mobile devices but eventually fails to do
so due to slow responses and poor video quality. It is thus
desirable to leverage a third computing platform that has
su�cient resources while incurring short network latency
from and to the clients. We believe edge cloud computing is
a good candidate for the following reasons: 1) it has enough
computation power as the servers in edge clouds usually have
GPUs that are desktop-level or better, and 2) it is located in
the access network that is close to the users.
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Based on this understanding, we propose a new archi-
tecture, EC+, that cleverly distributes the work among the
central cloud and edge clouds. It has the following salient
features: 1) engaging edge clouds in managing view change
updating and rendering to achieve low latency and high
refreshing rate, 2) engaging the central cloud in managing
game state updating to support a large number of players
and minimize the overhead required to maintain consistent
game states, and 3) handling user mobility and edge-cloud
workload imbalance by performing dynamic gaming service
migration to provide continued performance.

4.1 Flow of Gaming in EC+
Below, we discuss the game �ow in the EC+ architecture
step by step, which is also shown in Figure 2c:
• User event forwarding on the client (S1): VR game devices
capture all user inputs and send them to a designated edge
cloud. We will discuss how to choose and dynamically
change the associated edge cloud for a user in § 5.

• Local view updating and rendering on the edge cloud (S2,
S20): When the edge cloud receives a user event, it passes
the event to a “game event calculator”, which performs two
tasks in parallel: (1) calculating local view updates, and (2)
determining whether a global game event is represented.
After task (1) is completed, the local view update request
is passed to a “renderer and encoder” which will then
perform image rendering and encoding. After task (2) is
completed and a global game event is needed, then the
game event is further passed on to a central cloud.

• Global game updating on the central cloud (S3): The game
server behaves similarly to that in traditional gaming.
When the game server on the central cloud receives the
game event, it calculates the updates that are caused by this
event, updates user pro�les accordingly, and then gener-
ates one or more update requests to all the players who are
involved in this game event. It then sends these requests to
the edge clouds that these players are currently connected
to. Similar to traditional games, the server here can also
take advantage of multicast in game update dissemination.

• Game world change rendering on the edge cloud (S4): The
edge cloud performs all the rendering, including local view
change rendering, gameworld change rendering, and back-
ground view refreshing rendering. The rendering perfor-
mance is critical to the overall performance of EC+. We
can leverage techniques such as the one proposed in [46]
that involves a scalable parallel rendering framework to
simultaneously render for multiple players who share a
same game world, which can greatly reduce the overall
rendering latency.
In summary, the proposed game �ow has the following

advantages. Firstly, bypassing the center cloud when dealing

with view change events (in step S20) can greatly shorten
their response latencies, making it possible to have imme-
diate local view updates. Secondly, by rendering frames on
edge clouds (in step S4), we can harness their low latency
and high bandwidth. Thirdly, the core network tra�c can be
largely reduced due to the adoption of edge clouds and the
possibility of multicasting game updates to users.

4.2 Edge Cloud Migration
When we try to place a player’s gaming service (including all
the components resided in an edge cloud) onto edge clouds,
selecting a suitable edge cloud becomes an important issue.
After an initial edge cloud selection, we also need to consider
the need of dynamically migrating the services to other edge
clouds as the workloads and user locations change. Specif-
ically, we note that service migration becomes necessary
when the player moves around while playing games and/or
the workload at each edge cloud changes over time.

In our framework, we consider the migration problem by
partitioning continuous time into discrete time slots with
equal length (say, 2 minutes). With the time partition, we can
simultaneously make the optimal migration decisions, upon
o�ine snapshots of the network/server states, for overall
clients in the network. In respond to dynamic network/server
states, any online solution, nevertheless, introduces the sig-
ni�cant computation overhead in highly frequent decision
making procedures. We have developed an e�cient algo-
rithm based on Markov Decision Process (MDP) to select
and migrate a player’s edge service, which we will discuss
in detail in § 5. However, unlike many of the service migra-
tion solutions which assumes an ignorable service transition
time, we acknowledge that it is impossible to migrate an edge
service from one edge to another instantly given the size of
a VR game world. Therefore, we propose a mechanism to
ensure a new edge cloud is activated when a player connects
to the new one.
To ensure a smooth transition between two edge clouds,

the key is the ability to render frames correctly for a player
connected to the destination edge cloud. A frame render-
ing process consists of a series of matrices operations on a
game world matrix, a view/perspective matrix as well as a
projection matrix, where the game world matrix represents
a collection of 3D game models with the particular spatial
relations, the view/perspective matrix transfers the relative
positions of 3D game models to �t a particular view perspec-
tive, and the projection matrix converts 3D positions of game
models into the homogeneous screen space. Service migra-
tion in EC+ mainly involves migrating a player’s game world
as the other matrices are ignorable in size and reproduced
easily.
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Here, we discuss the migration events of interest within a
time slot starting from � . We assume that a mobile user gets
the service from an edge cloud e at � .
• EC+ starts to make the migration decisions for all clients
in the network at the time � .

• At the time � + �1, EC+ �nishes the computations of the
decision making and determines to migrate the service of
this mobile user to the edge cloud e 0. e 0 will get a noti�-
cation so that it subscribes to the multicast group of this
game and start receiving all the game updates. The edge
cloud e starts to send a snapshot of the game world at the
time � + �1.

• At the time � +�2, e 0 successfully receives the game world
snapshot (taken at � + �1) and start to merge the game
updates received since � + �1.

• At the time � + �3, e 0 �nishes the merging, and it now has
the latest game world that is exactly same with the one
kept in e . Meanwhile, the e 0 continues to receive the game
updates and keeps the game world up-to-date.

• At the end of the time slot � , this mobile user connects to
e 0 and successfully gets the gaming service from this new
edge cloud. The previous edge cloud e will release all the
gaming resources if there is no other client connects to it.

With this mechanism, we can seamlessly complete service
migration in EC+ without any service down-times as long
as the time slot is larger than �3 for all the migrations.

5 EDGE CLOUD SELECTION ON USER
MOBILITY

We devise an algorithm to e�ciently determine where to
place and migrate an edge cloud service in the presence of
dynamic network states and server workload states, and
user mobility (initial edge cloud selection can also be gen-
eralized as a migration operation). In EC+, we model our
placement/migration algorithm as a Markov decision pro-
cess (MDP) [47] since a placement/migration decision is only
a�ected by a current state and user mobility. We realize that
several MDP-based selection approaches have been studied
in the literature [11, 48–51], but we notice that VR-MMOGs
impose new challenges, namely, the changing network sta-
tus over time, the mutual impact among players, and the
existence of an extra entity (central server) in the communi-
cation. In this section, we present our modi�ed edge selection
algorithm.

5.1 Modelling edge selection problem
using MDP

In our selection algorithm, we consider a total of M edge
clouds, and N access points through which mobile users
connect to the Internet. As we discussed in §4, we partition
continuous time into discrete time slots with equal length.

At a time slot � , a mobile user connects to an access point
n� 2 [1,N ] and receives a gaming service from an edge cloud
m� 2 [1,M]. We de�ne this as a state S� =m�n� . A player may
move and connect to a new access point at the end of a time
slot. Due to the user mobility and changing workloads on
the edges, we may need to migrate the gaming service to a
proper edge to satisfy the user’s QoS requirement. To achieve
this, an action a� upon the state, migrates the service from
the edge cloudm� tom�+1. The action a� is represented by
the location of a possible edge cloud m�+1, thereby a� 2
[1,M]. The new edge cloud atm�+1 is anticipated to have
the minimal network cost by considering the player’s any
possible locations (n�+1) in the next time slot. Note that while
we are calculating MDP at the time � , we assume that the
migration happens at � + 1, as we described in the previous
section. As a result, at the time slot �+1, the systemmay enter
a transit state: S�+1=m�+1n�+1, with the transition probability
p(S� ,a� , S�+1). We assume that the transition probability is
given as the known parameter of our algorithm as there
are many studies on mobility prediction including [52–54]
and our earlier work [55] that calculates the probabilities of
user movements based upon the aggregated network-level
statistics.

To determine the destination edge cloudm�+1, a cost func-
tionC(S� ,a� , S�+1) is de�ned to measure the overall network
transmission cost as well as the migration cost from a state
S� to a state S�+1, when we take an action a�� . We detail
this cost function in §5.2. Our objective is to �nd an optimal
action (a�� ) for each user in each time slot that minimizes
long-term cost. The long-term cost function is given by

V (S0) =
1’
�=0

� � ·
M⇥N’
S�+1=1

p(S� ,a�� , S�+1) ·C(S� ,a�� , S�+1), (1)

where � 2 [0, 1) is a discount factor that controls the impact
of future states on the long-term cost counted from the cur-
rent state. We convert the cumulative sum of the long-term
cost given by Equation 1 into a recursive de�nition:

V ⇤(S� ) = min
a�

{p(S� ,a� , S�+1) · [C(S� ,a� , S�+1) + � ·V ⇤(S�+1)]} ,
(2)

It is well known that the optimal action a�� =m�+1 2 [1,M]
for each state S� can be obtained by Bellman’s value itera-
tion [47] which iteratively update the equation 2 until the
value of V ⇤(S� ) is converged.

5.2 Game-speci�c Cost Function
While modeling the placement algorithm, we try to minimize
the “cost” of actions to provide the best game experience. We
believe that the cost function should take di�erent features
into consideration, including latency, bandwidth, etc.. Here,
in order to propose a general framework that can satisfy all
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kinds of VR-MMOGs, we do not mandate the application
requirements on di�erent features. Instead, we assume the
game provider can get their cost function based on the studies
in [56–59] and their policies.
In this section, we list a set of features that we have in

mind. They come in two categories: transition cost and trans-
mission cost. The transition cost is the cost incurred when
we migrate an edge service. As we already have a mecha-
nism to avoid application down-times, this cost is curtailed
to the bandwidth cost (i.e., the size of the game world). The
transmission cost is the cost to the communication between
an edge cloud and a player. This transmission cost can be
further categorized into two sub-types: cost without mutual
impact and cost withmutual impact. The cost withoutmutual
impact is merely measured by network latency, bandwidth
and server load, while the cost with mutual impact is addi-
tionally measured by a count of game world sharing (since a
migration decision for one player can meanwhile a�ect the
decision of other players who are sharing one game world).
Importantly, we highlight the cost with mutual impact which
intends to co-place multiple users in one edge cloud to facili-
tate game world sharing and to reduce the overall migration
overhead.

5.3 Optimal Joint Migration Decisions
Many earlier MDP based migration approaches calculate an
individual migration decision for each user, assuming a user’s
migration decision have little impact on others. However,
when to consider the co-placement, the assumption fails
to be hold. To this point, we have to consider all possible
combinations of migration decisions at each step and �nd
the optimal joint migration solution.
Assume the total number of the migration decisions we

need to jointly consider at each step is K , which is also the
number of users in the system, and denote each decision
as dk ,k 2 [0,K). We then rede�ne a state as S�lobal (t) =
{Sd1 (t), Sd2 (t), ..., SdK�1 (t)}, and a joint action as a�lobal (t) =
{ad1 (t),ad2 (t), ...,adK�1 (t)}. The new reward function is the
sum of the reward function of each individual decision. Fi-
nally, we solve Eqn. 1 to compute the optimal joint migration
action a⇤�lobal (t).

Though this approach provides a globally optimal migra-
tion decision, the time complexity to search for the optimal
joint solution is much higher than that of treating each mi-
gration decision independently. Speci�cally, the time com-
plexity of the latter isO(M3N 2), while the time complexity of
the global solution is O((M3N 2)K ). This cost is prohibitively
high, preventing us from �nding the optimal joint solution
in real-time.

5.4 Heuristic Joint Migration Decisions –
Highest Migrate Probability First

When to calculate the optimal migration decision for each
player, we hold an assumption that all other players remain
connecting to their current edge clouds and therefore, the
whole edge cloud serving conditions does not change. Only
under this assumption, the optimal migration decision can
keep being optimal. Yet, we fail to hold this assumption if
we consider a collection of migration decisions for multiple
players. To be close to the assumption, we can order the mi-
gration probability of all players and preferentially calculate
the optimal migration decisions for the players with higher
migration likelihoods. By doing so, after making a migration
decision, we argue that the latter migration decisions are
more likely to have players connected to the current edge
cloud. To estimate the migration likelihoods, we use the over-
all cost function value subtracting the migration cost. We
argue that this heuristic approach with the time complexity
of O(kM3N 2) can minimize the global migration cost.

5.5 Runtime Optimization to Reduce
Execution Time

We discover a few characteristics of the MDP calculation
in this edge placement problem, which can be explored to
optimize the runtime. The �rst characteristic we �nd is

8a� ,m�+1 : p(m�n� ,a� ,m�+1n�+1) = 0,where a� ,m�+1.

It indicates that a migration action is deterministic towards
next state. Thus, we can simplify the state transition prob-
ability from p(m�n� ,a� ,m�+1n�+1) to p(m�n� ,m�+1n� ), also
simplify the cost function from C(m�n� ,a� ,m�+1n�+1) to
C(m�n� ,m�+1n�+1), Accordingly, we can reduce the space
complexity of p and C from O(M3N 2) to O(M2N 2).

The second characteristic we discover is

8m� ,m
0
� ,m�+1,m

0
�+1 : p(m�n� ,m�+1n�+1) = p(m0

�n� ,m
0
�+1n�+1).

It demonstrates that the state transition probability merely
relates to linked access points, but not to server placements .
Thus, we can simplify the transition probability fromp(m�n� ,m�+1n� )
to p(n� ,n�+1) and accordingly reduce the space complexity
of p from O(M2N 2) to O(N 2).

The third characteristic we discover is

8n� ,n0� : C(m�n� ,m�+1n�+1) = C(m�n
0
� ,m�+1n�+1).

It implies that the cost function merely associates with the
connected access point n�+1 at the time slot � + 1. Thus, we
can simplify the cost function from C(m�n� ,m�+1n�+1) to
C(m� ,m�+1n�+1) and accordingly reduce the space complex-
ity of C from O(M2N 2) to O(M2N ).
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Figure 3: Access pointswith corresponding e�ective ranges andheat
(
Ø
Conn(t )dt ).

By jointly considering the above 3 propositions, we can
simplify Equation 1 to

V (m0n0) =
1’
�=0

� � ·
N’

n�+1=1
p(n� ,n�+1) ·C(m� ,m

�
�+1n�+1), (3)

wherem�
�+1 is our decision at the time slot � which takes

e�ect at the time slot � +1. Therefore, we can reduce the total
space complexity fromO(M3N 2) toO(M2N+N 2), and reduce
the time complexity of each MDP iteration fromO(M3N 2) to
O(M2N 2). Since the computation of Equation 3 can be con-
verted into the vector multiplication ofp(n� , ⇤)·[C(m� ,a� ⇤)+
�V (a� , ⇤)], we can further reduce the execution time using
parallel computing (multi-threading, and GPU). We evaluate
the performance improvement of our proposed optimizations
in §6.

5.6 Further optimizations
Besides the aforementioned optimizations of MDP applied in
VR-MMOG migration, we also consider the following opti-
mizations: 1) Every player moves in a regular activity range
and may never, if not impossible, link to a portion of remote
access points. Accordingly, the probability table is sparse.
We can therefore compress this table as well as the cost table
to further reduce the space and time complexity. 2) In many
cases, players can only link to several nearby edge clouds due
to the stringent latency and bandwidth requirements. We can
identify and exclude remote edge clouds that fail to satisfy
the requirements from the possible migration destinations.
We can then remove the states associated with the migration
destinations and eliminate the calculation of the cost and
utility table with respect to the states. Since proposed edge
placement algorithm is a framework that is generally appli-
cable to all (VR-)MMOGs, we leave the application-speci�c
optimizations as our future work.
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Figure 4: 3-layered network topology and corresponding bandwidth
and latency.

6 EVALUATION
We conduct a detailed simulation-based evaluation of the
proposed EC+ architecture as well as the MDP based service
placement/migration algorithm. We summarize the simula-
tion results in this section.

6.1 Comparison of EC+ with Other
Gaming Architectures

We use detailed simulation studies to compare our EC+ ar-
chitecture with the traditional client-centric gaming archi-
tecture and the cloud-centric video streaming architecture.

6.1.1 Simulation Setup. We �rst present our simulation
set up for the comparison study.
Network Topology: We use the San Francisco AP map de-
veloped in our earlier work [55] as the network topology. We
estimate each AP’s coverage using Voronoi cells (see Fig. 3).
We further assign the APs to di�erent domains to represent
more realistic network topologies. Speci�cally, we build a
3-level hierarchical topology as shown in Fig. 4.
In simulations, games players connect to the Internet

through APs, and edge clouds are assumed co-located with
the domain routers. The central cloud is placed at C (see
Fig. 4). We carefully choose bandwidth and latency param-
eters for di�erent links in the network. For example, we
assume in the intra-domain network, nodes are connected
through gigabit switches with millisecond level latencies.
The actual capacity for inter-ISP connections is usually much
higher, but since the core network is multiplexed with other
tra�c, and the ISPs might not be directly linked to each other,
we choose a bandwidth of 200Mbps (shared bandwidth) and
a latency of 50ms (due to the number of hops between two
ISPs). As such, we summarize the chosen bandwidth and
latency values for di�erent types of links in Fig. 4.
Player Location Trace: To model mobile game players, we
use the San Francisco cab trace that we adopted in our earlier
work [60]. The trace contains the locations of more than
500 cabs between 2008-05-17 and 2008-06-10. We observe
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Figure 5: Result of game simulation without mobility in di�erent architectures: traditional gaming with powerful GPU (Desktop), traditional
gaming with mobile devices (Mobile), videostream gaming (Video), and EC+.

noticeable daily mobility patterns in the trace. In our study,
we pick the data sets on May 31, 2008, Saturday, as our trace.
Since the simulated APs are mainly located in the central San
Francisco area (see map in Fig. 3), we focus on the 66 cabs
that traveled in that area. We assume these 66 players are
playing a same MMOG game. Fig. 3 shows the “heat” of each
AP. The hotness of AP a is calculated as H (a) = Õ

u 2U tu (a),
where tu (a) is the total time a user u is associated with a.
Game trace: We consider a 1-hour synthetic game trace,
taking the parameters from the study in [43]. Each player’s
user events arrive with Poisson distribution (� between 9.5
and 15), a portion of which are randomly selected as game
events. Each player’s action per minute is between 30 and
300. In total, we have 18,686,459 user events (average: 78.642
UEs per second per user), and 287,567 (1.53%) game events
(average: 72.618 actions per minute per user). Size of user
events: Poisson distribution (�=40); Size of updates (in tra-
ditional and edge): Poisson distribution (�=130) [43]; Size
of frames (in video stream and edge): (60Mbps / 60fps) =
⇠1Mb/f. The games are refreshing at 60fps.
Metrics: We use metrics including event latency (time be-
tween when the event happens and the clients see the related
update) for both user and game events, core and edge net-
work tra�c, and frame rate.

6.1.2 Comparison Results with Stationary Players.
To study the fundamental di�erence among the architec-

tures, we compare them assuming the players are stationary.
Speci�cally, we take the locations of each user at 0:30, 1:30,
. . . , and 23:30 on 5/31 and create 24 di�erent traces. We evalu-
ate each architecture using these traces and report the results
in Fig. 5.
Traditional client-centric gaming fares well when users

are equipped with desktops with powerful GPUs (with an
average rendering latency pf 10ms). In this case, the view
change response latency is rather low, ⇠20ms. The aggregate
network tra�c is also low (⇠400Mb) since only small game
update packets are exchanged between the server and the

client, with multicast support. Finally, it can obtain a refresh-
ing rate of 60fps. When users with mobile devices (GPUs can
render 5 frames per second) try to adopt traditional gaming,
the rendering performance degrades signi�cantly. The aver-
age view change rendering latency is 300ms, and the average
refreshing rate is just around 5 fps.
Client-centric video stream gaming faces performance

bottleneck in the core network, since it has to unicast frames
to each client (which consumes more than 1Tb core network
tra�c). The frame drop rate is quite high, and therefore the
actual frame rate at the client side is only around 7 fps. To
alleviate the frequent frame drops, we adopt forward error
correction (FEC) so that each frame contains all the events
that arrive before the frame is rendered. However, even with
this technique, the rendering latency is still high (>1s for both
view changes, and game events) since the events can only
be delivered by the next frame that is successfully delivered.
We note that the performance can be even worse in the real
world due to the multiplexing on the back haul links.

EC+ can provide event update latency (< 30ms for view
change events and around 100ms for game events) and re-
fresh rate (of 56fps) similar to traditional gaming (desktop),
since the renderers in edge clouds are powerful and are close
enough to the clients. With such a low update latency on the
non-game events, our architecture can have good support
on VR applications where users need immediate feedback
for the non-game events (e.g., look into another direction).
While our solution does consume more tra�c (>10Tb) in the
edge network compared to the traditional gaming, we argue
that it is feasible and stable since the ISPs usually have full
control of the edge network to ensure QoS.

6.2 Validation of Edge Placement
To validate our edge selection solution, we conduct a set of
small-scale simulations with synthetic topology and a small
number of users.
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Figure 6: Edge placement decision in single user case.

6.2.1 Simulation Setup. We consider a 7 ⇥ 7 grid (shown
in Fig. 6a), where each of the 24 outermost grid cells rep-
resents an AP and the users that are connected to this AP.
We consider all the edge clouds are resided in the gray grid
cells next to the outermost circle, and the central cloud is
resided in the central grid. We assume a link’s latency is pro-
portional to the distance between the two endpoints, while
its bandwidth is reversely proportional to the distance.

6.2.2 Validation for single player scenarios. We �rst val-
idate our algorithm with a single player and varying the
migration cost. We note that the migration cost varies from
game to game, dependent on the game world size.
We �rst consider a simple mobility pattern where the

player moves around clock-wise from one grid cell to the
next (along with the outermost circle). Fig. 6a shows that
when the migration cost is small, the placement algorithm
always tries to place the service on the nearest edge cloud
whenever the playmoves. In this example, the player changes
the location 24 times, and the corresponding service changes
the location 16 times. When the migration cost increases, the
algorithm decides to migrate less frequently (see Fig. 6b). For
example, when themigration cost is around twice the current
transmission cost – in this case the transmission latency is
doubling the frame size in a time slot – the service location
changes four times when the player changes location 24
times.Whenwe further increase the migration cost, there are
only two service locations for a total of 24 location changes
for the player (see Fig. 6c). Finally, when the migration cost
becomes too large (greater than four times of the current
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Figure 7: Mutual impact in multiplayer scenario.

transmission cost), the algorithm does not migrate at all (not
shown in the �gure).
We next consider a di�erent player mobility pattern: at

each time slot, the player moves to the next grid cell in the
clockwise direction with a 60% probability, moves to the next
grid cell in the counter clockwise direction with a 10% prob-
ability, and stay in his/her current cell with 30% probability.
This new mobility pattern leads to di�erent migration deci-
sions (shown in Fig. 6d). Here, we use the same migration
cost as in Fig. 6b. The results show that with the probability
of the player moving backward, the placement algorithm
becomes more conservative. It still has 4 di�erent service
locations, but the location change occurs one-time slot later
than that in Fig. 6b.
In the considered single player scenarios, the algorithm

outcomes match our expectation. We thus validate its cor-
rectness in the single player case.

6.2.3 Validation for Multi-Player Scenarios. Next, we val-
idate our algorithm when we consider two players in the
same 7 ⇥ 7 grid topology.

Here we vary the distance between the two players. Fig. 7a
shows that, when the two players are close to each other
(when they are in cells 2 and 5 respectively), our algorithm
decides to place them on the same edge cloud to take ad-
vantage of shared game world. In Fig. 7b, when considering
where to migrate to, our algorithm tries to migrate a player
to an edge cloud that is hosting other players to ruse game
worlds and reduce the migration cost. In this example, even
though the original player (in cell 6) is about to leave the red
edge cloud, our algorithm still migrates the player in cell 23
to the red edge cloud.

6.2.4 Optimal vs. Heuristic Placement with Multiple Play-
ers. Next, we compare the optimal placement solution vs.
the heuristic placement solution when we have two play-
ers in the 7 ⇥ 7 grid topology. In each time slot, the player
moves to the next grid cell clockwise, stay in the same grid
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Figure 8: Result of service migration with di�erent strategies.

cell, and moves to the next grid cell counter clockwise, each
with 1/3 probability respectively. Fig. 8 reports the resulting
migration cost of the following schemes: (1) MDP-optimal,
the global optimal placement, (2) MDP-MMLF, the heuristic
MDP placement scheme in which we place the user with
the maximum migration likelihood �rst, (3) MDP-random,
the heuristic MDP placement scheme in which we randomly
sort the players, (4) Always, an always-migrate scheme, and
(5) Never, a never-migrate scheme.

Among these �ve schemes, MDP-optimal gives the best
performance. It also consumes the most memory and CPU
resources. Given the 24 ⇥ 24 client locations and 16 ⇥ 16
edge cloud locations, it takes more than 1 minute to compute
the migration decisions for two players. When we have a
large number of players, the computation cost will be pro-
hibitively costly. We also observe that all three MDP based
solutions give much better performance compared to naive
always-migrate or never-migrate schemes. Finally, we �nd
that our proposed MDP-MMLF performs closer to the opti-
mal solution than MDP-random.

6.2.5 Evaluating the Runtime Overhead. Finally, we mea-
sure the run-time overhead of the three versions of MDP-
MMLF implementation: (1) original, (2) optimized. Our hard-
ware platform consists of an Intel Core i7-4790 CPU with
the clock rate of 3.60GHz [61], running Ubuntu 14.04.

In our experiments, we consider 1 user and vary the num-
ber of edge clouds and client locations. Figure 9 shows the
computation times for all three implementations. The results
show that the execution time of the original implementa-
tion increases fast with the number of edge/client locations
(so does its memory consumption). The optimized imple-
mentation has a much lower execution time with the same
edge/client numbers. We believe this version can be used for
scenarios with many more users since in the real network,
there are usually ⇠10 possible edge clouds that a user can
use at any time.
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Figure 9: Result computation time.

7 CONCLUSION
In this paper, we highlight themain challenges of VR-MMOGs
and propose two solutions. The EC+ architecture seamlessly
distributes the required processing across user devices, edge
clouds, and the center cloud to achieve ultra low-latency
responses, frequent refreshing, and a large number of con-
current players. To complement our architecture, our game
service placement algorithmmaximizes gaming performance
for all players by dynamically placing their services on those
edge clouds that lead to the best performance. Finally, we
have conducted detailed simulation studies to evaluate our
edge-cloud assisted gaming architecture and dynamic ser-
vice placement algorithm. Our results indicate that the pro-
posed approach serves as a viable solution for supporting
VR-MMOGs.
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