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ABSTRACT
There are currently no benchmarks that can directly compare the
performance of an application across the cloud-only, edge-only and
cloud-edge (Fog) deployment platforms to obtain any insight on
potential performance improvement. This paper proposes DeFog,
a �rst Fog benchmarking suite to: (i) alleviate the burden of Fog
benchmarking by using a standard methodology, and (ii) facilitate
the understanding of the target platform by collecting a catalogue
of relevant metrics for a set of benchmarks. The current portfolio of
DeFog benchmarks comprises six relevant applications conducive
to using the edge. Experimental studies are carried out on multiple
target platforms to demonstrate the use of DeFog for collecting
metrics related to application latencies (communication and compu-
tation), for understanding the impact of stress and concurrent users
on application latencies, and for understanding the performance
of deploying di�erent combination of services of an application
across the cloud and edge. DeFog is available for public download
(https://github.com/qub-blesson/DeFog).

CCS CONCEPTS
•Computingmethodologies→Distributed computingmethod-
ologies; • Computer systems organization → Embedded and
cyber-physical systems; • Software and its engineering → Soft-
ware notations and tools.
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1 INTRODUCTION
The premise of the Fog computing is to bring appropriate services
of an application from the cloud to the edge of the network [3, 27].
Since the edge is closer to end user-devices, running services on
edge resources will reduce the communication latencies of appli-
cations by enabling more data to be processed near an end user-
device before it is sent to (or processed on) the cloud [22, 24, 30].
Consequently, the overall Quality-of-Service (QoS) and Quality-of-
Experience (QoE) of an application can be improved [4, 8].

Given that Fog computing is in its nascent stages of develop-
ment, there are a number of challenges that need to be addressed.
One such challenge is understanding the relative performance of
Fog applications by comparing target hardware platforms from
di�erent vendors due to diversity of hardware architectures and
the impact on performance when system software level changes
or new networking protocols are introduced. Fog benchmarking
solutions are required to address this.

Benchmarking is a commonly used technique for evaluating the
relative performance bene�ts of di�erent target computing mod-
els (or platforms) and the applications that run on them [16, 26].
Benchmarks capture a variety of workloads that are likely to be
executed using a computing model. These workloads are system-
atically and repeatedly executed so as to obtain a large catalogue
of relevant metrics related to performance, which is subsequently
analysed for obtaining concrete answers to questions posed by hard-
ware vendors or system software developers. There are dedicated
benchmarks that have been developed for supercomputers, namely
LINPACK [7] and NAS Parallel Benchmarks [1], or for the cloud,
namely CloudRank-D [17] and DCBench [13]. However, we note
that there are no such benchmarking solutions available for Fog
computing. Therefore, the focus of the research presented in this
paper is to report the development of a �rst Fog benchmarking suite,
referred to as DeFog (the rationale for the name is to ‘demystify
cloud-edge interactions of a Fog system’).

The DeFog suite is underpinned by a six step benchmarking
methodology that operates in three deployment modes, namely
a cloud-only mode, edge-only mode, and cloud-edge (Fog) mode.
We anticipate that DeFog can be used to understand at least the
following three fundamental questions:

Q1: How can the relative performance of using a Fog platform
over the cloud-only platform be understood and quanti�ed?

Q2: If there are multiple services of an application that can be
moved to the edge, then how can performance of using the Fog be
understood?
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Q3: If there are multiple competing resources available at the
edge suited for a speci�c service, then which resource should be
selected for maximising the overall performance gain?

Benchmarking across di�erent deployment modes will address
Q1. DeFog is as hardware agnostic as possible (to the extend current
container technology supports) in building and deploying the cloud
and edge services of the Fog application. The methodology captures
a catalogue of performance metrics that are related to the target
platform (cloud and edge resources) and applications running on
the platform. It would also be possible to obtain insight into the
best distribution of services for a given class of application across
the cloud and the edge, thereby addressing Q2.

Six applications that are Fog relevant workloads, namely a deep
learning-based object recognition, a text-to-speech converter, a
text-to-audio forced alignment, an online mobile game, an Internet-
of-Things (IoT) application, and real-time face detection from video
streams, are considered. The applications are latency critical, stream-
based and/or bandwidth intensive, therebymaking them ideal candi-
dates for use in DeFog. The experimental results presented highlight
the relative performance of the benchmarks across the deployment
modes on di�erent target platforms. This demonstrates the fea-
sibility of DeFog for addressing Q3 considered above. The DeFog
software is publicly available1.

The contributions of this paper are as follows: (i) The devel-
opment of a platform agnostic Fog benchmarking methodology,
DeFog, that operates in three deployment modes. (ii) The evaluation
of six application benchmarks that are relevant to Fog computing
and making them available in a repository. (iii) The identi�cation
and collection of a catalogue of metrics that capture the proper-
ties of the target platform and the application running on it. (iv)
An experimental evaluation of DeFog across cloud resources and
multiple single board computers that are used as edge resources.

The remainder of this paper is organised as follows. Section 2
provides an overview of the benchmarking methodology and the
deployment modes of DeFog. Section 3 presents DeFog’s current
portfolio of six benchmarks that are candidate Fog applications
and the catalogue of metrics that are collected by DeFog. Section 4
presents the results obtained from an experimental study. Section 5
considers the related work. Section 6 concludes this paper by pre-
senting future work.

2 DEFOG BENCHMARKING
This section �rstly presents a few observations that have led to the
design and development of DeFog, followed by the benchmarking
methodology that is incorporated in DeFog, and �nally the deploy-
ment modes of DeFog. The �rst version of DeFog is available for
download from (https://github.com/qub-blesson/DeFog).

2.1 Motivation
Fog benchmarking as a research area is still in its early stages of
development. The dependencies between cloud-edge services of
an application are not fully known given that there are only a few
open source Fog applications available. The following �ve general
observations regarding Fog benchmarking have been considered
while developing DeFog:
1https://github.com/qub-blesson/DeFog

(i) Fog benchmarking is complex as dependencies between cloud
and edge services of a Fog application need to be considered: In cloud
benchmarking, the dependencies of the application are mostly in
the cloud. However, the dependencies between cloud and edge
services of a Fog application will need to be considered for Fog
benchmarking. This makes Fog benchmarking more complex than
cloud benchmarking.

(ii) Fog benchmarks are not readily available: There is a limited
understanding of the real workloads that can bene�t the most from
using Fog computing. Consequently, there are no open source Fog
benchmarks readily available.While the portfolio of benchmarks for
traditional computing platforms, such as high-performance clusters
or even the cloud are diverse and comprehensive, Fog benchmarks
are not yet developed. DeFog attempts to create an early repository
of six benchmark applications that can be expanded upon by the
community as our understanding of Fog applications evolves and
as applications become available.

(iii) Fog benchmarking should generate rapid results: Ideal bench-
marking should generate results quickly and in the context of the
Fog it is essential given that the edge is a transient environment.
Resources located on the edge (routers or gateways made accessible
for general purpose computing) are anticipated to have intermit-
tent pro�les when compared to dedicated resources in a data center.
DeFog is therefore designed to execute in a lightweight manner and
under one minute.

(iv)Metrics captured during Fog benchmarking must be generalised
to a wide variety of workloads: Many benchmarking solutions are
workload speci�c and therefore generate workload speci�c metrics
on a target platform. Hence, they cannot provide insight into the
suitability of the target platform for a di�erent class of workloads.
The aim of DeFog is to evolve over time by adding more workloads
so that a wide range of metrics can be captured for diverse Fog
platforms and application benchmarks.

(v) Benchmarking needs to be consistent: To ensure that bench-
marking is consistent each execution of the benchmark must be on
the same application build version and package dependencies. This
is ensured in DeFog so that cloud-edge services are consistently
benchmarked. In addition, to minimise the impact of any noise
within the Fog platform (due to temporary network congestion or
spikes in workloads), the benchmark needs to be executed multiple
times for a range of input data using identical containers to obtain
an averaged values of metrics.

2.2 Benchmarking Methodology
The aim of DeFog is to automate the deployment of benchmark ap-
plications on the target platform, the transfer of assets required for
these applications to run on the target platform, the generation of
metrics relevant to the target platform and benchmark, and �nally
gather results. The proposed benchmarking methodology used by
DeFog accounts for these and is a sequence of six steps, which is
as follows: (1) Build and run the benchmark application container
image for the target platforms, (2) transfer the required asset to
the cloud resource on the target platform, (3) transfer the required
asset to the edge resource on the target platforms, (4) execute the
benchmark application, (5) gather the values for the catalogue of
metrics, and (6) return the metrics to the user. The third step is
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required for the edge-only or cloud-edge (Fog) deployment modes.
The second to �fth step is repeated multiple times for each appli-
cation for consistency. The metrics are measured by an observing
system. The methodology in detail is as follows:

Step 1 - Build and run a container : In this �rst step, a container
image is built and tagged for a target platform (cloud and/or edge)
to ensure that a consistent execution environment is available for
all future runs of the benchmark. This research employs Docker
containers and it is run in the detachedmode to allow for concurrent
benchmarking tasks to be executed on other application containers.

Step 2 - Transfer assets to the cloud: An asset that is transferred to
the cloud is the input data required by the application’s service that
runs on the cloud. Each benchmark application has its correspond-
ing asset and a single benchmark application may have multiple
assets. For example, there are currently six benchmark applications
in DeFog and each application has its own assets. In addition, each
application may have multiple assets corresponding to similar or
di�erent sizes or types of input. This ensures that DeFog can be
used for varying inputs of the application to identify performance
gain under di�erent operating conditions for the application. Some
of the communication related metrics discussed in a subsequent
section are also measured during this step.

Step 3 - Transfer assets to the edge: The asset transferred in this
case is the input data required by the application’s service that will
be hosted on the edge resource. Currently, the data required by the
application benchmark has to be manually partitioned and provided
as assets. Automation within this step is desirable, but is not within
the scope of this article. Some of the communication related metrics
discussed in a subsequent section are measured during this step.

Step 4 - Execute the benchmark application: Given the running
container (from Step 1) and the assets (Step 2 and Step 3) for each ap-
plication the number of times the benchmark needs to be executed is
determined. If there are N assets for an application, then the bench-
mark is executed N times. The benchmark applications are further
considered in Section 3.1. Additional benchmarking tools, namely
UnixBench2 and Sysbench3 are included within DeFog. They pro-
vide a large number of target platform related metrics, including
CPU performance, concurrency and I/O read write.

Step 5 - Gather the values for a catalogue of identi�ed metrics: A
combination of communication and computation related metrics
obtained fromDeFog. They can be categorised as: (i) target platform
metrics, which are attributes that capture the characteristics of the
speci�c target platform under consideration, (ii) Fog application
performance metrics, which are attributes that provide insight into
the performance of the application on the target platform, and (iii)
metrics obtained from external tools, which are attributes obtained
by using third party tools. The metrics will be discussed further in
Section 3.2.

Step 6 - Provide the metrics to the user : The target audience that
can bene�t from DeFog, include (i) vendors of new edge hardware
who want to demonstrate the bene�t of using the Fog via bench-
marks, (ii) Internet Service Providers (ISPs) who want to deploy
micro data centres at the edge of the network and want to tabulate
performance of Fog applications for their customers, (iii) system

2https://github.com/kdlucas/byte-unixbench/tree/master/UnixBench
3https://github.com/akopytov/sysbench

Figure 1: DeFog deploymentmodes, namely cloud-only, edge-
only and cloud-edge (Fog).

software administrators who want to investigate the impact on
Fog applications when a system level change, such as update to
operating system or libraries, is required on the edge resource, and
(iv) network administrators who want to quantify the performance
of Fog applications when a new networking protocol is introduced.
When the benchmarks have completed execution the metrics are
provided to the observing system in the form of both comma sepa-
rated and verbose text �les.

2.3 Deployment Modes
The DeFog benchmarking suite works across three distinct deploy-
ment modes, namely a cloud-only, edge-only, and cloud-edge (Fog),
as shown in Figure 1 and considered below. The underlying princi-
ple is that the relative performance of the benchmark applications
should be compared on di�erent target platforms to quantify any
bene�t of leveraging the edge for a cloud application.

The resources available for the target platform as shown in Fig-
ure 1 are from: (i) the cloud resource layer in which a large amount
of computational and storage resources are available, (ii) the edge
resource layer, which comprises either dedicated micro clouds or
tra�c routing nodes, such as gateways, routers and base stations,
that are augmented with computing and/or storage capabilities,
and (iii) the user devices layer, which comprises devices, such as
smartphones, wearables, and sensors. A computer system is utilised
to observe the benchmarking process and collect the metrics.

(i) Cloud-only deployment: The cloud-only deployment is typ-
ical of conventional cloud applications in which all requests origi-
nating from an end user-device are serviced by a cloud resource.
Figure 2 shows the two tier cloud-only deployment mode compris-
ing the cloud resources and user devices. In DeFog, the application
is built and deployed on the cloud resource using Docker containers.

3
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The application is then executed in the container and the benchmark
metrics are generated. The method adopted is based on a container-
based cloud benchmarking approach previously reported [28]. The
user device uses the secure shell to interact with the cloud container
during the benchmarking process.

Figure 2: The DeFog cloud-only deployment mode.

A DeFog user speci�es which applications in the repository need
to be benchmarked and the accompanying asset is transferred to the
cloud (in this research we used AmazonWeb Services (AWS) Elastic
Compute Cloud (EC2)4). The output data from the application is
uploaded to an AWS Simple Secure Storage (S3)5 bucket. The output
is also transferred to the observing system along with the metrics
generated during the benchmarking process.

(ii) Edge-only deployment: The edge-only deployment mode
assumes that all services of an application can be entirely run on
an edge resource as shown in Figure 3. This is practical if it is
assumed that dedicated micro clouds or modular data centres are
located at the edge of the network and the application provider
replicates the application on multiple geographic locations closer
to the end user. Similar to the cloud-only deployment mode, the
application is deployed on the the edge resource using Docker
containers. The application is then run within the container and
metrics are generated. In this research resource constrained single
board computers, such as Odroid XU46 and Raspberry Pi 37 are
used as edge resources. The outputs and the metrics are stored in
an S3 bucket as well as sent to the observing system.

Figure 3: The DeFog edge-only deployment mode.

(iii) Cloud-edge (Fog) deployment: In the Fog deploymentmode,
services of an application may be distributed across the cloud and
4https://aws.amazon.com/ec2/
5https://aws.amazon.com/s3/
6https://magazine.odroid.com/odroid-xu4
7https://www.raspberrypi.org/products/raspberry-pi-3-model-b/

edge as shown in Figure 4. Communication latency or bandwidth
sensitive services of the application are o�oaded to the edge so
that the overall QoS of the application can be maximised.

Figure 4: The DeFog cloud-edge (Fog) deployment mode.

Consider for example a deep learning application for object
detection. This application will require the training of a model,
which is a computationally intensive task, and cannot be easily
carried out on the edge. If large micro cloud like resources are
assumed at the edge, then it may be possible. However this will
not be the case if there are only smaller form factor and resource
constrained embedded devices available on the edge. Therefore, the
training service of the application is ideally suited for the cloud.
The detection service could be o�oaded to the edge. The assets
required by this service are a trained model and associated weights
which will need to be o�oaded from the cloud to the edge.

3 BENCHMARK APPLICATIONS AND
METRICS COLLECTED BY DEFOG

In this section, six applications that are currently used as bench-
marks in DeFog. These applications are chosen based on our current
understanding of the di�erent axes that need to be tested to charac-
terise the bene�t of using a cloud-edge deployment model. The axes
tested include communication latency and computation latency
with respect to concurrent users, Fog system stress and network
stress, data transfer (uplink and downlink) rates with respect to
concurrent users and Fog system and network stress, and improve-
ment in responsiveness by using a Fog system against alternate
deployments, such as cloud-only.

Table 1) summarises the applications and shows the coverage
of the benchmarks currently available. Latency critical, bandwidth
intensive, location aware and computational intensive workloads
are represented. In addition, applications with single and multiple
users (in many cases multiple users are simulated) are considered.
Most applications only use a single edge or cloud resource. However,
one application which uses multiple edge and/or cloud destinations
is presented. Applications that can o�oad multiple services to the
edge are considered. In addition, assets required to be transferred
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Table 1: Fog application benchmarks used in DeFog; Type - Latency Critical (LC), Bandwidth Intensive (BI), Location Aware
(LA), Computational Intensive (CI); Single - S, Multiple - M, Multiple, simulated - M(S), Multiple possible, not presented M(N)

Application Description Type End
device

Destination Edge
services

Asset transferred from
cloud to edge for o�loadEdge Cloud

YOLOv3 Object classi�cation using deep learning BI, CI S, M(S) S S S Trained model and weights
PocketSphinx Speech-to-text conversion BI, CI S, M(S) S S S Trained acoustic model
Aeneas Text-audio forced alignment BI S, M(S) S S S Text segment
iPokeMon Geo-location based online mobile game LC, LA S, M(S) S S S Location speci�c data
FogLAMP IoT edge gateway application LC M M M M(N) NA
RealFD Real-time face detection on video streams LC, BI, CI S S S M Depends on edge services

from the cloud to the edge for successfully executing an o�oaded
service is presented. Finally, the metrics collected using DeFog are
highlighted.

3.1 Benchmark Applications
The original version of the applications had to bemodi�ed to suit the
deployment modes reported in the previous section. The modi�ed
version of the applications used in DeFog is available in the project
repository8. Additional workloads can be added to this portfolio to
enhance DeFog.

Application 1 - Deep learning based object classi�cation us-
ing YOLOv3: The You Only Look Once (YOLO)9 is a real-time deep
learning based object detection system that uses a single neural
network for the entire image [20]. The image is decomposed into
di�erent regions and the bounding boxes and probabilities for each
region are estimated. These bounding boxes are weighted by the pre-
dicted probabilities. The YOLOv3 [21] is a faster system compared
to competing systems that implement Region-based Convolutional
Neural Networks (R-CNN). The original application resizes a pro-
vided image asset and detects objects within the image using a
pre-trained model. A labelled image is generated with percentage
weights providing the accuracy of estimation.

This system is an ideal candidate for the Fog. Fog applications
that rely on this system may use the edge node to resize the original
image (pre-process) so that the amount of data eventually trans-
ferred to the cloud beyond the edge is reduced. In addition, the
objects can be detected at the edge to minimise communication
latencies. The cloud server will send the pre-trained model to the
edge that is speci�c to the the location that the edge resource is
serving to allow the detection service to be hosted on the edge.

Application 2 - Speech-to-text conversion (PocketSphinx):
PocketSphinx10 is an open-source large vocabulary, speaker-independent
continuous speech recognition engine [12]. A supplied audio �le
(.wav) is converted to a de�ned language in text form using a pre-
trained acoustic model to determine the source and destination
language for speech-to-text conversion. The integrated assets are
sourced from a large scale speech repository11. In the Fog applica-
tion, the end user-device provides a .wav asset to the edge container.
A pre-trained acoustic model is o�oaded from the cloud to the edge
to facilitate text-to-speech conversion.

8https://github.com/qub-blesson/DeFog
9https://pjreddie.com/darknet/yolo/
10https://github.com/cmusphinx/pocketsphinx
11http://www.repository.voxforge1.org/downloads/SpeechCorpus

Application 3 - Text-audio synchronisation or forced align-
ment (Aeneas): The Aeneas tool automatically synchronises text
and audio segments12. Generating synchronisation maps for a list
of text fragments and an audio �le containing the relevant text is
referred to as forced alignment. Aeneas determines the mapping
between corresponding audio segment for each text asset supplied.

In the Fog application, the end user-device transfers an audio
�le (.wav) to the edge node. Text segmentation occurs on the cloud
and the text segment (.xhtml) is o�oaded from the cloud to the
edge where the forced alignment occurs. The workload on the edge
is computing the synchronisation map between the text fragment
and audio fragment to make it more responsive for the end-user.

Application 4 -Geo-location based onlinemobile game (iPoke-
Mon): The original version of iPokeMon is a cloud-based online
game that is similar to the popular virtual reality game, Pokémon
Go13. The user device interacts with the cloud server from the be-
ginning to the completion of the game. The Fog version employed
in DeFog is the use-case that is employed for validating research
on resource management at the edge of the network [31].

In the Fog version, the user creation and veri�cation requests
from the user device are made to the cloud server, after which the
cloud server manager makes a request for computing services on
the edge node. If this request is accepted by the edge node, then
the edge manager initialises a container for the iPokeMon edge
server. The cloud manager deploys the iPokeMon edge server and
clones (to the edge database) location speci�c data and user-speci�c
data (of those who will be connected to the edge). User data rapidly
changes when the game is played. For example, the GPS coordinates
of the player and the Pokémons. The local view on the edge server
is updated by frequent requests sent to the server.

For experimentation, JMeter and Taurus are used to simulate
players behaviour by generating synthetic workloads [31]. The
user device supplies the .jmx �le to JMeter. This allows for the
automated generation of workloads for a range of concurrent users.

Application 5 - Internet-of-Things (IoT) edge gateway ap-
plication (FogLAMP): This is an open source IoT application that
integrates cloud storage and sensors14. FogLAMP interacts with
endpoint sensors to collect and aggregate data (although FogLAMP
allows querying on time series data originating from sensors it
is not considered in this paper). A text payload containing a curl
command is transferred to the edge from endpoints. The service

12https://www.readbeyond.it/aeneas/docs/
13http://www.pokemongo.com/
14https://foglamp.readthedocs.io/en/latest/
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running on the edge executes the curl command by invoking a
simulated API call that gathers the localised data.

Application 6 - Real-time face detection from video streams
(RealFD)15: The original application uses an end device with an
embedded video camera to capture a continuous video stream. The
stream is transmitted to a cloud server where faces are detected on
individual video frames using Pillow16 and OpenCV17.

The server comprises the following three services for detecting
faces from a frame of the video: (i) Grey-scale converter (GSC) re-
duces the amount of computation done on an image that would
otherwise be required if it was a colour image. The size of the
stream is reduced by nearly a third, (ii) Motion Detector (MD) is a
data �ltering service that performs a condition check on successive
video frames to reduce computations on similar frames (for example
a security feed in a static environment, such as a home or museum).
(iii) Face Detector (FD) is a computationally expensive service that
identi�es frontal faces in a video frame using machine learning.

The application can be distributed in the following four ways:
(i) Cloud-only services – all the services are deployed in the cloud;
(ii) Fog-based pre-processing – GSC is deployed at the edge and
other services on the cloud; (iii) Fog-based data �ltering – GSC and
MD are o�oaded to the edge and FD is deployed on the cloud; (iv)
Edge-only services – all services are o�oaded to the edge.

3.2 Metrics Collected by Benchmarking
Existing benchmarking methods that contain Fog conducive bench-
marks either are workload speci�c benchmarking techniques, such
as the speech-to-text benchmark18 and TailBench [14], or are provider
speci�c services benchmarking (AWS Greengrass and Microsoft
Azure IoT Edge), such as EdgeBench19 [6]. The motivation of DeFog
is a general purpose Fog benchmarking method that can be used
for a diverse range of workloads and at the same time provide both
the target platform and application related benchmarks.

Three types of metrics, namely platform, application speci�c
and from external tools are considered. These provide a bird’s eye
view of the target platform, including network characteristics and
applications running on the platform.

(i) Target Platform Metrics: DeFog gathers platform metrics
for the three deployment modes (cloud-only, edge-only, cloud-edge).
A short list of these is shown in Table 2.

(ii) Fog Application Metrics: DeFog provides insight into the
six application benchmarks and the metrics are outlined in Ta-
ble 5. These metrics provide insight into comparing the di�erent
deployment modes and are obtained in three categories: (1) Com-
munication metrics, include the overheads of transferring assets
and data payloads during the execution of the benchmark appli-
cations, (2) Computational performance metrics, include the time
taken to execute a computational task, and (3) Concurrency metrics,
which quanti�es the impact (performance degradation) of servicing
multiple tenants on the target platform.

15https://github.com/qub-blesson/DYVERSE
16https://pillow.readthedocs.io
17https://opencv.org
18https://github.com/Picovoice/stt-benchmark
19https://github.com/akaanirban/edgebench

Table 2: Platform metrics collected by DeFog

Name Description
CPU Model Name The model name of the target platform CPU
No. of Cores The total cores available on the CPU
CPU Frequency The frequency of the CPU
System Uptime The total time the system has been running
Unzip time The total time taken to unzip any assets (for

example, a 34MB �le for YOLOv3, which is
the weights �le)

Download rate The download rate (MB/sec) of assets (for
example, 200MB model �le for YOLOv3)

System I/O Speed of reading and writing in MB/sec

(iii)MetricsGathered fromExternal Tools: Two external tools,
namely JMeter20 and Taurus21 are currently used by DeFog. The
former is used to simulate multiple clients using a benchmark ap-
plication, for example multiple users in the iPokeMon online game,
The metrics obtained from JMeter is presented in Table 3. The end-
to-end latency of the application when multiple users are running
can be determined to identify whether the QoS of the application
is met when the number of clients increases.

Table 3: Metrics collected using JMeter in DeFog

Name Description
User/ Thread The total concurrent users/threads
Latency Response time latency for a speci�c endpoint

Taurus gathers successful response count and average response
time (shown in Table 4). By simulating synthetic users metrics such
as standard deviation of response time can be generated, which
o�ers insight into the e�ect of outliers on median response time.

Table 4: Metrics collected using Taurus in DeFog

Name Description
Concurrency Average number of concurrent users
Throughput The total count of sample workloads
Success/Fail The total count of successful workloads
Average Response Time
(RT)

Average response time of service

Standard Deviation of RT Standard deviation of the response time
Average Latency Average latency time for the return trip

4 EXPERIMENTAL STUDIES
The setup for capturing metrics for the three deployment modes
and the results obtained are presented in this section. Only a subset
of metrics and results obtained are presented, given that DeFog
generates an exhaustive list of metrics and results. Moreover, ag-
gregate metrics, which is a sum of a collection of individual metrics
20https://jmeter.apache.org/
21https://gettaurus.org/
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Table 5: Fog application metrics collected by DeFog

Name Description
Execution Time Time taken to complete a computational task (ET )
Time in Flight Time taken to transfer a workload to the cloud or edge (T1)
S3 Transfer Time Time taken to upload results data to the S3 bucket (T2)
Results Transfer Time Time taken to return results data to the observing system (T3)
Computation Latency Total time taken for running the benchmark, including execution time (RTT = T1 + ET +T3)
Computation Cost Estimated cost of the computational task (Cost , using the AWS pricing strategy)
Real Time Factor Rate of speech recognition (RTF = ET /f ile_len�th)
Bytes Up Total bytes transferred to the cloud or edge
Bytes Down Total bytes transferred from the cloud or edge
Bytes Down (cloud-edge) Total bytes transferred from the cloud to the edge
Bytes Up per sec Upload rate in bytes per second
Bytes Down per sec Download rate in bytes per second
Bytes Down (cloud-edge) per sec Download rate in bytes per second (cloud or edge) download rate
Cloud-edge Transfer Time Time taken to transfer assets from the cloud to the edge (T4)
Communication Latency Total time taken for assets to be transferred throughout the benchmarking process (CL = T1 +T3)
Complete Computation Latency Return trip time including the time taken to transfer assets from the cloud to the edge
Complete Communication Latency Total time taken for the transfer of all payloads including the cloud asset

(a) Odroid XU4 (b) Raspberry Pi 3 Model B

Figure 5: Single board computers used as edge resources.

is considered. For example, computation latency is the sum of the
time taken to transfer a service to the cloud or edge, time taken to
complete executing a service, and the time taken to return output
data to the observing system. It would not be possible to present
and discuss the individual metrics within the scope of this paper.

4.1 Implementation and Setup
The cloud resource used is an AWS EC2 instance that is set up in
the Dublin eu-west-1 region. The platform metrics of this CPU
(refer to Table 2) are an Intel Xeon E5-2676, operating at a 2.4GHz
frequency, unzip time of 3.74 seconds for a �le of 34MB, download
rate of 9.97MB/sec for a 200MB �le, and system I/O of 67.8 MB/sec.

Given that edge resources are hardware limited compared to the
cloud, this research uses embedded single board computers, namely
Odroid XU4 and a Raspberry Pi 3 Model B (shown in Figure 5).
These have resources comparable to the compute that is available
on a base station [31]. The Odroid board has 2 GB of DRAMmemory,
and one ARM Big.LITTLE architecture Exynos 5 Octa processor
running Ubuntu 14.04 LTS. The platform metrics for the Odroid
board are ARMv7 eight-core processor, operating at 2GHz, 540.65

seconds to unzip a 34MB �le, download rate of 449KB/sec for a
200MB �le and system I/O of 8.5MB/sec.

The Raspberry Pi has 1 GB of RAM memory, and a Quad Core
1.2GHz Broadcom BCM2837 64 bit CPU running Raspbian. The plat-
form metrics for the Raspberry Pi are ARM v7 four-core processor,
operating at 1.2GHz, 600.91 seconds to unzip a 34MB �le, download
rate of 404KB/sec for a 200MB �le and system I/O of 4.4MB/sec.

The applications are deployed using the container technology,
speci�cally Docker22. Docker 17.12.1-ce is used to automate build-
ing and deploying the application. Application speci�c Docker�les
install the relevant dependencies and packages when the containers
are build. Container instances are then run using the same appli-
cation image. A combination of Python and bash scripting is used
along with Docker�les to execute the benchmarks.

For each benchmark a data payload is transferred from the ob-
serving system to the edge or cloud. Fog deployment requires assets
to be o�oaded from the cloud to edge. Data generated on the cloud
and/or edge is transferred to the S3 bucket and observing system.

YOLO, PocketSphinx, iPokeMon, Aeneas and RealFD are bench-
marked across all three deployment modes. Taurus and Apache
JMeter are used to simulate concurrent users. FogLAMP does not
require a cloud asset, and is not used in the Fog mode, but for the
cloud-only and edge-only deployment modes.

The aim of the experiments are to demonstrate the metrics that
can be obtained to compare the relative computational and commu-
nication performance when the edge is leveraged. The experiments
are performed on the three deployment modes (cloud-only, edge-
only, and cloud-edge) for gaining insight to Q1 that was posed in
Section 1. The results obtained from the RealFD application (mul-
tiple services that can be moved to the edge) highlight the use of
DeFog to answer Q2. The experiments are carried out on two edge
resources (Odroid XU4 and Raspberry Pi 3), which enhances our
knowledge of the performance of the benchmark in relation to Q3.

22https://www.docker.com/
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The experiments are carried out for single and multiple users as
well as when the edge resource is stressed to re�ect real-world
deployments. Each experiment was executed 25 times.

4.2 Results
The aim of the experimental studies is to provide insight into the
bene�t of a Fog system measured by communication latency and
computation latency with respect to concurrent users, the Fog sys-
tem stress and network stress, data transfer (uplink and downlink)
rates with respect to concurrent users and Fog system and network
stress, and the improvement in application response when using
a Fog system against alternate architectures, such as a cloud-only
or edge-only model. Therefore, the results obtained are presented
as: (i) application latencies for di�erent deployments, (ii) impact of
stressing the edge on latencies, and (iii) impact of concurrent users
on latencies on two cloud-edge platforms presented in Section 4.1.

4.2.1 Application latencies for di�erent deployment modes. Figure 6
show the communication and computation round trip times for
the three deployment modes, namely the cloud-only, edge-only,
and cloud-edge (Fog) deployments. The standard deviation of the
executions is highlighted in the observed results. In these execu-
tions, the edge resources are exclusively used by the benchmark
application. The communication latency (Figure 6a) is consistently
lower for all applications running on the edge when compared
to the cloud. The computation latency (Figure 6b) is signi�cantly
larger for applications, such as YOLO and PocketSphinx, on the
edge compared to the cloud. This is because the edge resources
employed in this research are hardware limited compared to a cloud
resource. The computational cost of these applications exceeds the
gains in communication latencies on the edge. There is a slight
increase in the latency times for the cloud-edge deployment modes
when compared to the edge only deployment, which is due to the
time needed to transfer assets from the cloud to the edge. Aeneas
and FogLAMP show comparable and sometimes lower computa-
tional latency on the edge when compared to the cloud. The lack
of performance gain for the former two applications may be due to
the speci�c manner in which the application is partitioned.

Figure 7 shows the computation and communication latencies
for di�erent combination of services of the RealFD application (FD,
MD, GSC) on the three deployment modes. For this application, the
results obtained using the Odroid XU4 are presented. Communica-
tion latency in this �gure is the single trip time taken (not round
trip) and the computation latency is the time taken to process a sin-
gle video frame. There are two potential deployment options across
the cloud and edge - FD on the cloud, and MD and GSC on the edge,
or alternatively FD and MD on the cloud, and GSC on the edge.
There is a di�erence in the performance of the two Fog deployments
and DeFog highlights this variation for the benchmark.

4.2.2 Impact of stressing edge resources on application latencies.
For this experiment Gaussian workloads are simulated on the
edge nodes in the cloud-edge deployment mode for YOLO, Pocket-
Sphinx, Aeneas, and RealFD and the edge-only deployment mode
for FogLAMP. The motivation is to simulate a real world multi-
tenant distributed system where there are competing workloads
residing on the same edge under variable network conditions. The

stress23 package is used to stress the edge resource by simulating
computations in the background. The stress-ng24 package is used
to stress the network. These packages use stressors to subject the
computing cores and network to various levels of stress.

In this paper, we explicitly de�ne minimal stress when one CPU
core of the edge resource is stressed. The network is stressed by
transferring a �le of size 256MB at roughly 21740 bytes per second.
For low stress, two CPU cores are stressed. For medium and high
stress, three CPU cores and four CPU cores are stressed respectively.
For very high stress all CPU cores are stressed and the RAMmemory
is stressed using two stressor processes.

The communication latency of benchmark applications when
network bandwidth is stressed is shown in Figure 8 (for the RealFD
application on Odroid XU4 is shown in Figure 10a). Applications
that transfer larger amounts of data, such as Aeneas, are a�ected.
Figure 9 shows the trend in the computation latencies of the ap-
plications when the computing cores are stressed (Figure 10b). As
expected there is a signi�cant increase in the computation latencies.
Computationally less intensive applications, such as Aeneas and
FogLAMP have less e�ect with stressed CPU cores. It is immedi-
ately inferred that applications demonstrate di�erent trends when
edge resources are stressed. For RealFD it is noted that di�erent
combination of services across the cloud and the edge have di�erent
performance. For the iPokeMon application as shown in Figure 11,
the edge node is subject to similar stress as above. There is an im-
provement in the response latency of the cloud-edge deployment by
over 7 times when compared to the cloud-only deployment when
the stress as de�ned in this paper is very high.

4.2.3 Impact of concurrent users on application latencies. For this
experiment, concurrent users (2, 5, 10, and 50) of the application
benchmark are considered as shown in Figure 12. The individual
requests from the application are simulated for concurrent users
using JMeter. It is noted that the communication latency as shown
in Figure 12a and Figure 12b increases with the number of users.
This is because the time in �ight and time to transfer the results
also increases because with the increasing number of users the
rate at which data movement occurs decreases (this is highlighted
in Figure 13). Similar increases are noted for computation latency.
Although the rate at which the computation latency increases is
di�erent. For example, FogLAMP has a much lower rate of increase
in computation latency when compared to PocketSphinx. This is
because of the nature of the computational intensity underpinning
the benchmarks. The �gures highlight the need for DeFog - to
di�erentiate workloads that may not have a signi�cant increase
in computation or communication latencies even when there are
multiple users versus those that may have the computation or
communication latencies signi�cantly a�ected.

Applications that have a larger execution time for a single user,
are impacted the most by concurrent users, which results in larger
computation latencies. For example, consider PocketSphinx as shown
in Figure 14. Given the current decomposition of services for the
PocketSphinx application it is evident that the cloud-edge deploy-
ment is not advantageous over the cloud-only deployment.

23https://people.seas.harvard.edu/~apw/stress/
24https://kernel.ubuntu.com/git/cking/stress-ng.git/
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(a) Communication latency (b) Computation latency

Figure 6: Latencies of applications for di�erent deployment modes.

Figure 7: Latencies of RealFD for di�erent combination of
services across the cloud and the edge (using Odroid XU4).

(a) On Odroid XU4 (b) On Raspberry Pi 3

Figure 8: Communication latency of benchmark applica-
tions when the edge resource is stressed.

However, consider the impact of concurrent users on iPokeMon
as shown in Figure 15. The cloud-edge deployment clearly has
signi�cant advantages over the cloud-only deployment. Latency
spike observed for the edge nodes when there are 250 concurrent
users was due to a single communication request that increased
the average response time of the requests.

(a) On Odroid XU4 (b) On Raspberry Pi 3

Figure 9: Computation latency of benchmark applications
when the edge resource is stressed.

(a) Communication latency

(b) Computation latency

Figure 10: Latencies of the RealFD benchmark when the
edge resource is stressed.
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Figure 11: Impact of edge resource stress on response latency
for iPokeMon.

4.2.4 Summary. The experimental results have demonstrated that
the communication and computation latencies vary across the dif-
ferent deployments, namely cloud-only, edge-only and cloud-edge.
Although the communication latency of the application may im-
prove by using the cloud-edge deployment, there will be no overall
gain if the computation latency is high on resource constrained
edge nodes. Applications are noted to behave di�erently when
the edge node is stressed, both its system and network resources.
The rate at which performance degrades varies across applications.
Similarly, when concurrent users request service from the same
edge node, the rate at which the communication and computation
latencies increase vary; some workloads exhibit signi�cant increase
in latencies where as others have a negligible increase. These obser-
vations highlight the use of DeFog to identify any performance gain
in using the Fog over the cloud-only deployment (Q1), which ser-
vices of an application would bene�t from moving to the edge (Q2),
and which deployment platforms are best suited for an application
when there are multiple hardware choices (Q3).

5 RELATEDWORK
There are multiple techniques for understanding the performance of
a target platform and applications running on it. Two dominant tech-
niques, include simulation-based and benchmarking approaches,
which are applicable in the context of edge computing [11].

The simulation-based approach uses computational models to
simulate the target platform. The application is modelled on the sim-
ulated platform. The application and target environment are usually
abstract representations of the real application and the underlying
hardware platform on which it will run is de�ned by a �ne-grain
or aggregate set of input parameters. The accuracy of running a
simulation to gather performance metrics is fully dependent on the
underpinning models, which may be abstract representations or
�ne-grain models. It is worthwhile to note that it is harder to accu-
rately model the variability seen on a real target platform, and is
more complex when modelling distributed systems, such as the Fog.
Popular Fog and Edge computing based simulators include Edge-
CloudSim [25], iFogSim [9] and FogExplorer25. Recently, emulation
is also used to evaluate the performance of Fog applications [10].

The advantages of using simulation-based approaches include
reproducibility of the experiments and is a cheaper solution to
25https://openfogstack.github.io/FogExplorer/

understand the performance of a target platform since physical
hardware is not required. However, simulation approaches may not
be su�ciently accurate and running �ne-grain simulation models
(such as discrete event simulators) can be time consuming.

On the other hand benchmarking approaches run the application
on the target platform in more realistic conditions. Nonetheless,
external factors that in�uence performance may be simulated; for
example, network conditions or noise on the target platform. Since
benchmarking is usually performed in the real setting, reproducibil-
ity of results depends on how transient the platform is. For example,
reproducing results on the Fog, could be challenging. Nonetheless,
benchmark consistency can be achieved by using technologies, such
as containers. Currently no Fog benchmarks are readily available.

Accuracy and reliability of results are advantages of benchmark-
ing since applications are executed on the target platform with
fewer abstractions. However, the platform needs to be set up, which
is more expensive than simulation. The application source code
may also need to be modi�ed if multiple target platforms have to
be benchmarked. This paper adopts a benchmarking approach.

Existing benchmarks relevant to the discussion of this paper, in-
clude those for the cloud, end user-devices, and application speci�c
benchmarks. Benchmarking on the cloud typically captures the per-
formance of an application across di�erent categories of resources,
such as virtual machines (VMs) [28] and storage services [2]. Pop-
ular cloud benchmarks include Yahoo Cloud Serving Benchmark
(YCSB) [5], CloudRank-D [17] and DCBench [13]. The use of con-
tainers for benchmarking in the cloud environment has advantages,
such as consistency and making the benchmarking process faster
and automating it [29]. However, as expected cloud benchmarking
methods do not need to include techniques to capture performance
of resources outside the cloud and consequently, does not need to
handle the more complex dependencies that are seen in Fog appli-
cation. In this paper, container-based benchmarking is extended
towards taking into account the dependencies between cloud-edge
services of an application as seen in the Fog.

There are benchmarking methods available for end user-devices,
such as mobile [18] and IoT devices [15], and for understand-
ing the interactions between the mobile user and the edge sys-
tem [19]. IoT benchmarks focus on power consumption26, Con-
strained Application Protocol (CoAP) benchmarking [15], and low
power wireless network applications (such as the IoT Benchmark-
ing Consortium’s27 D-Cube [23]). Serverless application bench-
marking for CPU intensive benchmarks on edge platforms, such as
Amazon Greengrass and Microsoft Azure IoT Edge are considered
in literature; multiple heterogeneous cloud functions are bench-
marked [6]. More application speci�c benchmarks have been devel-
oped. These include the TPC Express Benchmark IoT (TPCx-IoT)28
that is based on YCSB [5] and considers data ingestion and query
workloads. CAVBench is developed for benchmarking connected
and autonomous vehicle applications [32].

While existing approaches consider the cloud or end user-devices,
benchmarking the distribution of applications across the cloud
and edge has not been the focus. This paper reports a �rst Fog
benchmarking suite.
26https://www.eembc.org/products/
27https://www.iotbench.ethz.ch
28http://www.tpc.org/tpcx-iot/
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(a) Communication latency on Odroid
XU4

(b) Communication latency on Rasp-
berry Pi 3

(c) Computation latency on Odroid
XU4

(d) Computation latency on Raspberry
Pi 3

Figure 12: Impact of concurrent users on latency of benchmark applications.

(a) On Odroid XU4 (b) On Raspberry Pi 3

Figure 13: Impact of concurrent users on average bytes transferred.

Figure 14: Impact of concurrent users on real time factor for
PocketSphinx.

6 CONCLUSIONS
There are currently no readily available Fog benchmarks to address
the following questions: (Q1) How can the relative performance
gain of using Fog platforms over the Cloud-only computing model
be quanti�ed? (Q2) If there are multiple services of an application

Figure 15: Impact of concurrent users on average response
latency per request for iPokeMon.

that can be moved to the edge, then how can the overall perfor-
mance of moving di�erent services to the edge be quanti�ed? (Q3)
If there are multiple competing resources at the edge for a service,
then which resource should be selected? DeFog proposed in this
paper addresses the above questions.
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DeFog comprises six benchmarks that can be deployed across the
cloud and the edge. The current portfolio of application benchmarks
in DeFog includes, deep learning-based object detection, text-to-
speech conversion, text-audio forced alignment, geo-location based
online mobile game, IoT edge gateway application and real-time
face detection in video streams, that are deployed across a cloud-
only, edge-only, and cloud-edge deployment modes. The approach
taken in this paper is benchmarking actual target platforms rather
than using simulation. Experimental studies demonstrate the cata-
logue of target platform and application related metrics captured
by DeFog. The experiments also present the performance of bench-
marks due to concurrent users and stress on edge resources.

The approach taken by DeFog ensures that the build and deploy-
ment of the application are automated. DeFog ensures consistency
(same environment is available and dependencies are set up when
comparing two di�erent edge nodes) when benchmarking.

Limitations and Future Work: DeFog assumes that all target
platforms can run containers. The container technology is limited
in that processor architecture speci�c images are required and more
hardware agnostic deployment technologies are required. It is also
assumed in the implementation and experimentation that dedicated
single board computer capabilities are available at the edge. Edge
resources, such as routers and gateways that can be augmented with
compute capabilities have not been considered. The partitioning of
applications is inherently across a single layer of cloud resources
and a single layer of edge resources. The current research does not
explore the distribution of benchmarks across the entire cloud-edge
continuum. This is because applications that can leverage the entire
cloud-edge continuum are not fully understood.

The benchmarks are decomposed into individual services man-
ually and then containerised for deployment. While DeFog can
orchestrate the execution of application containers seamlessly, ad-
ditional e�orts are required to automatically decompose an appli-
cation. A wider range of benchmarks will be included in the future
to simultaneously stress all dimensions of latency, bandwidth and
availability of resources, such as augmented reality applications, in
a Fog environment. Additional factors, such as di�erent ownership
of cloud and edge will be considered.

The vision of DeFog is to foster community growth and devel-
opment of Fog benchmarks that can be widely used.
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