
Your Data, Your Way
The iPlant Foundation API Data Services

Rion Dooley, Matthew Vaughn, Steven Terry, Dan
Stanzione

Texas Advanced Computing Center
University of Texas at Austin

Austin, USA
[dooley, vaughn, sterry1, dan]@tacc.utexas.edu

Edwin Skidmore, Nirav Merchant
iPlant Collaborative

University of Arizona
Tucson, USA

[edwin, nirav]@iplantcollaborative.org

Abstract— This paper introduces the iPlant Foundation API Data
Services, a cloud-based, hosted solution for distributed data and
metadata management in the iPlant Data Store. The iPlant Data
Store is a virtual storage solution for over 7000 users providing
seamless access to over 6PB of distributed storage within the
iPlant cyberinfrastructure using command line utilities, FUSE
mounts, desktop GUI tools, and web interfaces. The Foundation
API Data Services expand the standard CRUD operations by
providing a collection of services that allow users to move data
into and out of the iPlant Data Store using multiple transfer
protocols, transform data between formats, perform advanced
metadata management using both structured and unstructured
data, and define their own private storage grid by registering
their own resources. Concepts of unified authentication, sharing,
provenance, and monitoring are baked into the services so users
can focus on innovating their domain science rather than
reinventing computer science. This paper briefly describe the
iPlant Cyberinfrastructure, details the architecture of the iPlant
Foundation API Data Services, reviews the first year of
production usage, and concludes with future plans.

Keywords—cloud, biology, cyberinfrastructure, iplant, data

I. INTRODUCTION
The iPlant Collaborative (iPlant) is a United States National

Science Foundation (NSF) funded project that has created an
innovative, comprehensive, and foundational
cyberinfrastructure (CI) in support of plant biology research
[1]. iPlant is developing cyberinfrastructure that uniquely
enables scientists throughout the diverse fields that comprise
plant biology to address Grand Challenges in new ways, to
stimulate and facilitate cross-disciplinary research, to promote
biology and computer science research interactions, and to train
the next generation of scientists on the use of
cyberinfrastructure in research and education. The iPlant
cyberinfrastructure design is based on an unprecedented period
of research community input, and leverages developments in
high-performance computing, data storage, and
cyberinfrastructure for the physical sciences. iPlant is an open-
source project with application programming interfaces that
allow the community to extend the infrastructure to meet its
needs.

In this paper we present one way in which iPlant is
handling data across its cyberinfrastructure. Specifically, we

present the iPlant Foundation API Data Services, a cloud-
based, hosted solution for distributed data and metadata
management in the iPlant Data Store. The iPlant Data Store is a
virtual storage solution for over 7000 users providing seamless
access to distributed data within the iPlant cyberinfrastructure
using command line utilities, FUSE mounts [2], desktop GUI
tools, and web interfaces.

The Foundation API Data Services expand the existing
basic CRUD operations by providing a collection of services
that allow users to move data inside and outside of the iPlant
Data Store using multiple transfer protocols, transform data
between formats, perform advanced metadata management
using both structured and unstructured data, and define their
own private storage grid by registering their own resources.

As with the entire Foundation API, concepts of unified
authentication, sharing, provenance, and monitoring are baked
into the services so users can focus on innovating their domain
science rather than reinventing computer science. The
remainder of this paper is as follows. Section 2 describes the
iPlant Cyberinfrastructure. Section 3 details architecture of the
iPlant Foundation API Data Services. Section 4 highlights the
first year of production usage, and Section 5 concludes with
future plans.

II. THE IPLANT DATA STORE
The iPlant Data Store went into production in 2010 as a

centralized facility to address the existing needs of the
community to share and store scientifically relevant data sets
and metadata. Underlying the Data Store is a federated network
of Integrated Rule-Oriented Data System (iRODS) [3] servers
running at University of Arizona and mirrored at the Texas
Advanced Computing Center (TACC). The Data Store
represents over 6 PB of storage capacity accessible over a 40
GB/s network. iRODS was chosen because it has a proven
history of successful deployments, supports data federation as
well as multi-client and multi-platform access, and has an
active development team willing to address bugs and partner on
new features. Other attractive features leveraged by the Data
Store are the ability to search and store metadata, user and
group-based access control lists (ACL), and the ability to
integrate tightly into iPlant’s existing infrastructure.

Users access the Data Store in multiple ways. The iPlant
Discovery Environment (DE) [4], and the Davis web
application [5] are the primary web interfaces. iDrop, a Java
desktop application, has been very popular both from within
Atmosphere virtual machines (VM) and from users' local
desktops[6][7]. The iPlant Foundation API provides a RESTful
web service interface, and client libraries exist in in multiple
languages for further programmatic access. The FUSE
interface provides a convenient, mounted file system view of
iRODS, but does not support any metadata functionality. The
FUSE interface is a very common access mechanism for
Atmosphere users, who primarily need to access their data
from command line tools as if it were a local folder. More
advanced users or ones who need to move terabytes of data use
i-commands due to their high performance parallel transfer
capabilities[8].

All users have an initial allocation of 100GB. With a simple
request, they can increase their allocation up 1 TB. Users
requiring allocations greater than 1 TB can submit a
justification letter, which will be reviewed by an allocations
committee. The mirroring features of the Data Store mean that
data is always located close to the computational resources.
This means greater throughput on computational jobs, and
more responsive data access within the CI.

The first two years of production usage brought conceptual,
technical, and user-related challenges. One ongoing conceptual
problem was identifying ways to deal with structured data. The
number of data formats available today within the Plant
Biology community is large and growing. Despite multiple
efforts within the community, the lowest common denominator
to represent data remains a file. As a result, finding general
ways to store structured data in a form that can be easily
imported, exported, and searched is not currently possible.
Instead, the Data Store provides raw storage, and higher level
services like the Foundation API and DE to provide a set of
tools that operate identically on roughly a dozen well-known
data types. While not optimal, this approach casts the biggest
net and, hopefully, in time will incentivize the community to
come to consensus on a small number of common formats.

Another conceptual challenge in building the Data Store
was developing intuitive, general purpose interfaces to search
through different kinds of metadata that work consistently
across the CI. As mentioned above, there are multiple ways to
access the Data Store. Each tool brings its own concept of
interaction with metadata. The FUSE client has no concept of
metadata, while the iDrop interface views metadata queries as
SQL-type operations. The i-commands support both key-value
lookups as well as structured queries. It may be that metadata is
too contextual to make the kinds of generalizations needed for
a generic interface. Clearly this is an area of ongoing research
effort.

One technical challenge in using iRODS was authentication
and identity management. iRODS comes with its own internal
user management facility; however, iPlant already had a
sophisticated web-based single sign on and identity
management infrastructure. At the core of the identity
management infrastructure were the Central Authentication
Service (CAS) [10] and Shibboleth [11], both backed by LDAP

[12], providing the web-based single sign-on mechanisms. The
DE, Foundation API, user management portal, Atmosphere,
ticketing system, documentation site, and forums already fully
integrated with this identity management infrastructure. CAS
and Shibboleth proved to be sufficient at the web layer but
challenging at the web service and resource layers. Without a
browser, the delegated authentication process does not work
effectively. As a result, it was not possible to support the same
browser-based login mechanisms for iRODS. Furthermore,
earlier version of iRODS did not support external
authentication, so all user accounts had to be synched by a
background process out of step with the user creation and
password reset mechanisms. Recently, a new version of CAS
has been released which provides an OAuth2 [13] interface.
This, combined with the 3.2 release of iRODS with PAM [14]
support, will go a long way toward improving identity
management across all of iPlant.

Another technical challenge was the need for provenance
throughout the CI. In the Data Store, provenance is addressed
through the use of universally unique identifiers (UUID) for
every file, folder, and piece of metadata. Every action taken by
a user is associated with one or more UUID and logged by a
centralized tracking service. Time will tell whether this
approach will scale sufficiently to handle the increased
utilization of resources and the inclusion of larger HPC
systems. Given the current growth projections over the coming
year, the development team is confident that this solution will
be adequate in the near term.

A third technical challenge to which an acceptable solution
has yet to be found is that of exposing external data sources as
local collections from within the Data Store. Often times, users
need to access an external dataset from within the CI. In this
situation it is helpful to be able to pre-define dynamic
collections that, when read, will fetch the latest copy of a
dataset. Examples of such dynamic collections could be the
result of a database queries against the National Center for
Biotechnology Information database, a downsampling of the
most recent version of a derived dataset, or a web service call.
In the context of databases, this would be termed a View. The
justification for needing user-defined views of data is obvious,
however several obstacles remain. First, performance needs to
be carefully thought out. Fetching large amounts of data too
often can degrade system performance both within the Data
Store and on the target system. Similarly, fetching data that
takes long periods of time to generate can degrade system
performance just as easily. As a result, caching strategies must
be derived for both scenarios. Second, the syntax for defining
data views must be planned out in advance. Simply allowing
users to provide arbitrary executable scripts to obtain their data
exposes the underlying data and system to significant risk and
must be avoided. Lastly, when an individual data object itself is
dynamic, provenance is not guaranteed and reproducibility is
not possible. This has implications beyond the technology. By
enabling this feature, the project’s service guarantees
fundamentally change. That is a decision that must be approved
by the organization as a whole and accepted by the user
community. Whether they are willing to do so remains to be
seen.

The last type of challenges experienced during the first two
years of the Data Store’s production operation were user-
related. In comparison, these we're less challenging from a
technical standpoint, but unsolvable from a practical
perspective and as such will require sustained attention over the
life of the project. The first user-related challenge was that of
educating users on the limitations of the web-based clients for
large data transfers. Given the ease of use of the DE and Davis
web application, users often overlooked the fact that the data
was flowing across the web via HTTP and attempted to upload
files ranging from several gigabytes to over a terabyte in size.
This rarely happened to the same user more than once, and
never took more than a gentle reminder and note with
information on the i-commands and Foundation API Data
Services.

The second user-related challenge was helping users
understand the network limitations between client and server.
In the first year of the Data Store’s operation, iPlant was
holding regular workshops to train users on the proper use the
CI. During the workshops, users would attempt to transfer large
files over the wireless network. To further exasperate the
situation, they would all attempt to do so at the same time. A
short time later, tickets would begin trickling in as the
workshop participants reported low bandwidth and an
unresponsive DE. This had less to do with the DE more to do
with the wireless router and low bandwidth in the conference
room. Today it is standard practice to ask users to benchmark
their own network when they observe slow transfer rates.
While there could be several causes, more times than not, the
performance degradation is due to a network condition close to
the client.

Despite the challenges of the first two years, the iPlant Data
Store has been a valuable and productive core piece of the
iPlant CI. The next section describes the next-level abstraction
to the Data Store, the Foundation API Data Services. The Data
Services build upon the Data Store and provide a set of value-
adding web services that developers can use to build the next
generation of science gateway tools and applications.

III. THE IPLANT FOUNDATION API DATA SERVICE
The iPlant Foundation API (fAPI) is a set of RESTful web

services that collectively provide multi-tenant Software-as-a-
Service (SaaS) infrastructure for the plant biology community.
It is a biology-focused implementation of the AGAVE API,
which provides an overlapping set of services for the general
science community. The fAPI provides identity, data and
metadata management, application registration and execution,
resource discovery and registration, monitoring, analytics, and
several services designed to make collaboration easy both in
high and low trust situations.

The Foundation API Data Services are a subset of the fAPI
dealing specifically with metadata, data management, and data
transformation. While the previously discussed Data Store
provides core data and metadata functionality, the Foundation
API Data Services expand that functionality by providing
interfaces that allow users to schedule data transfers using
multiple transfer protocols, transform data between formats,
perform advanced metadata management using both structured

and unstructured data, and extend the Data Store by registering
additional storage resources to form private storage grids. Four
services make up the Foundation Data Services: IO, Data,
Systems, and Meta. Each is described in turn below.

A. The Foundation API IO Service
The IO service supports basic CRUD file operations as well

as partial data queries in the form of range requests [14], multi-
protocol data staging, fine-grained ACL, and file
preprocessing. Given the RESTful nature of Foundation, the IO
service supports both synchronous and asynchronous data
movement operations. This allows users to interactively upload
and download files in part or in whole, as well as "fire and
forget" their transfers when data sizes are too large or offline
movement is desired. In the case of asynchronous requests the
notification support built into IO allows users to receive
notifications when their transfers are done. The IO service
currently supports email notifications and webhooks. A
webhook is simply a URL provided by the users to which the
service will send an HTTP for [15]. To provide a higher degree
of flexibility, the IO service supports a handful of macros such
as INPUT_NAME, OUTPUT_URL, TRANSFER_ID, and
TOTAL_RETRIES such that users can customize the data sent
their URL.

B. The Foundation API Data Service
Data: The Data service acts as a Rosetta Stone to transform

data from one format to another using a series of predefined
filters. The file formats the Data service supports as well as the
file formats to which a particular format can be translated are
discoverable through the service. Thus, it is possible to
conceptually view the data types as a graph and chain together
multiple transforms to obtain the desired output format. While
it is not always possible to achieve lossless transforms, in many
cases this is not necessarily a requirement, or even a desired
feature. An example would be requesting an MP3 copy of a
WAV file or a PNG image in JPEG format. As with the IO
service, the Data service supports both synchronous and
asynchronous transforms, notifications, and partial data
queries.

Both the IO and Data services leverage an elastic master-
worker design pattern. Two instances of the service interfaces
sit behind a load balancer and handle all the interactive
requests. Asynchronous requests are passed on to the transform
and transfer queues for processing. The queues are
implemented using the Quartz Enterprise Job Scheduler.
Multiple transfer and transform worker instances run in the
cloud on individual VM. Each worker watches the relevant
queue and claims a task when one comes available. As load
increases, more workers can be instantiated as new VM are
spun up. When load decreases, the workers and VM can be torn
down as needed. If a worker crashes or becomes unresponsive,
another worker will claim the missing worker’s task and
attempt to rerun the task.

Fig. 1 illustrates the flow of data through the IO service into
the Data Store. In this situation a user requests data from an
external source be staged into the Data Store and transformed
into a specific format before being saved. The transfer queue
handles the physical movement of the data from one location to

Figure 1. The flow of data into the iPlant Data Store via
the Foundation API Data Services.

another. Once the raw data is present in the Data Store, it is
then iteratively operated on by a predefined set of filters until it
reaches its final state. At that point the resulting file is copied to
the target destination and the user is notified that their import is
complete.

Fig. 2 illustrates the flow of data from the Data Store,
through the Data Service, and to an external home. In this
situation the data is already stored within the iPlant Data Store
and needs to be converted into another form prior to being sent
to the target destination.

C. The Foundation API Systems Service
The Systems service allows users to discover systems

available for use. There is a well-defined taxonomy of
supported system types ranging from HPC to Amazon S3. In
the context of this paper, storage resources are the primary
focus. Some systems, such as the iPlant Data Store will be
publicly provided to all users. Others systems are defined by
individual users and shared among a small subset of users. In
the latter case, these resources are registered by the user with
the Systems service and shared in the same way files and jobs
are shared. System registration is little more than specifying
basic descriptive information such as name, hostname, default

Figure 2. Flow of data from the iPlant Data Store through
the Data Service and to the user.

path, etc. and attributing one or more connection profiles with
it. Connection profiles can be short-term delegated X.509
credentials, OAuth tokens, or temporary logon credentials. We
currently discourage, but do not forbid, the use of usernames
and passwords in connection profiles. Once registered, storage
systems can be used in the same way as any other data system
through IO and Data. In this way, it is possible to leverage the
fAPI as a hosted data service for local enterprises.

D. The Foundation API Meta Service
The Meta service provides metadata support for all of the

Foundation services. It exists as an unstructured data store
backed by a column-oriented NoSQL database[16]. Because
metadata is, by definition, data about data, it has no inherent
meaning. Thus, the Meta service allows users to register
schemas that describe their data. Schemas are json or xml
descriptions of data. These descriptions may be a series of
tuples, or highly structured object definitions. The decision on
how to describe the data is left up to the user. In order to bridge
the gap between different schemas, users can register schema
mappings. These mappings allow the Meta service to identify
opportunities to do apples-to-apples comparisons between

metadata associated with different schemas. This is helpful
when doing global searches, constructing user-derived
responses, and when using metadata to reconcile different raw
data sets.

One of the primary challenges providing a web service API
to the Data Store is that the data is frequently changing
independently of the Data Services. This can create situations
that compromise data integrity. One example being when a
user overwrites an HDF file from the command line with
binary data. The file name and size may be unchanged, but the
contents and all related metadata are no longer consistent with
their states prior to the overwrite. This can cause significant
problems and introduce unforeseen points of failure when
automating processes. It also impacts the design of a
provenance solution. The point made in the section on the Data
Store with the challenge of providing data views applies here as
well. If data will change without the service knowing about it,
then provenance must either be abandoned or implemented at a
much lower level in such a way that no change will be missed.
In this case, provenance was maintained by pushing it down
into the Data Store where raw actions could be detected
regardless of access mechanism.

A second problem caused by the Data Store being
decoupled from the Data Services is that race conditions can
occur without the Data Services being aware. It is not
uncommon for users to work simultaneously in the browser and
on the command line at the same time. In this situation, two
different clients can potentially modify a single piece of data
simultaneously. When this happens, the process that finishes
first loses because the second process will overwrite its data.

The third problem caused by the Data Store being
decoupled from the Data Services is compromised access
control states. This is one of the most difficult problems to
address. This situation can occur when access permissions
change during the execution of a file operation. An example
would be user A revoking the read permissions of user B on a
file while user B was copying that file. Another example would
be user A revoking write permissions to a folder after user B
submits a job that will archive its data to that folder.

Lastly, the fourth problem caused by the Data Store being
decoupled from the Data Services is the opportunity for flight
conditions to occur when a file is physically transferring to a
server, but appears to already be present in the Data Store. This
is an artifact of the underlying iRODS system. Because the
Data Store is configured as mirrored iRODS instances, a file
will appear in the catalog as soon as it is physically present on
a server. However when that file is requested, it may still be in
process of mirroring between servers, thus it may not
physically be present on the server closest to the user
requesting the file. This could result in corrupted data being
returned to the user.

In production operation, any of these situations would cause
the Data Services to appear unstable, unreliable, or unusable.
Picking and choosing which problem to address in the initial
release and which to address in later versions was not an
option. All of these problems had to addressed in order to
provide a reliable service to users. This was accomplished this
through a hybrid approach of creative service side

compromises and a minor re-architecting of the underlying
Data Store.

The problem of data integrity was addressed at several
levels. First, data was categorized according to its potential
affect on provenance. Data that must be preserved for
reproducibility, archiving, or community use is replicated,
restricted to read-only access, and the checksum is stored.
Whenever it is requested via the Data Services, the checksum
of the physical file is checked against its stored value. If the
two differ, administrators are notified, the backup is verified
and restored, and the operation continues. This is far too
expensive to do for every file and, as such, is reserved for data
requiring high assurance. For less critical data, simple date,
size, and checksum support is available upon request from the
IO service. In the remaining cases, it is now a matter of policy
to inform users of what is colloquially known as the Stan Lee
principle. Users are taught, "With great power comes great
responsibility," and encouraged to act appropriately [17].

When considering solutions to race conditions, one must
consider if race conditions should be eliminated completely, or
just avoided in certain situation. There are legitimate situations
where it is desirable to write to a single file from multiple
locations simultaneously. One example being a parallel
application writing output data to a single file. To this end,
write-locking is enforced at the file system level, while
overwriting race conditions are addressed through policy and
user alerts.

Solving the problem of compromised access control states
required a change in the original Data Services architecture. In
the original IO service implementation, all permissions were
managed at the service layer and propagated to the underlying
Data Store, however it quickly became apparent that people
would modify permissions from the command line just as
frequently as from the service layer, thus permission
management was moved out of the fAPI Data Services and into
the underlying iRODS permission model. This was not the
most performant approach, and it introduced its own
complexities, but it allowed for consistency across access
mechanisms and provided a better user experience.

Flight conditions cannot currently be detected by iRODS.
Thus, they are avoided by changing the architecture of the Data
Store while iPlant engages the iRODS development team to
support this feature. Previously, the Data Store mirrored the
data from the primary server in Arizona to the secondary server
at TACC. When the file system was queried, all traffic went to
the primary server, while data requests were served from the
instance geographically closest to the user. This configuration
was modified such that all data is now served from the primary
server. When the primary fails, it is taken completely offline
and the secondary server at TACC becomes the primary
serving all requests. This change guarantees that a valid copy
of the data is always served and only the most accurate
information is returned when querying the Data Store.

Despite the challenges, the Data Services remain a heavily
leveraged tool by applications built on top of iPlant. Their core
features extend and add value to the underlying Data Store and
enable the construction of modern applications without
thinking about the underlying architecture, network, security,

and storage protocols traditionally associated with leveraging
distributed data resources. The remainder of this paper
describes the adoption of the Data Store and Data Services and
concludes with a roadmap to future development.

IV. USAGE AND ADOPTION
At the time of this writing, the iPlant Data Store is growing

by nearly 15TB monthly. This figure has increased over time
and is outpacing the initial growth projections. As discussed in
the Data Store section, usage is predictably distributed across
client tools and sorted proportional to file size. Large files,
usually exceeding 200MB, are usually transferred using
command line tools shipped by iPlant. These tools wrap the
native i-commands and provide iPlant-specific capabilities such
as metadata registration and permission management in
addition to the high speed parallel file transfers and familiar
scp-like syntax. Small and medium sized files are usually
transferred using a web interface or other client software. In
these instances, the network and transport protocol are
sufficient to move the data in a reasonable amount of time. It
has been our observation that users prefer the convenience of
the drag-and-drop interfaces over the command line tools when
1) the transfer is possible via the GUI tool and 2) the
performance difference is not significant.

Usage of the Foundation Data Services is largely driven by
the latter use case. Over the past year, the fAPI has grown to
roughly 50K requests a month. The fAPI Data Services
comprised nearly 1/3 of that usage and have moved tens of
terabytes of data. The Meta service is still in beta testing at the
time of this writing. Initial analysis indicate that the service will
launch with more than a quarter billion pieces of information
and potentially grow at a rate 10x faster than the raw data. This
will be an area of intense observation and research going
forward.

V. FUTURE WORK
Lessons learned from the first year of operation along with

extensive user engagement and support have helped set the
roadmap for the coming year. The first priority is solidifying
the metadata service and ensuring the schema and map support
is sufficient for the user community. Through engagement of a
select group of early adopters the project will continue to
ensure that the service meets the demands of real world use
cases.

Security has also been a challenge in supporting private
storage grids as a hosted service. The fAPI utilizes an OAuth2
inspired token service to enable passwordless access to the
API. This has been a good solution for usage entirely within the
iPlant ecosystem, however for user-defined resources, this had
some drawbacks. Several users with existing infrastructures
and identity management solutions preferred to authenticate
against their own internal mechanisms rather than expose their
user credentials to outside sources. This is a well-defined
credential delegation scenario already provided by
InCommon[18], the MyProxy For OAuth project[19], and the
CILogon project [20]. The CAS + OAuth2 solution described
in the Data Store section will facilitate this functionality by
allowing for both client and user authentication.

Another area of research is the exploration of ways to make
partial data queries more intuitive and effective. Currently the
fAPI supports byte range queries on raw and derived data. The
development team will look into supporting context-aware
queries such that ranges could be specified in terms of things
other than bytes. For example, when requesting a FAST-A file,
the range query could specify the first 4 sequences rather than
the first N bytes.

Lastly, planning has recently started for the design of a data
mining and machine learning service across all of iPlant in an
effort to provide better recommendations, monitoring, and
predictive resource scaling. This will be an ongoing effort and
an area of long-term research.

VI. CONCLUSION
This paper described a cloud-based data storage solution

called the iPlant Data Store and a hosted, SaaS solution for
programmatic access to the Data Store called the iPlant
Foundation API Data Services. We discussed in detail several
of the challenges faced in providing this service as well as our
current solutions in addressing them. We concluded with a
discussion of future plans. For more information on the iPlant
Foundation API Data Services, please visit our website at
http://foundation.iplantcollaborative.org, browse our forums at
http://foundation.iplantcollaborative.org/forums, or consult our
documentation at
http://foundation.iplantcollaborative.org/docs.

ACKNOWLEDGMENT
The iPlant Collaborative is funded by a grant from the

National Science Foundation Plant Cyberinfrastructure
Program (#DBI-0735191). This work was also partially
supported by a grant from the National Science Foundation
Cybersecurity Program (#1127210).

REFERENCES
[1] Stanzione, Dan, "The iPlant Collaborative: Cyberinfrastructure to Feed

the World," IEEE Computer, November 2011. doi:
10.1109/MC.2011.297.

[2] Filesystem in Userspace. http://fuse.sourceforge.net.
[3] Rajasekar A., R. Moore, C-Y. Hou, Christopher L., R. Marciano, A. de

Torcy, M. Wan, W. Schroeder, S-Y. Chen, L. Gilbert, P. Tooby, and B.
Zhu, "iRODS Primer: integrated Rule-Oriented Data Systems", ISBN:
9781608453337, Morgan-Claypool Publishers, San Rafael, CA., January
2010.

[4] Andrew Lenards, Nirav Merchant, and Dan Stanzione. 2011. Building
an environment to facilitate discoveries for plant sciences. In
Proceedings of the 2011 ACM workshop on Gateway computing
environments (GCE '11). ACM, New York, NY, USA, 51-58.
DOI=10.1145/2110486.2110494
http://doi.acm.org/10.1145/2110486.2110494.

[5] Australian Research Collaboration Service; Davis: A Generic Interface
for SRB and iRODS, www.dhpc.adelaide.edu.au/reports/197/dhpc-
197.pdf.

[6] Conway, M. iRODS iDrop.
https://code.renci.org/gf/project/iRODSidrop/, 2012.

[7] “iPlant Atmosphere: A Gateway to Cloud Infrastructure for the Plant
Sciences.” Skidmore E, Kim SJ, Kuchimanchi, S Singaram S, Merchant
N, Stanzione D. Proceedings from Gateway Computing Environments
2011 at Supercomputing11 (2011).

[8] M. Szeredi. File System in User Space. http://fuse.sourceforge.net, 2006.

[9] Rajasekar A. iRODS i-commands.
https://www.iRODS.org/index.php/icommands, 2012.

[10] H. Naito and S. Kajita. CAS as an institutional-wide authentication and
authorization infrastructure,
http://www.jasig.org/sites/isapps/jasig/2005SummerBaltimore/. 2005
Summer uPortal Conference, Baltimore, USA.

[11] Shibboleth Architecture Technical Overview,
http://shibboleth.internet2.edu/docs/draft-mace-shibboleth-tech-
overview-latest.pdf.

[12] Vassiliki Koutsonikola, Athena Vakali, "LDAP: Framework, Practices,
and Trends," IEEE Internet Computing, vol. 8, no. 5, pp. 66-72, Sept.-
Oct. 2004, doi:10.1109/MIC.2004.44

[13] The OAuth 2.0 Authorization Framework.
http://tools.ietf.org/html/draft-ietf-oauth-v2-31, 2012.

[14] Schemers, R. Unified Login With Pluggable Authentication Modules
(PAM). http://www.kernel.org/pub/linux/libs/pam/pre/doc/rfc86.0.txt.gz,
Oct. 1995.

[15] Fitz, Timothy. “What Webhooks Are And Why You Should Care.”
http://timothyfitz.wordpress.com/2009/02/09/what-webhooks-are-and-
why-you-should-care/. Feb. 9, 2009.

[16] Rick Cattell. 2011. Scalable SQL and NoSQL data stores. SIGMOD
Rec. 39, 4 (May 2011), 12-27. DOI=10.1145/1978915.1978919
http://doi.acm.org/10.1145/1978915.1978919

[17] "Spider-Man." Quotes.net. STANDS4 LLC, 2012. 11 September. 2012.
http://www.quotes.net/quote/8628.

[18] InCommon Federation. A Roadmap for Using NSF Cyberinfrastructure
with InCommon. {Accessed 10 Sept 2012}; Available from
http://www.incommonfederation.org/cyberroadmap.html.

[19] Jim Basney, Rion Dooley, Jeff Gaynor, Suresh Marru, and Marlon
Pierce. 2011. Distributed web security for science gateways. In
Proceedings of the 2011 ACM workshop on Gateway computing
environments (GCE '11). ACM, New York, NY, USA, 13-20.
DOI=10.1145/2110486.2110489
http://doi.acm.org/10.1145/2110486.2110489.

[20] CILogon Service. http://www.cilogon.org/service

