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Abstract— This paper introduces the iPlant Foundation API Data 
Services, a cloud-based, hosted solution for distributed data and 
metadata management in the iPlant Data Store. The iPlant Data 
Store is a virtual storage solution for over 7000 users providing 
seamless access to over 6PB of distributed storage within the 
iPlant cyberinfrastructure using command line utilities, FUSE 
mounts, desktop GUI tools, and web interfaces. The Foundation 
API Data Services expand the standard CRUD operations by 
providing a collection of services that allow users to move data 
into and out of the iPlant Data Store using multiple transfer 
protocols, transform data between formats, perform advanced 
metadata management using both structured and unstructured 
data, and define their own private storage grid by registering 
their own resources. Concepts of unified authentication, sharing, 
provenance, and monitoring are baked into the services so users 
can focus on innovating their domain science rather than 
reinventing computer science. This paper briefly describe the 
iPlant Cyberinfrastructure, details the architecture of the iPlant 
Foundation API Data Services, reviews the first year of 
production usage, and concludes with future plans. 
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I.  INTRODUCTION 
The iPlant Collaborative (iPlant) is a United States National 

Science Foundation (NSF) funded project that has created an 
innovative, comprehensive, and foundational 
cyberinfrastructure (CI) in support of plant biology research 
[1]. iPlant is developing cyberinfrastructure that uniquely 
enables scientists throughout the diverse fields that comprise 
plant biology to address Grand Challenges in new ways, to 
stimulate and facilitate cross-disciplinary research, to promote 
biology and computer science research interactions, and to train 
the next generation of scientists on the use of 
cyberinfrastructure in research and education. The iPlant 
cyberinfrastructure design is based on an unprecedented period 
of research community input, and leverages developments in 
high-performance computing, data storage, and 
cyberinfrastructure for the physical sciences. iPlant is an open-
source project with application programming interfaces that 
allow the community to extend the infrastructure to meet its 
needs. 

In this paper we present one way in which iPlant is 
handling data across its cyberinfrastructure. Specifically, we 

present the iPlant Foundation API Data Services, a cloud-
based, hosted solution for distributed data and metadata 
management in the iPlant Data Store. The iPlant Data Store is a 
virtual storage solution for over 7000 users providing seamless 
access to distributed data within the iPlant cyberinfrastructure 
using command line utilities, FUSE mounts [2], desktop GUI 
tools, and web interfaces. 

The Foundation API Data Services expand the existing 
basic CRUD operations by providing a collection of services 
that allow users to move data inside and outside of the iPlant 
Data Store using multiple transfer protocols, transform data 
between formats, perform advanced metadata management 
using both structured and unstructured data, and define their 
own private storage grid by registering their own resources. 

As with the entire Foundation API, concepts of unified 
authentication, sharing, provenance, and monitoring are baked 
into the services so users can focus on innovating their domain 
science rather than reinventing computer science. The 
remainder of this paper is as follows. Section 2 describes the 
iPlant Cyberinfrastructure. Section 3 details architecture of the 
iPlant Foundation API Data Services. Section 4 highlights the 
first year of production usage, and Section 5 concludes with 
future plans. 

II. THE IPLANT DATA STORE 
The iPlant Data Store went into production in 2010 as a 

centralized facility to address the existing needs of the 
community to share and store scientifically relevant data sets 
and metadata. Underlying the Data Store is a federated network 
of Integrated Rule-Oriented Data System (iRODS) [3] servers 
running at University of Arizona and mirrored at the Texas 
Advanced Computing Center (TACC). The Data Store 
represents over 6 PB of storage capacity accessible over a 40 
GB/s network. iRODS was chosen because it has a proven 
history of successful deployments, supports data federation as 
well as multi-client and multi-platform access, and has an 
active development team willing to address bugs and partner on 
new features. Other attractive features leveraged by the Data 
Store are the ability to search and store metadata, user and 
group-based access control lists (ACL), and the ability to 
integrate tightly into iPlant’s existing infrastructure. 



Users access the Data Store in multiple ways. The iPlant 
Discovery Environment (DE) [4], and the Davis web 
application [5] are the primary web interfaces. iDrop, a Java 
desktop application, has been very popular both from within 
Atmosphere virtual machines (VM) and from users' local 
desktops[6][7]. The iPlant Foundation API provides a RESTful 
web service interface, and client libraries exist in in multiple 
languages for further programmatic access. The FUSE 
interface provides a convenient, mounted file system view of 
iRODS, but does not support any metadata functionality. The 
FUSE interface is a very common access mechanism for 
Atmosphere users, who primarily need to access their data 
from command line tools as if it were a local folder. More 
advanced users or ones who need to move terabytes of data use 
i-commands due to their high performance parallel transfer 
capabilities[8]. 

All users have an initial allocation of 100GB. With a simple 
request, they can increase their allocation up 1 TB. Users 
requiring allocations greater than 1 TB can submit a 
justification letter, which will be reviewed by an allocations 
committee. The mirroring features of the Data Store mean that 
data is always located close to the computational resources. 
This means greater throughput on computational jobs, and 
more responsive data access within the CI. 

The first two years of production usage brought conceptual, 
technical, and user-related challenges. One ongoing conceptual 
problem was identifying ways to deal with structured data. The 
number of data formats available today within the Plant 
Biology community is large and growing. Despite multiple 
efforts within the community, the lowest common denominator 
to represent data remains a file. As a result, finding general 
ways to store structured data in a form that can be easily 
imported, exported, and searched is not currently possible. 
Instead, the Data Store provides raw storage, and higher level 
services like the Foundation API and DE to provide a set of 
tools that operate identically on roughly a dozen well-known 
data types. While not optimal, this approach casts the biggest 
net and, hopefully, in time will incentivize the community to 
come to consensus on a small number of common formats. 

Another conceptual challenge in building the Data Store 
was developing intuitive, general purpose interfaces to search 
through different kinds of metadata that work consistently 
across the CI. As mentioned above, there are multiple ways to 
access the Data Store. Each tool brings its own concept of 
interaction with metadata. The FUSE client has no concept of 
metadata, while the iDrop interface views metadata queries as 
SQL-type operations. The i-commands support both key-value 
lookups as well as structured queries. It may be that metadata is 
too contextual to make the kinds of generalizations needed for 
a generic interface. Clearly this is an area of ongoing research 
effort. 

One technical challenge in using iRODS was authentication 
and identity management. iRODS comes with its own internal 
user management facility; however, iPlant already had a 
sophisticated web-based single sign on and identity 
management infrastructure.  At the core of the identity 
management infrastructure were the Central Authentication 
Service (CAS) [10] and Shibboleth [11], both backed by LDAP 

[12], providing the web-based single sign-on mechanisms. The 
DE, Foundation API, user management portal, Atmosphere, 
ticketing system, documentation site, and forums already fully 
integrated with this identity management infrastructure. CAS 
and Shibboleth proved to be sufficient at the web layer but 
challenging at the web service and resource layers. Without a 
browser, the delegated authentication process does not work 
effectively. As a result, it was not possible to support the same 
browser-based login mechanisms for iRODS. Furthermore, 
earlier version of iRODS did not support external 
authentication, so all user accounts had to be synched by a 
background process out of step with the user creation and 
password reset mechanisms. Recently, a new version of CAS 
has been released which provides an OAuth2 [13] interface. 
This, combined with the 3.2 release of iRODS with PAM [14] 
support, will go a long way toward improving identity 
management across all of iPlant. 

Another technical challenge was the need for provenance 
throughout the CI. In the Data Store, provenance is addressed 
through the use of universally unique identifiers (UUID) for 
every file, folder, and piece of metadata. Every action taken by 
a user is associated with one or more UUID and logged by a 
centralized tracking service. Time will tell whether this 
approach will scale sufficiently to handle the increased 
utilization of resources and the inclusion of larger HPC 
systems. Given the current growth projections over the coming 
year, the development team is confident that this solution will 
be adequate in the near term. 

A third technical challenge to which an acceptable solution 
has yet to be found is that of exposing external data sources as 
local collections from within the Data Store. Often times, users 
need to access an external dataset from within the CI. In this 
situation it is helpful to be able to pre-define dynamic 
collections that, when read, will fetch the latest copy of a 
dataset. Examples of such dynamic collections could be the 
result of a database queries against the National Center for 
Biotechnology Information database, a downsampling of the 
most recent version of a derived dataset, or a web service call. 
In the context of databases, this would be termed a View. The 
justification for needing user-defined views of data is obvious, 
however several obstacles remain. First, performance needs to 
be carefully thought out. Fetching large amounts of data too 
often can degrade system performance both within the Data 
Store and on the target system. Similarly, fetching data that 
takes long periods of time to generate can degrade system 
performance just as easily. As a result, caching strategies must 
be derived for both scenarios. Second, the syntax for defining 
data views must be planned out in advance. Simply allowing 
users to provide arbitrary executable scripts to obtain their data 
exposes the underlying data and system to significant risk and 
must be avoided. Lastly, when an individual data object itself is 
dynamic, provenance is not guaranteed and reproducibility is 
not possible. This has implications beyond the technology. By 
enabling this feature, the project’s service guarantees 
fundamentally change. That is a decision that must be approved 
by the organization as a whole and accepted by the user 
community. Whether they are willing to do so remains to be 
seen. 



The last type of challenges experienced during the first two 
years of the Data Store’s production operation were user-
related. In comparison, these we're less challenging from a 
technical standpoint, but unsolvable from a practical 
perspective and as such will require sustained attention over the 
life of the project. The first user-related challenge was that of 
educating users on the limitations of the web-based clients for 
large data transfers. Given the ease of use of the DE and Davis 
web application, users often overlooked the fact that the data 
was flowing across the web via HTTP and attempted to upload 
files ranging from several gigabytes to over a terabyte in size. 
This rarely happened to the same user more than once, and 
never took more than a gentle reminder and note with 
information on the i-commands and Foundation API Data 
Services. 

The second user-related challenge was helping users 
understand the network limitations between client and server. 
In the first year of the Data Store’s operation, iPlant was 
holding regular workshops to train users on the proper use the 
CI. During the workshops, users would attempt to transfer large 
files over the wireless network. To further exasperate the 
situation, they would all attempt to do so at the same time. A 
short time later, tickets would begin trickling in as the 
workshop participants reported low bandwidth and an 
unresponsive DE. This had less to do with the DE more to do 
with the wireless router and low bandwidth in the conference 
room. Today it is standard practice to ask users to benchmark 
their own network when they observe slow transfer rates. 
While there could be several causes, more times than not, the 
performance degradation is due to a network condition close to 
the client. 

Despite the challenges of the first two years, the iPlant Data 
Store has been a valuable and productive core piece of the 
iPlant CI. The next section describes the next-level abstraction 
to the Data Store, the Foundation API Data Services. The Data 
Services build upon the Data Store and provide a set of value-
adding web services that developers can use to build the next 
generation of science gateway tools and applications. 

III. THE IPLANT FOUNDATION API DATA SERVICE 
The iPlant Foundation API (fAPI) is a set of RESTful web 

services that collectively provide multi-tenant Software-as-a-
Service (SaaS) infrastructure for the plant biology community. 
It is a biology-focused implementation of the AGAVE API, 
which provides an overlapping set of services for the general 
science community. The fAPI provides identity, data and 
metadata management, application registration and execution, 
resource discovery and registration, monitoring, analytics, and 
several services designed to make collaboration easy both in 
high and low trust situations. 

The Foundation API Data Services are a subset of the fAPI 
dealing specifically with metadata, data management, and data 
transformation. While the previously discussed Data Store 
provides core data and metadata functionality, the Foundation 
API Data Services expand that functionality by providing 
interfaces that allow users to schedule data transfers using 
multiple transfer protocols, transform data between formats, 
perform advanced metadata management using both structured 

and unstructured data, and extend the Data Store by registering 
additional storage resources to form private storage grids. Four 
services make up the Foundation Data Services: IO, Data, 
Systems, and Meta. Each is described in turn below. 

A. The Foundation API IO Service 
The IO service supports basic CRUD file operations as well 

as partial data queries in the form of range requests [14], multi-
protocol data staging, fine-grained ACL, and file 
preprocessing. Given the RESTful nature of Foundation, the IO 
service supports both synchronous and asynchronous data 
movement operations. This allows users to interactively upload 
and download files in part or in whole, as well as "fire and 
forget" their transfers when data sizes are too large or offline 
movement is desired. In the case of asynchronous requests the 
notification support built into IO allows users to receive 
notifications when their transfers are done. The IO service  
currently supports email notifications and webhooks. A 
webhook is simply a URL provided by the users to which the 
service will send an HTTP for [15]. To provide a higher degree 
of flexibility, the IO service supports a handful of macros such 
as INPUT_NAME, OUTPUT_URL, TRANSFER_ID, and 
TOTAL_RETRIES such that users can customize the data sent 
their URL. 

B. The Foundation API Data Service 
Data: The Data service acts as a Rosetta Stone to transform 

data from one format to another using a series of predefined 
filters. The file formats the Data service supports as well as the 
file formats to which a particular format can be translated are 
discoverable through the service. Thus, it is possible to 
conceptually view the data types as a graph and chain together 
multiple transforms to obtain the desired output format. While 
it is not always possible to achieve lossless transforms, in many 
cases this is not necessarily a requirement, or even a desired 
feature. An example would be requesting an MP3 copy of a 
WAV file or a PNG image in JPEG format. As with the IO 
service, the Data service supports both synchronous and 
asynchronous transforms, notifications, and partial data 
queries. 

Both the IO and Data services leverage an elastic master-
worker design pattern. Two instances of the service interfaces 
sit behind a load balancer and handle all the interactive 
requests. Asynchronous requests are passed on to the transform 
and transfer queues for processing. The queues are 
implemented using the Quartz Enterprise Job Scheduler. 
Multiple transfer and transform worker instances run in the 
cloud on individual VM. Each worker watches the relevant 
queue and claims a task when one comes available. As load 
increases, more workers can be instantiated as new VM are 
spun up. When load decreases, the workers and VM can be torn 
down as needed. If a worker crashes or becomes unresponsive, 
another worker will claim the missing worker’s task and 
attempt to rerun the task. 

Fig. 1 illustrates the flow of data through the IO service into 
the Data Store. In this situation a user requests data from an 
external source be staged into the Data Store and transformed 
into a specific format before being saved. The transfer queue 
handles the physical movement of the data from one location to  



 

Figure 1. The flow of data into the iPlant Data Store via 
the Foundation API Data Services. 

another. Once the raw data is present in the Data Store, it is 
then iteratively operated on by a predefined set of filters until it 
reaches its final state. At that point the resulting file is copied to 
the target destination and the user is notified that their import is 
complete.  

Fig. 2 illustrates the flow of data from the Data Store, 
through the Data Service, and to an external home. In this 
situation the data is already stored within the iPlant Data Store 
and needs to be converted into another form prior to being sent 
to the target destination.  

C. The Foundation API Systems Service 
The Systems service allows users to discover systems 

available for use. There is a well-defined taxonomy of 
supported system types ranging from HPC to Amazon S3. In 
the context of this paper, storage resources are the primary 
focus. Some systems, such as the iPlant Data Store will be 
publicly provided to all users. Others systems are defined by 
individual users and shared among a small subset of users. In 
the latter case, these resources are registered by the user with 
the Systems service and shared in the same way files and jobs 
are shared. System registration is little more than specifying 
basic descriptive information such as name, hostname, default  

 

Figure 2. Flow of data from the iPlant Data Store through 
the Data Service and to the user. 

 

path, etc. and attributing one or more connection profiles with 
it. Connection profiles can be short-term delegated X.509 
credentials, OAuth tokens, or temporary logon credentials. We 
currently discourage, but do not forbid, the use of usernames 
and passwords in connection profiles. Once registered, storage 
systems can be used in the same way as any other data system 
through IO and Data. In this way, it is possible to leverage the 
fAPI as a hosted data service for local enterprises. 

D. The Foundation API Meta Service  
The Meta service provides metadata support for all of the 

Foundation services. It exists as an unstructured data store 
backed by a column-oriented NoSQL database[16]. Because 
metadata is, by definition, data about data, it has no inherent 
meaning. Thus, the Meta service allows users to register 
schemas that describe their data. Schemas are json or xml 
descriptions of data. These descriptions may be a series of 
tuples, or highly structured object definitions. The decision on 
how to describe the data is left up to the user. In order to bridge 
the gap between different schemas, users can register schema 
mappings. These mappings allow the Meta service to identify 
opportunities to do apples-to-apples comparisons between 



metadata associated with different schemas. This is helpful 
when doing global searches, constructing user-derived 
responses, and when using metadata to reconcile different raw 
data sets. 

One of the primary challenges providing a web service API 
to the Data Store is that the data is frequently changing 
independently of the Data Services. This can create situations 
that compromise data integrity. One example being when a 
user overwrites an HDF file from the command line with 
binary data. The file name and size may be unchanged, but the 
contents and all related metadata are no longer consistent with 
their states prior to the overwrite. This can cause significant 
problems and introduce unforeseen points of failure when 
automating processes. It also impacts the design of a 
provenance solution. The point made in the section on the Data 
Store with the challenge of providing data views applies here as 
well. If data will change without the service knowing about it, 
then provenance must either be abandoned or implemented at a 
much lower level in such a way that no change will be missed. 
In this case, provenance was maintained by pushing it down 
into the Data Store where raw actions could be detected 
regardless of access mechanism. 

A second problem caused by the Data Store being 
decoupled from the Data Services is that race conditions can 
occur without the Data Services being aware. It is not 
uncommon for users to work simultaneously in the browser and 
on the command line at the same time. In this situation, two 
different clients can potentially modify a single piece of data 
simultaneously. When this happens, the process that finishes 
first loses because the second process will overwrite its data. 

The third problem caused by the Data Store being 
decoupled from the Data Services is compromised access 
control states. This is one of the most difficult problems to 
address. This situation can occur when access permissions 
change during the execution of a file operation. An example 
would be user A revoking the read permissions of user B on a 
file while user B was copying that file. Another example would 
be user A revoking write permissions to a folder after user B 
submits a job that will archive its data to that folder. 

Lastly, the fourth problem caused by the Data Store being 
decoupled from the Data Services is the opportunity for flight 
conditions to occur when a file is physically transferring to a 
server, but appears to already be present in the Data Store. This 
is an artifact of the underlying iRODS system. Because the 
Data Store is configured as mirrored iRODS instances, a file 
will appear in the catalog as soon as it is physically present on 
a server. However when that file is requested, it may still be in 
process of mirroring between servers, thus it may not 
physically be present on the server closest to the user 
requesting the file. This could result in corrupted data being 
returned to the user. 

In production operation, any of these situations would cause 
the Data Services to appear unstable, unreliable, or unusable. 
Picking and choosing which problem to address in the initial 
release and which to address in later versions was not an 
option. All of these problems had to addressed in order to 
provide a reliable service to users. This was accomplished this 
through a hybrid approach of creative service side 

compromises and a minor re-architecting of the underlying 
Data Store. 

The problem of data integrity was addressed at several 
levels. First, data was categorized according to its potential 
affect on provenance. Data that must be preserved for 
reproducibility, archiving, or community use is replicated, 
restricted to read-only access, and the checksum is stored. 
Whenever it is requested via the Data Services, the checksum 
of the physical file is checked against its stored value. If the 
two differ, administrators are notified, the backup is verified 
and restored, and the operation continues. This is far too 
expensive to do for every file and, as such, is reserved for data 
requiring high assurance. For less critical data, simple date, 
size, and checksum support is available upon request from the 
IO service. In the remaining cases, it is now a matter of policy 
to inform users of what is colloquially known as the Stan Lee 
principle.  Users are taught, "With great power comes great 
responsibility," and encouraged to act appropriately [17]. 

When considering solutions to race conditions, one must 
consider if race conditions should be eliminated completely, or 
just avoided in certain situation. There are legitimate situations 
where it is desirable to write to a single file from multiple 
locations simultaneously. One example being a parallel 
application writing output data to a single file. To this end, 
write-locking is enforced at the file system level, while 
overwriting race conditions are addressed through policy and 
user alerts. 

Solving the problem of compromised access control states 
required a change in the original Data Services architecture. In 
the original IO service implementation, all permissions were 
managed at the service layer and propagated to the underlying 
Data Store, however it quickly became apparent that people 
would modify permissions from the command line just as 
frequently as from the service layer, thus permission 
management was moved out of the fAPI Data Services and into 
the underlying iRODS permission model. This was not the 
most performant approach, and it introduced its own 
complexities, but it allowed for consistency across access 
mechanisms and provided a better user experience. 

Flight conditions cannot currently be detected by iRODS. 
Thus, they are avoided by changing the architecture of the Data 
Store while iPlant engages the iRODS development team to 
support this feature. Previously, the Data Store mirrored the 
data from the primary server in Arizona to the secondary server 
at TACC. When the file system was queried, all traffic went to 
the primary server, while data requests were served from the 
instance geographically closest to the user. This configuration 
was modified such that all data is now served from the primary 
server. When the primary fails, it is taken completely offline 
and the secondary server at TACC becomes the primary 
serving all requests. This change guarantees that a valid copy 
of the data is always served and only the most accurate 
information is returned when querying the Data Store. 

Despite the challenges, the Data Services remain a heavily 
leveraged tool by applications built on top of iPlant. Their core 
features extend and add value to the underlying Data Store and 
enable the construction of modern applications without 
thinking about the underlying architecture, network, security, 



and storage protocols traditionally associated with leveraging 
distributed data resources. The remainder of this paper 
describes the adoption of the Data Store and Data Services and 
concludes with a roadmap to future development. 

IV. USAGE AND ADOPTION 
At the time of this writing, the iPlant Data Store is growing 

by nearly 15TB monthly. This figure has increased over time 
and is outpacing the initial growth projections. As discussed in 
the Data Store section, usage is predictably distributed across 
client tools and sorted proportional to file size. Large files, 
usually exceeding 200MB, are usually transferred using 
command line tools shipped by iPlant. These tools wrap the 
native i-commands and provide iPlant-specific capabilities such 
as metadata registration and permission management in 
addition to the high speed parallel file transfers and familiar 
scp-like syntax. Small and medium sized files are usually 
transferred using a web interface or other client software. In 
these instances, the network and transport protocol are 
sufficient to move the data in a reasonable amount of time. It 
has been our observation that users prefer the convenience of 
the drag-and-drop interfaces over the command line tools when 
1) the transfer is possible via the GUI tool and 2) the 
performance difference is not significant. 

Usage of the Foundation Data Services is largely driven by 
the latter use case. Over the past year, the fAPI has grown to 
roughly 50K requests a month. The fAPI Data Services 
comprised nearly 1/3 of that usage and have moved tens of 
terabytes of data. The Meta service is still in beta testing at the 
time of this writing. Initial analysis indicate that the service will 
launch with more than a quarter billion pieces of information 
and potentially grow at a rate 10x faster than the raw data. This 
will be an area of intense observation and research going 
forward.  

V. FUTURE WORK 
Lessons learned from the first year of operation along with 

extensive user engagement and support have helped set the 
roadmap for the coming year. The first priority is solidifying 
the metadata service and ensuring the schema and map support 
is sufficient for the user community. Through engagement of a 
select group of early adopters the project will continue to 
ensure that the service meets the demands of real world use 
cases. 

Security has also been a challenge in supporting private 
storage grids as a hosted service. The fAPI utilizes an OAuth2 
inspired token service to enable passwordless access to the 
API. This has been a good solution for usage entirely within the 
iPlant ecosystem, however for user-defined resources, this had 
some drawbacks. Several users with existing infrastructures 
and identity management solutions preferred to authenticate 
against their own internal mechanisms rather than expose their 
user credentials to outside sources. This is a well-defined 
credential delegation scenario already provided by 
InCommon[18], the MyProxy For OAuth project[19], and the 
CILogon project [20]. The CAS + OAuth2 solution described 
in the Data Store section will facilitate this functionality by 
allowing for both client and user authentication. 

Another area of research is the exploration of ways to make 
partial data queries more intuitive and effective. Currently the 
fAPI supports byte range queries on raw and derived data. The 
development team will look into supporting context-aware 
queries such that ranges could be specified in terms of things 
other than bytes. For example, when requesting a FAST-A file, 
the range query could specify the first 4 sequences rather than 
the first N bytes. 

Lastly, planning has recently started for the design of a data 
mining and machine learning service across all of iPlant in an 
effort to provide better recommendations, monitoring, and 
predictive resource scaling. This will be an ongoing effort and 
an area of long-term research. 

VI. CONCLUSION 
This paper described a cloud-based data storage solution 

called the iPlant Data Store and a hosted, SaaS solution for 
programmatic access to the Data Store called the iPlant 
Foundation API Data Services. We discussed in detail several 
of the challenges faced in providing this service as well as our 
current solutions in addressing them. We concluded with a 
discussion of future plans. For more information on the iPlant 
Foundation API Data Services, please visit our website at 
http://foundation.iplantcollaborative.org, browse our forums at 
http://foundation.iplantcollaborative.org/forums, or consult our 
documentation at 
http://foundation.iplantcollaborative.org/docs. 
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