
Why Cloud Applications Are not Ready for the Edge (yet)
Chanh Nguyen
Umeå University
Umeå, Sweden

chanh@cs.umu.se

Amardeep Mehta
Umeå University
Umeå, Sweden

amardeep@cs.umu.se

Cristian Klein
Umeå University
Umeå, Sweden

cklein@cs.umu.se

Erik Elmroth
Umeå University
Umeå, Sweden

elmroth@cs.umu.se

ABSTRACT
Mobile Edge Clouds (MECs) are distributed platforms in which
distant data-centers are complemented with computing and storage
capacity located at the edge of the network. Their wide resource
distribution enables MECs to ful�ll the need of low latency and
high bandwidth to o⇥er an improved user experience.

As modern cloud applications are increasingly architected as
collections of small, independently deployable services, they can be
⇤exibly deployed in various con�gurations that combines resources
from both centralized datacenters and edge locations. In principle,
such applications should therefore be well-placed to exploit the
advantages of MECs so as to reduce service response times.

In this paper, we quantify the bene�ts of deploying such cloud
micro-service applications on MECs. Using two popular bench-
marks, we show that, against conventional wisdom, end-to-end
latency does not improve signi�cantly even when most application
services are deployed in the edge location. We developed a pro-
�ler to better understand this phenomenon, allowing us to develop
recommendations for adapting applications to MECs. Further, by
quantifying the gains of those recommendations, we show that
the performance of an application can be made to reach the ideal
scenario, in which the latency between an edge datacenter and a
remote datacenter has no impact on the application performance.

This work thus presents ways of adapting cloud-native applica-
tions to take advantage of MECs and provides guidance for develop-
ing MEC-native applications. We believe that both these elements
are necessary to drive MEC adoption.

CCS CONCEPTS
• Networks ⌅ Network measurement; • Computer systems
organization ⌅ Cloud computing; • Software and its engi-
neering⌅ Software design engineering.

KEYWORDS
Mobile Edge Clouds, Edge Latency, Mobile Application Develop-
ment, Micro-service, Pro�ling
ACM Reference Format:
Chanh Nguyen, Amardeep Mehta, Cristian Klein, and Erik Elmroth. 2019.
Why Cloud Applications Are not Ready for the Edge (yet). In SEC ’19:

Permission�to�make�digital�or�hard�copies�of�all�or�part�of�this�work�for�personal�or�
classroom�use�is�granted�without�fee�provided�that�copies�are�not�made�or�distributed�
for�pro�t�or�commercial�advantage�and�that�copies�bear�this�notice�and�the�full�citation�
on�the��rst�page.�Copyrights�for�components�of�this�work�owned�by�others�than�ACM�
must�be�honored.�Abstracting�with�credit�is�permitted.�To�copy�otherwise,�or�republish,�
to�post�on�servers�or�to�redistribute�to�lists,�requires�prior�speci�c�permission�and/or�a�
fee.�Request�permissions�from�permissions@acm.org.
SEC�’19,�November�7–9,�2019,�Arlington,�VA,�USA
©�2019�Association�for�Computing�Machinery.
ACM�ISBN�978-1-4503-6733-2/19/11.�.�.�$15.00
IUUQT���EPJ�PSH������������������������

ACM/IEEE Symposium on Edge Computing, November 7–9, 2019, Arlington,
VA, USA. ACM, New York, NY, USA, 14 pages.

1 INTRODUCTION
Mobile Edge Cloud (MEC) is an emerging paradigm in which data-
centers are combined with IT services and cloud computing capabil-
ities at the edge of the network, at close proximity to the end-users
such as base stations or WiFi access points [1, 2]. This highly dis-
tributed approach allows MEC to provide computation and storage
capabilities with much lower latencies than would be achievable
with a centralized cloud alone. In addition, MECs also help to mini-
mize the central cloud’s ingress bandwidth requirements, reducing
the impact of network jitter on overall application latency, and
alleviating data privacy concerns.

Cloud application users are very sensitive to a service’s latency
and tend to prioritize it when selecting cloud services. The longer
it takes for a service to respond to a user request, the greater the
risk that a customer switches to a competing service. A report by
Amazon [3] showed that a 100 ms increase in latency costs them 1%
in reduced sales, while a similar study by Akamai [4] concluded that
on average, a 1 second delay in page response reduces conversions
by 7%, page views by 11%, and customer satisfaction by 16%. Given
the importance of latency for the success of cloud applications, it
is interesting to consider how MECs could be exploited to further
reduce their latency.

Modern cloud applications are increasingly architected as collec-
tions of micro-services [5]. The micro-service philosophy advocates
constructing software applications as collections of small, indepen-
dently deployable services that communicate with each other via
lightweight mechanisms [6]. Micro-services are very agile, and
great for accelerating software development, deployment, and oper-
ation practices. Consequently, they have seen widespread industrial
adoption in recent years, for example within Amazon and Net⇤ix.

An appealing property of micro-service-based cloud application
is their ⇤exible deployment: they can be deployed in various con-
�gurations, combining resources in both data-centers and edge
locations. One might therefore expect them to be well-placed to
bene�t from the advantage of MECs. With respect to decentralizing
and geographically distributing data in proximity to the user, de-
ploying cloud applications over a MEC can be compared to Content
Delivery Networks (CDNs) [7, 8], which are successfully used to im-
prove applications’ accessibility, availability, and load times through
content replication. However, in most cases, CDNs can only acceler-
ate read-intensive applications such as video streaming and mobile
content. Conversely, the deployment of micro-service-based cloud
applications over a MEC can potentially improve the performance
of both read- and write-intensive workloads.

The goal of this paper is to quantify the bene�ts that MEC can
o⇥er to micro-service-based cloud applications. We empirically

250

SEC ’19, November 7–9, 2019, Arlington, VA, USA C. Nguyen et al.

measure performance – speci�cally, end-to-end latency – under
di⇥erent deployment con�gurations, using resources from both
datacenters and edge locations. The aim is to answer two questions:
Can cloud applications leverage the advantages of MEC to
reduce latency? and What architectures and characteristics
should cloud applications possess to make them ready for
MECs?We believe that these questions must be answered to avoid
a “dead-lock” scenario in which a lack of applications slows down
MEC investment and a lack of MEC deployments discourages build-
ing MEC-native applications (Section 2).

We initially present experiments using an emulated MEC show-
ing that, against conventional wisdom, end-to-end latency does
not improve signi�cantly even when most services are deployed
in an edge location. To explain these �ndings, we present further
studies that show why modern cloud applications do not bene�t
from MECs, and suggest improvements in cloud application design
that allow the bene�ts of MECs to be realized. We also quantify the
gains of those recommendations and show how to basically convert
a cloud-native application into a MEC-native application.

The contribution of this paper is three-fold:

(1) We present experiments to empirically evaluate the impact
on performance of micro-service-based cloud applications in
di⇥erent deployment con�gurations that combine a remote
centralized data-center with edge locations, using various
strategies such as master-slave database replication. Two
benchmarks are used in the experiments: The CloudSuite
Web Serving [9] and Sock Shop [10] (Section 3).

(2) We present our network communication pro�ling tool and
apply it to the two benchmarks to understand why they do
not bene�t from MEC deployment (Section 4).

(3) We discuss strategies that cloud application developers can
use to make their applications ready for deployment over
MECs (Section 4).

By an exhaustive empirical study using two popular benchmarks,
we show that deployment on an MEC does not signi�cantly im-
prove end-to-end latency even when most application services are
deployed at the edge location. We developed a pro�ler to better
understand the causes of these problems, revealing that they origi-
nate from the large numbers of transactions between application
services when processing end-user requests. The number of trans-
actions multiplied by the network delay between the edge and the
remote centralized cloud causes response times to increase dra-
matically. To overcome this issue, we suggest ways to modify the
engineering of cloud-native applications so they can bene�t from
deployment on MECs. Implementing these architectural changes
could bring the performance of cloud micro-service applications
on MECs closer to that expected in an ideal scenarios, i.e., in which
the latency between the edge location and the remote datacenter
has no impact on application performance.

Our paper paves the way to a faster adoption of MECs by show-
ing how non-MEC-native applications, i.e., applications not speci�-
cally designed for MECs, can be adapted to take advantage of these
emerging infrastructures. In addition, we provide guidelines for
developing MEC-native applications. We believe that both these

elements are necessary to drive adoption of MECs because the adop-
tion of traditional clouds proceeded in two stages – �rst legacy ap-
plications were moved into the cloud, realizing some of the bene�ts
of cloud computing, then cloud-native applications were developed,
realizing the full bene�ts. Our expectation is that the adoption of
MECs will have to follow the same trajectory.

2 WHY SHOULD MECS BENEFIT
NON-MEC-NATIVE APPLICATIONS?

In this section we argue that it is important to study the bene�ts
MECs can o⇥er to applications not speci�cally built for them, which
we refer to as non-MEC-native applications.

Let us start by quickly revisiting the history and current status
of traditional clouds. The term “cloud” as it is currently used was
popularized by Amazon in 2006, and more rigorously de�ned by the
NIST in 2011 [11]. In 2008, Net⇤ix started migrating their existing
code to the cloud, being one of the �rst massive adopters of public
clouds. In the process, they found that considerable savings could
be made by speci�cally building their application for the cloud.
Around 2014, the term cloud-native applications appeared, used to
denote applications that are speci�cally engineered for clouds and
take full advantage of their capabilities, in particular elasticity. The
concept of applications consisting of large sets of microservices,
i.e., loosely-coupled �ne-grained services, subsequently provided
an architecture suitable for cloud-native applications [12].

Despite the great progress in cloud technologies and the devel-
opment of strategies for building cloud-native applications, many
discussions in 2017 still revolve around moving “legacy” applica-
tions (let us call them non-cloud-native applications) into the
cloud. For example, 25% of the respondents in a 2017 survey per-
ceived legacy applications as a barrier to public cloud adaption [13].
In April 2017, the company Docker – the developer of a container
platform that is seen as an enabler of cloud-native applications
– announced a partnership with IBM to containerize legacy ap-
plications [14]. These observations show that cloud adoption is
signi�cantly leveraged by non-cloud-native applications.

It is di⇧cult to imagine what the present would look like if
clouds o⇥ered no bene�ts to non-cloud-native applications. We be-
lieve that in such a hypothetical world, cloud adoption would have
been negligible: without applications bene�ting from clouds, cloud
providers would have been reluctant to invest in infrastructure,
and the lack of cloud infrastructure would have made application
providers reluctant to develop for the cloud. In essence, clouds
would have been a great idea trapped in an inescapable dead-lock.

On this basis, we argue that it is unrealistic to expect MECs
to become successful based solely on MEC-native applications,
i.e., applications engineered speci�cally for MECs. Therefore, MEC
providers and advocates should also focus on the bene�ts MECs can
o⇥er to non-MEC-native applications, i.e., applications not specif-
ically engineered for MECs. Of course, the most promising such ap-
plications are cloud-native applications, in particular microservice-
based applications with high deployment ⇤exibility. Indeed, cloud-
native applications allow an operator to decide at runtime what
parts of the application should run in data-centers and what parts
should run in edge locations, increasing the chances of bene�ting
from MECs.

251

Why Cloud Applications Are not Ready for the Edge (yet) SEC ’19, November 7–9, 2019, Arlington, VA, USA

Two commonly cited potential bene�ts of MECs are lower laten-
cies and lower core network bandwidth consumption. In this work
we focus on latency because many end-user-facing cloud-native
applications need low end-to-end response times: several studies
have identi�ed negative correlations between response times and
revenues, as discussed in Section 1. Therefore, we aim to answer
two research questions:
RQ1 How much can cloud-native applications bene�t from la-

tency reduction when deployed on MECs?
RQ2 How should cloud-native applications be engineered to max-

imize these bene�ts?
We answer these two questions with empirical evidence derived

from experiments on two representative microservice-based appli-
cations running on an emulated MEC infrastructure.

3 QUANTIFYING THE LATENCY IMPACT OF
DEPLOYMENTS

In this section, we present experiments designed to evaluate the la-
tency reductions that cloud-native applications could achieve when
deployed on MECs. To this end, we �rst describe an emulated MEC
infrastructure. We then introduce two microservice-based cloud
applications that were selected for deployment on the emulated
infrastructure in various con�gurations, using resources from both
datacenters and edge locations. Finally, we present the observed
end-to-end latencies of these applications under each studied de-
ployment con�guration.

3.1 Emulating a MEC Infrastructure
The MEC infrastructure consists of Data Centers (DCs) at the net-
work edge and a remote centralized cloud that promises low la-
tency for mission critical applications and low costs for bandwidth-
hungry applications [15]. Networking technology, such as 4G, can
achieve 10 ms Round Trip Time (RTT) between the end-users and
the edge layer DC [16]. To quantify the RTT between a centralized
cloud DC and the end-users, we measured the RTT for lambda
Amazon Web Services (AWS) endpoints [17] from our institution in
Europe, as shown in Figure 1. These measurements showed that the
average latency can vary between 30 ms and 400 ms depending on
geographic locations. For example, the lowest achievable latency
is 30 ± 10 ms for round trip from our location to the EU-central-1
location (i.e., Frankfurt, Germany). Based on these measurements,
the network RTT delay was set to 10 ms between the end-users and
the edge layer. In order to compare the application’s performance
when deployed in a MEC against the best achievable application’s
performance when deployed in a centralized cloud, the network
RTT delay between the end-users and the remote centralized cloud
DC was set to around 40 ms, as shown in Figure 2.

The MEC infrastructure was emulated by using NetEm [18], a
Linux network tra⇧c control emulation system, to inject these
delays between two layers emulating the remote centralized cloud
and edge locations. Note that the bandwidth between network
layers is set to a high value (1024 Mbps) so as to minimize the
impact of bandwidth constraints on the �nal measurement. To
avoid di⇧culties associated with controlling for network latency,
we conducted all experiments on a local machine with an Intel
i7-4790 CPU and 32GB RAM.

eu.central.1

eu.west.2

eu.west.1

us.east.1

ca.central.1

us.east.2

ap.south.1

us.west.1

us.west.2

ap.northeast.1

ap.northeast.2

ap.southeast.2

ap.southeast.1

100 200 300 400

Figure 1: Network round trip time (ms) for selected lambda
AWS endpoints from Umeå University, Sweden.

Edge datacenter Centralised cloud

web-server
memcache

db-server

Clients

10 ms 30 ms

Figure 2: Illustration of an emulated MEC showing the
network latencies between clients, an edge datacenter, and
the centralized cloud with the Web Serving benchmark de-
ployed in theMixed scenario.

3.2 Application benchmarks
Although microservice architectures are emerging and acquiring
acceptance in enterprise IT, most microservice-based cloud appli-
cations developed to date are proprietary. Therefore, the research
community has relied on plausible microservice application bench-
marks to conduct a wide variety of empirical studies on the evalu-
ation and design of such applications. Two such benchmarks are
the Cloudsuite [9] Web Serving benchmark and Sock Shop pro-
vided by Weaveworks [10], both of which have been widely used.
The advantage of these two benchmarks is that container images
for all their components are available in Docker repositories [19].
Additionally, their source code is publicly available, making them
relatively straightforward to customize and deploy for experimental
purposes.

3.2.1 Web Serving. As shown in Table 1, the Web Serving appli-
cation benchmark [9] has 4 components: faban-clients, web-server,
memcached-server, and db-server. The web-server component is
based on the open source social networking engine Elgg, which
is used to handle large numbers of highly dynamic requests [20].

252

SEC ’19, November 7–9, 2019, Arlington, VA, USA C. Nguyen et al.

Table 1: Web Serving and Sock Shop services

Application User services Database services

Web Serving
web-server,
memcached-server,
faban-client

db-server

Sock Shop

front-end, order,
payment, user,
catalogue, cart,
shipping, queue,
queue-Master

orderDB, userDB,
catalogueDB,
cartDB

Faban-clients are emulated using the Faban framework [21], which
generates highly dynamic AJAX requests.

3.2.2 Sock Shop. Sock Shop is a microservices demonstration
benchmark that simulates an online shopping web service for sell-
ing socks. As shown in Table 1, Sock Shop has 13 main independent
components divided into user-services and database-services. These
services are developed using various technologies such as Spring
Boot, Go, and Node.js. All Sock Shop services communicate with
each other using REST over HTTP [10].

We used the Docker Compose tool [22] to deploy Sock Shop
and Web Serving, with each independent service being separately
deployed in its own Docker container.

3.3 Deployment scenarios
To understand the impact of MECs on the latency of microservice-
based applications, we constructed �ve deployment scenarios for
the Web Serving and Sock Shop benchmarks, as shown in Figure 3.
The scenarios were:

3.3.1 Cloud-Only deployment. This is the traditional deploy-
ment con�guration of microservice-based cloud applications: all
application services are hosted in remote large-scale cloud data-
centers. In this scenario, the delay between the end-user and all
application services is 40 ms.

3.3.2 LimitedEdgedeployment. Microservice applications con-
sist of many small independent services. Some of these are user
services that communicate intensively with one-another to handle
end-user requests. To determine how applications’ response times
are a⇥ected by moving such intensively-communicating user ser-
vices closer to the end-user, we examined a scenario in which the
intensively-communicating user services are deployed at edge loca-
tions while all other microservices are deployed at the remote cloud
datacenter. The delay between the end-user and the edge-deployed
services is 10 ms, while that between the edge-deployed services
and those deployed at the remote datacenter is 30 ms. Because the
Web Serving benchmark has only one user service (i.e., web-server),
we did not test Web Serving in this scenario. Conversely, in the Sock
Shop benchmark, there is substantial communication between the
front-end service and other user services such as catalogue, user,
cart, and order. Therefore, these Sock Shop services are deployed
together at the edge location in this scenario.

Figure 3: Deployment scenarios used with the Web Serving
and Sock Shop benchmarks, showing the network latencies
between the application services.

3.3.3 Mixed deployment. In this scenario, the database services
are deployed in remote cloud datacenters, while the user services
are hosted at the edge locations. This reduces the network delay
between the end-users and user services to 10ms, while the network
delay between user services and database services is 30 ms.

3.3.4 Mostly Edge deployment. CDN technology has greatly
bene�ted content-delivery-based applications. Put simply, the pur-
pose of a CDN is to to improve applications’ accessibility and re-
sponse times by storing cached versions of their content in multiple
geographical locations so as to minimize the distance between the
end-user and application server. We constructed a fourth scenario
to quantify the response time bene�ts that read-only workload ap-
plications can gain by being deployed on MEC infrastructure using
a similar approach. For this purpose, we �rst customized the design
of the Web Serving and Sock Shop applications by creating replicas
of their database services. We then classi�ed the requests to the two
applications based on the nature of their operations: requests that
write new data to the database were classi�ed as write requests, and
all others were classi�ed as read requests. The two benchmark appli-
cations were then modi�ed such that all read requests were directed

253

Why Cloud Applications Are not Ready for the Edge (yet) SEC ’19, November 7–9, 2019, Arlington, VA, USA

to the secondary databases, while write requests were directed to
the primary databases. In this scenario, secondary databases are
deployed alongside user services at the edge locations, while the
primary databases are hosted on the remote cloud datacenter.

3.3.5 Ideal deployment. Indeed, in a realistic deployment, the
data stored in the edge locations, speci�cally in the database ser-
vices, would have to be somehow synchronized, preferably through
the remote cloud datacenter, as in the Mostly Edge deployment.
However, in order to quantify the minimum achievable latency
in MECs, we created the Ideal scenario: all components of the ap-
plication are deployed in a single edge location so that the data
synchronization latency is completely eliminated. Of course, this
scenario is not practicable, but is illustrated here to quantify how far
the other deployments are from what we can ideally expect when
deploying a cloud application over MECs. With such deployment,
the network delay between the end-user and the application is 10
ms.

Sections 3.4 and 3.5 present the measured response times for the
Web Serving and Sock Shop applications in the �ve deployment
scenarios outlined above.

3.4 Latency impact on Web Serving
3.4.1 Workload generator. The Faban framework is used to gen-
erate workloads for the Elgg social networking engine in the Web
Servicing application. It is Java-based and has two main compo-
nents: Faban driver and Faban harness. Faban driver provides an
API that can be used to create di⇥erent types of requests with spe-
ci�c types of operations and probability matrices. Faban harness
deploys and runs the benchmark, and then generates a report con-
taining various statistics such as the mean, standard deviation, and
95th percentile of the response times for the studied request types.

User requests were simulated using the framework in its default
con�guration. By default, the number of concurrent users is 7, and
the time span or duration of a workload is 300 seconds. The requests
Ri , i � {1, . . . , 9} included in the request mix are access home page,
login existing user, wall post, send chat message, send friend request,
create new user, logout logged in user, update live feed, and receive
chat message, as shown in Table 2. The core of Web Serving is the
Elgg platform whose operations are AJAX based [20], hence the
framework yields many frequent AJAX requests, a large fraction of
which keep updating a small part of the web page. Higher probabil-
ities are assigned to more common requests, such as updating the
live feed, posting on walls, and sending and receiving chat messages.
Lower probabilities are assigned to less frequent requests, such as
login and logout, reloading the home page, and creating new users.

3.4.2 Measured response times. Figure 4 shows the results obtained
using the Web Serving benchmark application in the four scenarios
in which it was tested. The x-axis in this �gure represents di⇥erent
request types under all four tested scenarios (since Web Serving
has few components, it was not tested under the Limited Edge de-
ployment scenario), and the y-axis represents the average response
time in seconds.

Table 3 shows the response time increases for the Mixed, Mostly
Edge and Ideal deployment scenarios relative to the response times

Figure 4: End-to-end response times forWeb Serving in four
scenarios.Web Serving has only three components, so it was
not tested in the Limited Edge scenario.

Table 2: The Web Serving request mix and the frequency
of each request type in Web Serving workloads [20]. The
Write/All Operations column describes the percentage of
data write operation involved in each request.

SNo Request Name Write/ All
Operations Percentage

R1 access home page 0 5
R2 login existing user 12 2.5
R3 wall post 11 20
R4 send chat message 3 17
R5 send friend request 3 10
R6 create new user 12 0.5
R7 logout logged in user 9.1 2.5
R8 update live feed 3.3 25.5
R9 receive chat message 3.3 17

for the Cloud Only deployment. These relative increases were calcu-
lated using Equation 1, where rscenario is the response time for the
scenario in question (i.e., the Mixed, Mostly Edge, or Ideal scenario),
and rcloud is the response time for the Cloud Only scenario.

rscenario ⇥ rcloud
rcloud

(1)

TheMixed deployment yielded signi�cant average response time
increases of 14◊, 27◊, 12◊, 12◊, 10◊, 15◊, and 14◊ for the login
existing user, wall post, send chat message, send friend request, logout
logged user, update live feed and receive chat message request types,
respectively. The Mostly Edge deployment yielded smaller relative
increases in the average response times for all request types other
than access home page; the largest relative increases in this scenario
were around 5◊, and were observed for the wall post and logout
logged in user requests. The explainable for these results is that in
these type of requests, there is a percentage of write operations
to the primary database which aggregates latency to the overall
response time due to the delay between edge and the remote cloud.
The Ideal deployment yielded lower response times for all requests

254

SEC ’19, November 7–9, 2019, Arlington, VA, USA C. Nguyen et al.

Table 3: Relative increases (see Equation 1) in the average re-
sponse times for di�erent request types in theMixed,Mostly
Edge, and Ideal deployments.

SNo Request Name Mixed Mostly
Edge Ideal

R1 access home page 0.44 -0.39 -0.68
R2 login existing user 14.05 0.82 -0.52
R3 wall post 26.87 4.67 -0.30
R4 send chat message 11.65 2.52 -0.41
R5 send friend request 11.65 1.80 -0.43
R6 create new user 3.52 0.75 -0.61
R7 logout logged in user 10.39 5.18 -0.43
R8 update live feed 15.32 1.78 -0.38
R9 receive chat message 13.56 2.07 -0.41

than the Cloud Only deployment because all the components are
deployed at the edge rather than the remote centralized cloud.

The Cloud Only deployment o⇥ered the best performance of the
three technically feasible deployment scenarios that were tested (as
discussed above, the Ideal deployment scenario is not technically
feasible). The Web Serving application thus does not bene�t from
the MEC infrastructure in general; the only case for which bene�ts
were observed was that of type R1 requests in the Mostly Edge
deployment scenario.

3.5 Latency impact on Sock Shop
3.5.1 Workload generator. We simulated end-user requests by us-
ing the load-test service provided with Sock Shop [23]. Two param-
eters, i.e., the numbers of requests and concurrent users, must be
passed when using load-test to generate requests arriving at Sock
Shop.

To generate the request mix (i.e., the desired mixture of read
and write requests), we used the load-test service’s default user
behavior con�guration. Table 4 presents di⇥erent request types and
the total number of each type generated in a Sock Shop workload
with the chosen settings: the number of concurrent users is set to
10, and the total number of requests is set to 1000, respectively.

We customized the user behavior setting to generate the read-
only requests. As shown in Table 5, with the chosen parameter
settings, the load-test service could be con�gured to generate 1000
Get Category or Get Basket requests.

The generated requests were then injected to the Sock Shop
application, and its response times were measured under di⇥erent
deployment scenarios.

3.5.2 Measured response times. Figure 5 presents Sock Shop’s av-
erage end-to-end response times under di⇥erent deployment sce-
narios for both the default request mix and read-only requests.

Default request mix. When using the default request mix, the
workloads delivered to Sock Shop include both read and write
requests. For this mix, the average response time of Sock Shop
in the Cloud Only deployment scenario was approximately 62 ms.
This is understandable because all the application’s services are

Table 4: Di�erent request types delivered to Sock Shop in the
test workload. The total number of requests was set to 1000,
including both read and write requests.

Request Count

GET / 110
GET /basket.html 111
DELETE /cart 110
POST /cart 111
GET /catalogue 117
GET /category.html 111
GET /detail.html 111
GET /login 111
POST /orders 117

deployed on the remote centralized cloud, for which the network
delay to the client is 40 ms. Interestingly, the average response times
observed under the Limited Edge and Mixed deployment scenarios
are almost three times those for the Cloud Only scenario, even
though most user services are deployed at edge locations and are
thus closer to the end-user. The Mostly Edge deployment yielded a
better average response time (approximately 54 ms) than the Cloud
Only deployment. However, even in this case, the reduction in
the response time (8 ms) is smaller than the di⇥erence in network
latency (30 ms) between the two deployment scenarios. This is
presumably due to the presence of write requests that must be
sent to database services hosted in the remote centralized cloud
data-center.

Notably, the average response time of Sock Shop in the Ideal de-
ployment is 27ms, which is half that for theMostly Edge deployment.
While the Ideal deployment is impractical, the signi�cant response
time di⇥erence between the Ideal and Mostly Edge deployments
strongly suggests that the communication between user services
and database services is the main factor a⇥ecting the increment of
the application’s response time.

Read-only requests. We performed tests using workloads con-
sisting only of read requests to quantify the expected response
time reductions for applications with read-only workloads when
deployed on MEC infrastructures. For this purpose, we modi�ed
the load-test service so that it only sent read requests to Sock Shop.

Two types of read requests were used in these experiments: Get
Basket and Get Category. Get Basket requests require data to be
read from cartDB, which is built using MongoDB. Conversely, Get
Category requests require data to be read from categoryDB, which
is built with MySQL. The load-test service generated workloads
with 1000 requests of the appropriate type, as shown in Table 5.

Figure 5 shows that Sock Shop achieved the best average re-
sponse times for both request types (15 ms for Get Category and
38 ms for Get Basket) under theMostly Edge scenario. The response
times for these two read-only request types were signi�cantly lower
than those for the Cloud Only scenario – by 30 ms and 31 ms, respec-
tively. This is as expected because in the Mostly Edge deployment,
all user services and replicas of the database services are hosted at
the edge location, so the network delay between the end-user and

255

Why Cloud Applications Are not Ready for the Edge (yet) SEC ’19, November 7–9, 2019, Arlington, VA, USA

0

50

100

150

Default Request Mix Get Category Get Basket

Request types

Av
er

ag
e

Re
sp

on
se

 ti
m

e
(m

s)

Cloud Only

Limited Edge

Mixed

Mostly Edge

Ideal

Figure 5: End-to-end Sock Shop response times in di�erent
scenarios.

Table 5: Di�erent types of read-only request delivered to
Sock Shop. (Total requests: 1000, concurrent users: 10).

Request Count

GET /basket.html 1000
GET /catalogue 1000

the application is reduced to 10 ms, whereas the delay time in the
Cloud Only deployment is 40 ms.

When responding to Get Basket and Get Category requests, Sock
Shop only calls front-end, catalogue, cart, and the corresponding
database services. These services are deployed with the same con-
�gurations in both the Limited Edge and Mixed scenarios (i.e., in
both cases, the user services are at the edge location, while the
database services are in the remote cloud). Therefore, the response
times for these read-only request types are identical in these two
deployment scenarios, and are substantially higher than those for
the Cloud Only scenario – 94 ms for Get Category and 111 ms for
Get Basket. Similarly, the Sock Shop response times for the Mostly
Edge scenario are identical to those for the Ideal scenario.

3.6 Latency impact of increased network delay
between the edge and the central datacenter

The network parameters of the emulated MECs were initially cho-
sen to re⇤ect latencies typical of locations with high Internet pene-
tration, such as Europe. In regions with lower Internet penetration,
such as Africa and South America, the inter-country delay is much
higher [24]. To assess the impact of latency on the benchmark ap-
plications, we conducted additional experiments using an MEC

0

200

400

600

Default Request Mix Get Category Get Basket

Request types

Av
er

ag
e

Re
sp

on
se

 ti
m

e
(m

s)

Cloud Only

Limited Edge

Mixed

Mostly Edge

Ideal

Figure 6: End-to-end response time of Sock Shop in di�erent
scenarios (with the latency between the edge datacenter and
centralized datacenter is increased to 280 ms).

con�guration more representative of such regions, with a single
centralized datacenter and edge datacenters scattered around the
continent. We set the network RTT delay between the edge loca-
tion and the centralized datacenter to 280 ms, which is equal to the
inter-country delay determined in an earlier study [24].

Figure 6 shows the average response time of SockShop under
these conditions. The pattern observed in the previous MEC con-
�guration is reproduced: the Mostly Edge deployment achieves a
better average response time than Cloud Only deployment for both
the default mix and read only request patterns. The response times
under Ideal scenarios for the default mix are again signi�cantly
better than those for the Mostly Edge deployment, con�rming the
hypothesis that the delay between the edge and central locations
signi�cantly a⇥ects application response times.

3.7 Validity of results
To verify that the measured trends in application response times
are attributable to network latency, we measured the utilization of
the running machine used in the experiments while they were in
progress. As presented in section 3.1, we performed all experiments
on a local machine with 8 CPU cores. During the running of each
experiment(which was approximately 3 minutes from beginning to
end under the conditions speci�ed in section 3.4 and section 3.5), we
recorded the utilization of each CPU core at 1-second intervals using
sar tool1. Figure 7a and 7b show the CPU utilization observed when
running SockShop and Web Serving, respectively. The utilization of

1https://linux.die.net/man/1/sar

256

SEC ’19, November 7–9, 2019, Arlington, VA, USA C. Nguyen et al.

cpu1 cpu2 cpu3 cpu4 cpu5 cpu6 cpu7 cpu8

0
5

1
0

1
5

2
0

CPU#

U
til

iz
a

tio
n

 %

(a) CPU Utilization in the experiment
with Sockshop

cpu1 cpu2 cpu3 cpu4 cpu5 cpu6 cpu7 cpu8

0
1

0
2

0
3

0
4

0
5

0

CPU#

U
til

iz
a

tio
n

 %
(b) CPU utilization in the experiment

with Web Serving

Figure 7: CPU utilization measured in during the
experiments. The yellow boxes extend from the 25th
percentile to the 75th percentile of the CPU utilization
dataset, and the thick horizontal line inside each box

indicates the median value. The whiskers above and below
the boxes show the corresponding maxima and minima,

and bubbles show the outliers.

0 20 40 60 80

0
5
0

1
0
0

1
5
0

2
0
0

Time Interval

K
B

/1
 s

e
c

(a) Transmission rate observed in
Sockshop’s Front-end

0 10 20 30 40 50 60

0
5
0
0

1
0
0
0

1
5
0
0

Time Interval

K
B

/1
 s

e
c

(b) Transmission rate observed in
Web Serving’s web server

Figure 8: Transmission rate observed in application’s
services (show two services with a detected maximum

transmission rate).

each CPU core was under 10% after eliminating outliers2, so CPU
was not a bottleneck.

We also investigated the extent to which bandwidth constraints
a⇥ected the �nal results obtained in the SockShop and Web Serving
experiments. validate whether the bandwidth constraints impact
the �nal results in both the SockShop andWeb Serving experiments.
To this end, we measured the transmission rate (i.e., in KB/second)
in and out of each application service. The maximum transmis-
sion rate observed in all experiments for SockShop was around
220 KB/second (see Figure 8a), while that for Web Serving was
approximately 1,785 KB/second (see Figure 8b). These rates are
much lower than the bandwidth assigned to the emulated MECs
(1024 Mbps). We are therefore con�dent that the observed trends
are solely due to the emulated network latency.

3.8 Summary
The results presented above clearly show that deploying the cloud-
native benchmark applications on MECs only provided bene�ts
2An outlier is an observation that is 1.5 times the interquartile range above the upper
quartile or below the lower quartile. At most 8% and 10% of the observations were
outliers at any of the eight CPUs for Sock Shop and for Web Serving, respectively.

(a) 1 turn (b) 3 turns

Figure 9: An example of two sessions in which six messages
are passed between two hosts but required di�erent
numbers of turns. In Fig. 9a, only one change in the

direction occurred in the session, so the number of turns is
1. In Fig. 9b, three changes in the direction occurred, so the

number of turns is 3.

that would improve response times in a small number of cases.
Moreover, the few improvements achieved by using anMEC instead
of deploying exclusively on remote cloud resources were generally
not signi�cant.

The largest improvements were observed for read requests when
the secondary databases were deployed in edge locations. However,
the tasks of cloud-native applications may span diverse categories
that involve both write and read requests, such as email, �le sharing,
customer relationship management, �nancial accounting, and so
on. In the following section, we analyze the architecture and char-
acteristics of these cloud applications to characterize the barriers
that prevent them from bene�ting from deployment on MECs and
thus hinder MEC adoption.

4 UNDERSTANDING LATENCY IMPACT OF
DEPLOYMENTS

In this section, we �rst describe our pro�ler, which is used to explain
why current cloud applications derive little bene�t in terms of
latency reduction when deployed on MECs. We then discuss some
potential improvements to cloud application design that would
permit such applications to take advantage of MECs.

4.1 Pro⇥ling results
We de�ne a turn as a change in the direction of communication
between two hosts. The number of turns is related to the amount of
time in which the client process is blocked, awaiting data returned
from the server process. Consequently, the more turns required to
service a request, the greater the blocked time.

Figure 9, depicts the ⇤ow of communication in two sessions
involving the same number of messages but forming di⇥erent num-
bers of turns. In the case shown in Figure 9a, there is only one
change of direction, so the number of turns is 1. Conversely, the
case shown in Figure 9b features three changes of direction, so the
number of turns is 3.

257

Why Cloud Applications Are not Ready for the Edge (yet) SEC ’19, November 7–9, 2019, Arlington, VA, USA

Figure 10 depicts the communication in Sock Shop between the
hosts of user services and database services using the Mongo and
MySQL protocols, respectively. Figure 10a shows that 6 turns are
needed to respond to a Get Login request in the Mongo protocol ses-
sion. Conversely, 5 turns are needed to respond to the Get Catalogue
request in the MySQL protocol session, as shown in Figure 10b.

(a) MongoDB Protocol (b) MySQL protocol

Figure 10: The communications in Sock Shop between the
two hosts of user services and database services (an

extracted TCP messages).

To identify the origins of the high application latency observed
for MEC deployments, the pro�ler needed to measure the number
of turns that occurred between two services when servicing speci�c
end-user request types. For this purpose, we used tcpdump [25]
to capture descriptive information about packets being transmit-
ted and received by container services over the network interface
while the benchmark applications were running. We then used the
pypcap�le package [26], a Python implementation of libpcap, to
develop a pro�ling tool that parses and extracts speci�c informa-
tion from the collected data to measure turn numbers for di⇥erent
application services.

Figure 11 shows the average numbers of turns between Web
Serving services, while Figure 12 shows the total number of turns
between Sock Shop services when these two applications respond
to the default request mixes described in Section 3.

Notably, many turns occurred between user services and
database services. For example, Web Serving requires 31 turns on
average between web-server and db-server to respond to a request.
Similarly, in Sock Shop, the average number of turns between user
services and database services is approximately at least 1.6 times

client web_server1
memcached_server48

db_server

31

Figure 11: Average number of turns between Web Serving
services.

client front_end2340

user

1533

order
381

catalogue

789
cart

1161

userDB4335

769

340

orderDB

629

payment256

shipping

321

catalogueDB1052

cartDB5341

rabbitmq225 queuemaster205

Figure 12: Number of turns between Sock Shop services.

greater than the average number of turns between user-services,
or between the end-user and user-services. The number of turns is
independent of the deployment scenario, but the delay increases lin-
early with the distance between network layers. Consequently, the
response times of these two applications are signi�cantly increased
when user services and database services are placed in di⇥erent
network layers, edge locations and the remote centralized cloud, as
observed in the Mixed deployment scenario.

In theMostly Edge deployment scenario, the number of end-user
requests to the database services on the distant centralized cloud is
reduced, so the applications’ response times improved compared
to the Cloud only deployment. However, this improvement was not
signi�cant because the aggregated response time also depended
on the latency that the database servers on the remote cloud re-
quired to respond to the write requests. In cases where only read
requests were injected to the application, eliminating all turns to
the distant database services, response times were greatly reduced,
as seen when Sock Shop responded to Get Basket and Get Catalogue
requests.

Our pro�ling results suggest that current cloud-native applica-
tions tend to make many turns between the user services and its
corresponding database services, when responding to end-user’s re-
quests. Consequently, deploying these services separately in di⇥er-
ent network layers obviously causes poor application performance.
This is an intrinsic problem that restricts the scope for migrating
such cloud-native applications to highly distributed environments
such as MECs.

However, such large numbers of turns between the services of
cloud native application are not strictly necessary, and can be re-
duced in some situations. For example, Sock Shop needs 73 turns
between the end-user and the front-end (i.e., HTTP/TCP turns)
to load all the objects (e.g., CSS, Javascript, and images) used to
render the homepage in the end-user’s browser upon receipt of a
Get Homepage request. Similarly, Sock Shop makes 5 turns between
the user service and the userDB service to verify the user’s creden-
tials and load user’s information in order to responding to a Login
request. In the former case, the unnecessary number of turn could
be diminished by considering the types and the total number of
objects that are being dealt. Likewise, in the latter case, the number
of turns between the user service and database service could be
reduced by optimizing the data query. Turn reduction solutions
and response time compression techniques that achieve these
goals are detailed below.

258

SEC ’19, November 7–9, 2019, Arlington, VA, USA C. Nguyen et al.

4.2 Recommendations for improving
cloud-native application performance on
MECs

In this section, we investigated the communication patterns of
current cloud-native application architectures to identify potential
design improvements that would make it possible to take advantage
of MECs. We address the problem at two levels: the application
level and the network communication protocol level.

4.2.1 Application level. The development of cloud applications
has prompted the introduction of various innovative solutions to
improve Quality of Service (QoS), notably by reducing the need
for low latencies between application servers and end-users. Tech-
niques of this sort include bundling relevant objects, compressing
high-bandwidth-requiring objects, and caching static content on ma-
chines located close to the end-user. However, these techniques only
help improve the latency between the end-user and the application
front-end.

To improve the overall performance of cloud applications, it is
important to identify approaches that can help reduce response
times in the application’s back-end between the user services and
the corresponding database services.

Query bundling. Microservice-based cloud applications often
have private databases for speci�c services. For instance, the Sock
Shop order service stores order’s records in orderDB, while the cata-
logue service stores product information in catalogueDB. This one-
database-per-service software development pattern requires e⇧-
cient database design and use: bad designs produce excessive num-
bers of queries and transactions between the user service and its
corresponding database, causing heavy tra⇧c and slow responses
if these services are deployed in di⇥erent network layers. This
problem can be alleviated by bundling several queries using Query
join/lookup. For example, bundling di⇥erent queries used to retrieve
user information inWeb Serving makes it possible to retrieve all the
user information with just one query, reducing the number of round
trips between web-server and data-server. This in turn reduces the
response time for Web Serving login existing user requests from
4.54 seconds to 3.67 seconds in the Mixed deployment.

(a) No query bundling - 5 turns (b) Query bundling - 1 turn

Figure 13: An example of query bundling: all the user
information is retrieved using a single query instead of

many queries.

Caching locally-targeted data at edge locations. Cutting o⇥
as many transactions as possible between the user service and the
distant database service would improve the application’s overall
response time. One viable way of doing this is to cache the locally-
targeted data at the same locations as the user services, in close
proximity to the highest-interest users. This solution reduces the
application’s response time and also minimizes the central cloud’s
bandwidth congestion because the end-user requests are dispersed
to local services. For example, an application that helps shoppers
�nd the best deals at multiple markets can replicate the data relating
to markets close to the end-user’s location and deploy them on the
server in the end-user’s vicinity instead of keeping the whole large
database on the distant server.

We quantify the bene�t of this technique with the Sock Shop
benchmark. In order to reduce the number of transactions to the
distant server, a replica of the cartDB database is deployed at the
edge location along with carts service so that the local end-users’
selected items are written/read directly to/from this local database.
As a result, the average response time for the check out shopping
cart requests (i.e., writing end user’s selected socks to the database
cartDB) reduces signi�cantly, from 69 ms to 39 ms in the Mixed
deployment.

Delayed transaction durability/Asynchronous write. As de-
monstrated by the pro�ling results presented in Section 3, the re-
sponse time reductions observed for the Mostly Edge deployment
are not signi�cant compared to those for the Cloud Only deploy-
ment. This is because the applications’ response times largely re⇤ect
the latency of the database services in the remote cloud data center
that are needed to respond to write requests. Such delay can be
reduced using a technique known as delayed transaction durabil-
ity or asynchronous write. Basically, at �rst the write operations
concurrently write new data to a bu⇥er. Whenever the bu⇥er is
�lled or a bu⇥er ⇤ushing event is invoked, then the bu⇥er’s data is
written to the database. With this technique, the client side does
not need to wait for an acknowledgement of the write operation
from the server side, no blocking time required at the client side,
hence reducing the latency caused by write transactions.

However, this technique leads to a risk of data loss in a cata-
strophic event (e.g., server crash/shutdown). Therefore, it is impor-
tant to weigh the trade-o⇥ between the performance improvement
and the data loss risk. While data loss is undesirable, cloud appli-
cations may store various type of data with di⇥erent importance
levels. Social network applications like the Web Serving benchmark
is an example, user information is critical hence cannot be lost.
However, individual data such as users’ posts and messages are not
critical. Under some circumstances, it may be worth accepting the
potential loss of some of this less important data in order to reduce
the latency of the write transactions. The asynchronous write can
be applied on database level or transaction level, and is available in
both traditional relational database management systems (RDMS)
and NoSQL.

We customized the carts service of the Sock Shop benchmark
so that its write operation is in asynchronous write mode. The
number of turns to write one item in shopping cart to cartDB thus
reduces from 15 turns to 11 turns. Therefore, the average response
time of Sock Shop for the check out shopping cart request reduces

259

Why Cloud Applications Are not Ready for the Edge (yet) SEC ’19, November 7–9, 2019, Arlington, VA, USA

0

20

40

60

Mixe
d

Asy
nc

Cach
ing

Cach
ing + A

sy
nc

Ideal

Configuration

A
ve

ra
g
e
 R

e
sp

o
n
se

 T
im

e
(m

s)

Figure 14: The average response time of the re-designed Sock
Shop (i.e., Async, Caching, Caching + Async) to the check out
shopping cart request as compared against that of the origi-
nal Sock Shop deployed in theMixed and the Ideal scenario.

Figure 15: The process of servicing a Get Homepage request
in Sock Shop.

approximately from 69 ms to 65 ms when deployed in the Mixed
deployment.

The overall performance of Sock Shop further improves when
applying both Caching locally-targeted data at edge locations and
Asynchronous write at the same time. As shown in the Fig. 14,
the average response time of Sock Shop to perform the check out
shopping cart request is around 35 ms which is less than a half as
compared to the original Sock Shop in the Mixed deployment and
approximately equal to that in the Ideal deployment (37 ms).

Asynchronous programming. To respond to a user request,
many user services and database services command one-another
to execute various small independent tasks. These can be executed
in parallel. For example, servicing a Get Homepage request in Sock
Shop requires the involvement of several services, as shown in
Figure 15. In the current version of Sock Shop, this occurs syn-
chronously, so the inter-service tasks are executed sequentially.
Consequently, the response time for Sock Shop Get Homepage re-
quests is the sum of the time spent on all these tasks. However, the
tasks associated with the interaction between the front-end and
user service are independent of those resulting from the interac-
tion between the front-end and catalogue service. Consequently,
they can be executed in parallel, potentially improving the overall
response time.

4.2.2 Network protocol level. The above discussion focuses on
application-level improvements intended to reduce the number of
turns between the services in the back-end of cloud-native applica-
tions. We now consider improvements in the network communica-
tion protocols used between back-end services that could facilitate
the adaptation of cloud-native applications to MECs.

Most connections on the Internet are short transfers and are most
heavily impacted by unnecessary handshake round trips [27]. Most
modern web-based cloud applications use the HTTP transport pro-
tocol over the Internet [28]. HTTP/1.1 allows multiple requests to
be pipelined in a single persistent TCP connection without waiting
for a response [29], which reduces the number of TCP handshakes
and packets needed for transmission across the network. Because
HTTP/1.1 retains a �rst-in-�rst-out ordering, it can su⇥er from the
head of line blocking problem, which means that if the server takes
a long time to respond to a request, subsequent requests must wait.
The HTTP/2 [30] protocol was introduced to address this problem.
However, the TCP congestion avoidance techniques of HTTP/2 do
not fully solve the head of line blocking problem, especially in the
event of packet loss.

To tackle this problem, one can employ the Quick UDP Internet
Connections (QUIC) protocol developed by Google [27]. QUIC is
a reliable multiplexed transport protocol similar to TCP + TLS +
HTTP/2, but runs on top of UDP instead of TCP. Brie⇤y, QUIC
handshakes frequently require zero roundtrips before sending a
payload, as compared to 1 to 3 roundtrips for TCP + TLS. Applica-
tions developed using the QUIC protocol have various advantages,
including connection establishment latency, improved congestion
control, and multiplexing without head of line blocking, thus re-
ducing the number of packets transmitted back and forth across
the network.

The QUIC protocol has been widely adopted, especially on the
client side. An approximate estimate shows that over 30% of Google’s
egress tra⇧c and 7% of global Internet tra⇧c uses QUIC as of the
time of writing [28]. The latency reductions achieved by deploy-
ing QUIC are compelling. For example, Google uses QUIC in the
Google Search application, achieving latency reductions of 8% and
3.6%, respectively, for desktop and mobile users [27]. Given the
response time reductions that QUIC a⇥ords to communications
between end-user devices and application servers, deploying QUIC
in the application back-end between the user services and database
services could potentially lead to signi⇥cant improvements
in cloud applications’ response time.

5 RELATEDWORK
MEC is a paradigm in the early stages of development that has seen
limited deployment (e.g., Lambda@Edge3), many studies have fo-
cused on identifying computing infrastructures and application ar-
chitectures that could be used to realize its potential advantages [1].

Some of the key demonstrators of MECs are latency-sensitive
IoT-based applications such as augmented reality and wearable
cognitive assistance systems. To evaluate the performance of such
applications in terms of end-to-end response times, Zhou et al. [31]
conducted empirical experiments using 7 di⇥erent cognitive as-
sistance applications covering a wide variety of assistant tasks.

3https://aws.amazon.com/lambda/edge/

260

SEC ’19, November 7–9, 2019, Arlington, VA, USA C. Nguyen et al.

Similarly, Hu et al. [32] examine the bene�t of edge in terms of
response time and energy consumption by o⌃oading di⇥erent in-
teractive mobile applications to the edge. Their results showed that
the performance of these applications is maximized by o⌃oading
to MECs rather than running on a centralized cloud.

Choy et al. [33] helped to increase the maturity of MECs by
proposing a hybrid deployment strategy for on-demand game play
to meet the strict latency requirements of gaming applications.
By using a clever selection mechanism to select the location of a
game server at the network edge, these locally-targeted applications
can guarantee a certain quality of service even when the number
of end-users increases signi�cantly. Lin et al. [34] introduces a
lightweight framework for o⌃oading Massively Multiplayer On-
line Game (MMOG), namely CloudFog, which utilizes resources
in the proximity of end-users to relieve the remote cloud’s ingress
bandwidth, increase the user coverage and reduce response latency.

Real-time video analytics which drive a wide range of novel appli-
cations (e.g., surveillance, self-driving car, etc.) are also one of ”killer
applications” for Mobile Edge Cloud [35]. In order to overcome the
problems of high bandwidth consumption, privacy concerns and
long latency in the real-time video surveillance system, Tan et al. in-
troduced the Vigil framework [36] which utilize compute resources
from the edge of the network. In another spectrum, Karim et al. [37]
observed performance gains from edge deployment of a latency-
sensitive high bandwidth video analytics application. The authors
argued that the bene�ts of edge deployment become obvious when
the computation time is less than the network latency.

In addition to such MEC-native applications, it is important to
determine whether MECs can o⇥er any bene�ts to non-MEC-native
applications because failing to do so may hinder the development
and adoption of MECs. Among existing application types, cloud-
native applications are arguably the best suited for adaptation to
MEC platforms, and such adaptation could spur MEC deployment
and investment in much the same way that the adoption of tradi-
tional clouds was fostered by non-cloud-native legacy applications.
However, before moving such applications to MECs, it is necessary
to investigate their architecture as well as the techniques being
used to develop such cloud applications. For instance in most cloud
applications, the Object Relational Mapping (ORM) has been widely
employed as a conceptual abstraction to abstract complex database
accesses [38]. However, Chen et al. [39] proved that ORM can cause
redundant data problems which in turn seriously impacts to the
application performance. In recent years, microservice architecture
has emerged as a popular framework for engineering cloud appli-
cations as its capable of accelerating agile software development,
deployment, and maintenance. Some groups have studied the char-
acteristics of microservice application architectures and analyzed
their performance when deployed in centralized clouds [40, 41]. On
the basis of experiments, they argued that the application imple-
mented in a microservice architecture generates more communi-
cation than that in a monolithic architecture, thus diminishes the
application’s performance in terms of response time. This is again
con�rmed by results from our work in Section 4.

In the early days of cloud computing, several studies examined
the potential bene�ts and challenges of moving legacy enterprise
applications to cloud environments, and the scope for utilizing re-
sources in hybrid environments that combine on-premise and cloud

infrastructures. To determine which elements of speci�c applica-
tions should be deployed locally and which should be migrated to
cloud datacenters, one must consider the intertwined problems of
application complexity (which arises from the interactions between
an application’s diverse components as well as factors such as pri-
vacy considerations) and the variability of application performance
in the cloud (which arises from network latency, resource starva-
tion, and so on). Hajjat et al. [42] were among the �rst researchers
to show that signi�cant advantages could be gained by combining
on-premise and cloud resources when deploying multi-component
applications, and proposed a model that enables automated plan-
ning of such cloud migrations. Similarly, Andrikopoulos [43] out-
lined the challenges of moving legacy applications to the cloud and
ways of overcoming these challenges. They also discussed ways of
identifying which components of an application can bene�cially be
migrated and ways of adapting applications for operation in such
mixed environments.

Our work complements these earlier studies: we have used two
popular cloud-native application benchmarks and exhaustive eval-
uated their performance (i.e., response times) under various deploy-
ment scenarios using combined edge resources and remote cloud
datacenter resources. By identifying root-causes of why cloud ap-
plications derive little bene�t from MECs, we proposed various
potential design improvements in software engineering from appli-
cation level to network communication protocol level, and indeed
the quantifying results showed that, cloud applications with such
changes are able to amend their overall performance in terms of
latency reduction when deployed on MECs.

6 CONCLUSIONS AND FUTUREWORK
MECs are recognized as a key enabling driver of �fth generationmo-
bile network technology (5G) that will make it possible to meet end-
user expectations relating to performance, scalability and agility.
Various mission-critical application types that are poorly served by
current cloud infrastructure could run well on MECs.

Learning from the historical role of non-cloud-native legacy ap-
plications in traditional clouds, we argue that MECs also provide
bene�ts to non-MEC-native applications. Therefore, in this work,
we conducted empirical studies to explore and quantify the bene-
�ts of deploying cloud-native applications on MECs. We deployed
two popular microservice benchmarks in di⇥erent scenarios using
resources from edge locations and the remote centralized cloud.
Disappointingly, our results showed that current cloud-native appli-
cations derive little bene�t from deployment on MECs in terms of
latency reduction, andmay even su⇥er from increased latency when
deployed in this way. We developed a pro�ler to better understand
the causes of these problems, revealing that they originate from
the large numbers of transactions between application services
when processing end-user requests. The number of transactions
multiplied by the network delay between the edge and the remote
centralized cloud causes response times to increase dramatically.

We subsequently identi�ed some ways of modifying the engi-
neering of cloud-native applications that could enable them to
derive bene�ts from deployment on MECs. We showed that such
changes can bring the performance of a cloud native application

261

Why Cloud Applications Are not Ready for the Edge (yet) SEC ’19, November 7–9, 2019, Arlington, VA, USA

to that expected in an ideal scenario, i.e., in which the latency be-
tween the edge location and the remote datacenter has no impact
on the application performance. Our paper paves the way to a more
rapid adoption of MECs, by enabling a broad class of applications –
microservice-based cloud applications – to readily take advantage
of MECs.

The study is limited to one edge site and one centralized data
centers. However, if applications are deployed in distinct edge sites,
the overall result will be relevant those of the Ideal scenario plus
the delay of data synchronization among edge sites. As near future
work, we plan to verify the measurement for this scenario in which
many aspects are considered such as database sharding, load bal-
ancing, and methods to generate workloads that is able to re⇤ect
the interaction of local end-users with applications deployed at the
local edge sites. Also, we plan to further investigate the application-
and protocol-level improvements discussed herein, with the aim
of quantifying the gains and costs associated with each approach.
In this way, we will draw up a blueprint for porting cloud-native
applications to MECs.

ACKNOWLEDGEMENTS
The authors would like to thank Professor Michael Rabinovich and
the anonymous reviewers for their helpful and constructive sug-
gestions that greatly contributed to improving the �nal version of
the paper. Financial support has been provided by the Wallenberg
AI, Autonomous Systems and Software Program (WASP) funded by
the Knut and Alice Wallenberg Foundation, the Swedish Research
Council (VR) under contract number C0590801 for the Cloud Con-
trol project, and the Swedish Strategic Research Program eSSENCE.

REFERENCES
[1] H. Liu, F. Eldarrat, H. Alqahtani, A. Reznik, X. de Foy, Y. Zhang, Mobile edge

cloud system: Architectures, challenges, and approaches, IEEE Systems Journal
12 (3) (2018) 2495–2508. doi:10.1109/JSYST.2017.2654119.

[2] E. Ahmed, M. H. Rehmani, Mobile edge computing: Opportunities, solutions, and
challenges, Future Generation Computer Systems 70 (2017) 59 – 63. doi:https:
//doi.org/10.1016/j.future.2016.09.015.

[3] F. Khan, The cost of latency, https://www.digitalrealty.com/blog/the-cost-of-
latency/, accessed: 2019-04-01 (2015).

[4] Kissmetrics, How loading time a⇥ects your bottom line, https://blog.kissmetrics.
com/loading-time/, accessed: 2019-04-01 (2011).

[5] J. Lewis, M. Fowler, Microservices - a de�nition of this new architectural
term, https://martinfowler.com/articles/microservices.html, accessed: 2019-04-01
(2014).

[6] S. Newman, Building Microservices, O’Reilly Media, 2015.
URL https://books.google.se/books?id=1uUDoQEACAAJ

[7] A. Vakali, G. Pallis, Content delivery networks: status and trends, IEEE Internet
Computing 7 (6) (2003) 68–74. doi:10.1109/MIC.2003.1250586.

[8] G. Pallis, A. Vakali, Insight and perspectives for content delivery networks,
Commun. ACM 49 (1) (2006) 101–106. doi:10.1145/1107458.1107462.

[9] Web serving benchmark, http://cloudsuite.ch//pages/benchmarks/webserving/,
accessed: 2019-04-01 (2017).

[10] Weaveworks Inc, Socks shop a microservices demo application, https://
microservices-demo.github.io, accessed: 2019-04-01 (2016).

[11] P. M. Mell, T. Grance, Sp 800-145. the nist de�nition of cloud computing, Tech.
rep., Gaithersburg, MD, United States (2011).

[12] C. Pautasso, O. Zimmermann, M. Amundsen, J. Lewis, N. Josuttis, Microservices
in practice, part 1: Reality check and service design, IEEE Softw. 34 (1) (2017)
91–98. doi:10.1109/MS.2017.24.

[13] Stratoscale, Hybrid cloud survey, https://www.stratoscale.com/solutions/hybrid-
cloud/survey/ (2017).

[14] R. Miller, Docker brings containerization to legacy apps, https://techcrunch.com/
2017/04/19/docker-announces-new-containerization-service-for-legacy-apps/,
accessed: 2019-04-26 (Apr. 2017).

[15] A. Mehta, W. Tärneberg, C. Klein, J. Tordsson, M. Kihl, E. Elmroth, How bene�cial
are intermediate layer data centers in mobile edge networks?, in: 2016 IEEE 1st

International Workshops on Foundations and Applications of Self* Systems
(FAS*W), 2016, pp. 222–229. doi:10.1109/FAS-W.2016.55.

[16] I. Hadûi⌥, Y. Abe, H. C. Woithe, Edge computing in the epc: a reality check, in:
Proceedings of the Second ACM/IEEE Symposium on Edge Computing, SEC
’17, ACM, New York, NY, USA, 2017, pp. 13:1–13:10. doi:10.1145/3132211.
3134449.

[17] AWS Regions and Endpoints - Amazon Web Services, https://docs.aws.amazon.
com/general/latest/gr/rande.html.

[18] Network emulation, https://wiki.linuxfoundation.org/networking/netem, ac-
cessed: 2019-04-01.

[19] Docker repositories, https://hub.docker.com/explore/, accessed: 2019-04-01
(2017).

[20] T. Palit, Y. Shen, M. Ferdman, Demystifying Cloud Benchmarking, in: 2016 IEEE
International Symposium on Performance Analysis of Systems and Software
(ISPASS), 2016, p. 122–132.

[21] Faban - Helping measure performance, http://faban.org/, accessed: 2019-04-01.
[22] Overview of docker compose, https://docs.docker.com/compose/overview/, ac-

cessed: 2019-04-01 (2017).
[23] Simulate acutual end user usage of sock shop, https://github.com/microservices-

demo/load-test, accessed: 2019-04-01.
[24] A. Formoso, J. Chavula, A. Phokeer, A. Sathiaseelan, G. Tyson, Deep diving into

africa’s inter-country latencies, in: IEEE INFOCOM 2018-IEEE Conference on
Computer Communications, IEEE, 2018, pp. 2231–2239.

[25] tcpdump dump tra⇧c on a network, http://www.tcpdump.org/, accessed: 2019-
04-01 (February 2017).

[26] Python pypcap�le package, https://pypi.python.org/pypi/pypcap�le, accessed:
2019-04-01.

[27] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic, D. Zhang, F. Yang, F. Koura-
nov, I. Swett, J. Iyengar, J. Bailey, J. Dorfman, J. Roskind, J. Kulik, P. Westin,
R. Tenneti, R. Shade, R. Hamilton, V. Vasiliev, W.-T. Chang, Z. Shi, The QUIC
Transport Protocol: Design and Internet-Scale Deployment, in: Proceedings of
the Conference of the ACM Special Interest Group on Data Communication,
SIGCOMM ’17, ACM, New York, NY, USA, 2017, pp. 183–196.

[28] Sandvine, Global internet phenomena report (2016).
[29] R. Fielding, J. Reschke, RFC 7230: Hypertext Transfer Protocol (HTTP/1.1):

Message Syntax and Routing, Internet Engineering Task Forc (IETF) (2014).
[30] M. Belshe, R. Peon, M. Thomson, RFC 7540: Hypertext Transfer Protocol Version

2 (HTTP/2), Internet Engineering Task Force (IETF) (2015).
[31] Z. Chen, W. Hu, J. Wang, S. Zhao, B. Amos, G. Wu, K. Ha, K. Elgazzar, P. Pillai,

R. Klatzky, D. Siewiorek, M. Satyanarayanan, An empirical study of latency in an
emerging class of edge computing applications for wearable cognitive assistance,
in: The Second ACM/IEEE Symposium on Edge Computing, IEEE, 2017.

[32] W. Hu, Y. Gao, K. Ha, J. Wang, B. Amos, Z. Chen, P. Pillai, M. Satyanarayanan,
Quantifying the impact of edge computing onmobile applications, in: Proceedings
of the 7th ACM SIGOPS Asia-Paci�c Workshop on Systems, APSys ’16, ACM,
New York, NY, USA, 2016, pp. 5:1–5:8. doi:10.1145/2967360.2967369.

[33] S. Choy, B. Wong, G. Simon, C. Rosenberg, A hybrid edge-cloud architecture for
reducing on-demand gaming latency, Multimedia Systems 20 (5) (2014) 503–519.

[34] Y. Lin, H. Shen, CloudFog: Leveraging Fog to Extend Cloud Gaming for Thin-
Client MMOG with High Quality of Service, IEEE Trans. Parallel Distrib. Syst.
28 (2) (2017) 431–445. doi:10.1109/TPDS.2016.2563428.

[35] G. Ananthanarayanan, P. Bahl, P. Bodík, K. Chintalapudi, M. Philipose, L. Ravin-
dranath, S. Sinha, Real-time video analytics: The killer app for edge computing,
Computer 50 (10) (2017) 58–67. doi:10.1109/MC.2017.3641638.

[36] T. Zhang, A. Chowdhery, P. V. Bahl, K. Jamieson, S. Banerjee, The design and
implementation of a wireless video surveillance system, in: Proceedings of the
21st Annual International Conference on Mobile Computing and Networking,
MobiCom ’15, ACM, New York, NY, USA, 2015, pp. 426–438. doi:10.1145/
2789168.2790123.

[37] F. Kalim, S. A. Noghabi, S. Verma, To edge or not to edge?, in: Proceedings of
the 2017 Symposium on Cloud Computing, SoCC ’17, ACM, New York, NY, USA,
2017, pp. 629–629. doi:10.1145/3127479.3132572.

[38] R. Johnson, J2ee development frameworks, Computer 38 (1) (2005) 107–110.
doi:10.1109/MC.2005.22.

[39] T. H. Chen, W. Shang, Z. M. Jiang, A. E. Hassan, M. Nasser, P. Flora, Finding and
evaluating the performance impact of redundant data access for applications that
are developed using object-relational mapping frameworks, IEEE Transactions
on Software Engineering 42 (12) (2016) 1148–1161. doi:10.1109/TSE.2016.
2553039.

[40] T. Ueda, T. Nakaike, M. Ohara, Workload characterization for microservices,
in: 2016 IEEE International Symposium on Workload Characterization (IISWC),
IEEE, 2016, pp. 1–10.

[41] M. Villamizar, O. Garcés, L. Ochoa, H. Castro, L. Salamanca, M. Verano, R. Casallas,
S. Gil, C. Valencia, A. Zambrano, M. Lang, Infrastructure cost comparison of
running web applications in the cloud using aws lambda and monolithic and
microservice architectures, in: 2016 16th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (CCGrid), 2016, pp. 179–182. doi:10.1109/
CCGrid.2016.37.

262

SEC ’19, November 7–9, 2019, Arlington, VA, USA C. Nguyen et al.

[42] M. Hajjat, X. Sun, Y.-W. E. Sung, D. Maltz, S. Rao, K. Sripanidkulchai, M. Tawar-
malani, Cloudward bound: planning for bene�cial migration of enterprise appli-
cations to the cloud, ACM SIGCOMM Computer Communication Review 41 (4)

(2011) 243–254.
[43] V. Andrikopoulos, T. Binz, F. Leymann, S. Strauch, How to adapt applications for

the cloud environment, Computing 95 (6) (2013) 493–535.

263

