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ABSTRACT
Grid computing has been widely adopted for intensive high perfor-
mance computing. Since grid resources are distributed over com-
plex large-scale infrastructures, understanding grid site data traf-
fic behaviour is important for efficient resource utilisation, perfor-
mance optimisation, and the design of future grid sites as well as
traffic-aware grid applications. In this paper, we study and anal-
yse the traffic generated at a grid site in the Large Hadron Collider
(LHC) Computing Grid (LCG). We find that most of the generated
traffic is TCP-based and that a small set of grid applications gen-
erate significant amounts of the data. Upon analysing the differ-
ent traffic metrics, we also find that the traffic exhibits long-range
dependence and self-similarity. We also investigate packet-level
metrics such as throughput, packet rate, round trip time (RTT) and
packet loss. Our study establishes that these metrics can be well
represented by Gaussian mixture models. The findings we present
in this paper will enable accurate grid site traffic monitoring and
potentially on-the-fly traffic modelling and prediction. It will also
lead to a better understanding of grid site’s traffic behaviour and
contribute to more efficient grid site planning, traffic management,
data transmission protocol optimisation, and data-aware grid appli-
cation design.

Categories and Subject Descriptors
C.4 [Performance, Network Measurement]: Traffic Modelling,
Performance Measurement

General Terms
Network Performance, Grid Computing

Keywords
Traffic Modelling, Network Performance, Grid Computing
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Over the last few years, grid computing has been widely adopted
within the research community for scientific computing. This has
made it possible to deploy a number of very large-scale experi-
ments that were deemed infeasible until only recently. The grid
computing paradigm offers seamless access to a dynamic set of het-
erogeneous computational resources across different organisations,
providing substantial computing and storage capabilities. Within
grid environments, computational jobs are submitted to be run on
any suitable resources, and the data is submitted to be transparently
stored across geographically distributed nodes. The performance
of the network infrastructure therefore plays an important role in
the effectiveness of grid systems and it becomes important to char-
acterise how data transfers at such a scale affects the underlying
network infrastructure.

The structure and design aims of grid sites are often quite dif-
ferent compared with those of Web clusters and, more recently,
data centres. Consequently, the protocol and application stacks
deployed in each also differ. Protocols such as Hypertext Trans-
fer Protocol (HTTP), File Transfer Protocol (FTP), etc. are widely
adopted in Web-based clusters and data centres, while GRAM [2]
for resource managing, GridFTP [5] for data transferring and Berke-
ley Database Information Index (BDII) [1] for resource discovery
are often deployed within grid environments to enable resource
sharing. Currently, most grid infrastructures focus on how to share
computational and storage resources, how these resources are used,
and how to maximise the performance of these resources. Less
attention is given to other aspects such as the performance and
behaviour of the network that interconnects such large-scale dis-
tributed resources, which could present a bottleneck in the per-
formance of the whole system. This leaves many questions unan-
swered, such as:

• What, if any, are the distinguishable characteristics of the
traffic generation behaviour of grid sites?

• Is the network connecting the grid sites used efficiently?
• Does the data traffic generated by grid sites display long-

range dependence and/or self-similarity like Web traffic [15,
19]?

• What are the underlying traffic volumes, packet inter-arrival
times (packet rate) and packet loss that define grid site traf-
fic?

• Which applications will have a significant impact or generate
the most packets on a grid site?

Answering these questions should give us a better understanding
of grid sites network behaviour and consequently allow network



infrastructure designers and managers to optimise their design, im-
plementation and runtime system management to better suit grid
applications. To the best of our knowledge, very little is known
about the traffic generation characteristics of grid sites.

In general, data traffic analysis work focuses on analysing exam-
ples of real data traffic to extract its characteristics. Specifically,
this includes mapping aspects of the traffic flow to known mathe-
matical models and identifying certain characteristics (such as self-
similarity, etc.). Such studies give us a better understanding of ap-
plication network behaviour and operational requirements, which
in turn allows more informed improvements to the fields of network
design, protocol design, security, traffic engineering, and pricing.

In this paper, we present a statistical evaluation of the character-
istics of the traffic generation behaviour of a real-world grid site,
with production-level services deployed at the University of Inns-
bruck (UIBK). This grid site is a part of the Large Hadron Col-
lider (LHC) Computing Grid (LCG) infrastructure, which is used
for performing LHC scientific computing tasks. We captured all
data traffic generated at this site over the period of seven days. The
grid site is operating as normal days during the data collection pe-
riod, thus we regard the data collection duration is a “typical" seven
days of this grid site. For this grid site, we first evaluate the data
and connection behaviour of some widely used grid applications,
such as GridFTP and BDII. Then, we analyse the properties of the
grid traffic and use our results to determine if self-similar behaviour
exists for grid data traffic. In addition, we evaluate the packet-level
network characteristics, such as throughput, packet size and packet
rate. We then develop analytical traffic models using prevalent sta-
tistical distributions.

The rest of this paper is organised as follows. Section 2 discusses
related work. Section 3 describes node and network setup of the
site we monitored to abstract operational details. Section 4 intro-
duces the findings of the statistical analysis we carried out on the
gathered traffic traces. Implications of our work and future work
are discussed in section 5, while section 6 offers some concluding
comments.

2. RELATED WORK
The statistical evaluation and analysis of data traffic is an im-

portant aspect of modern networking. As network throughput and
load gradually increases along with the prevalence of applications
requiring some level of service from the network, as does the re-
quirement to explore the way that these applications utilise the net-
work. It is therefore becoming critical to understand the traffic sent
over the network and the statistical analysis and modelling of ap-
plications offers an ideal solution for this [16].

To date, traffic analysis has tended to focus on the fields of tra-
ditional network protocols, such as TCP [17] and underlying tech-
nologies such as Ethernet [15]. In the following, we have cate-
gorised the related work into three category groups.

The first group of research discussed here relates to various work-
load related data traffic, such as Web traffic [11, 24, 13], Variable-
Bit-Rate video traffic [9], ethernet traffic [32], enterprise traffic
[26]. These works mainly focus on modelling and evaluating per-
formance related issues of the network systems in terms of the
infrastructure, network transmission protocol and user behaviour.
Empirical probability distribution fitting for relevant metrics is of-
ten adopted to derive empirical models of the system, c.f. [8].

For example, Ersoz et al. [13] analyses a clustered three-tier
data centre based on a testbed. This paper adopts empirical distri-
bution fitting based evaluation for the arrival rate and inter-arrival
time distribution of the requests to individual server nodes, the data
traffic between tiers, and the average size of messages exchanged

between tiers. The authors find that the request inter-arrival rates
follow log-normal distribution, and self-similarity exists when the
data centre is heavily loaded. The message sizes can be presented
by the log-normal distribution and service times follows Pareto dis-
tribution. Compared with [13], our work is focusing on the traffic
generation behaviour of a grid site. We, however, collect a large
amount of traffic data from a real production level grid site, which
is much more elaborate. As already discovered in [28], general em-
pirical distribution fitting tests are biased against large or “messy"
data sets [18]. Also a single distribution would be difficult to give
good fitting results in the real-world. Thus, in our paper we adopt
the discrepancy statistical analysis method introduced in [30] to re-
duce the level of intricacy of the collected data. Furthermore, we
employ Gaussian Mixture Models for more accurate traffic pattern
approximation.

The second group of analysis investigates self-similarity of traf-
fic, such as [29, 11, 32, 14]. The main focus of this group of work
is whether the observed traffic exhibits self-similar characteristics
and how to build mathematical models to represent this. For exam-
ple, [11] examines the dependence structure of Web traffic. The
paper shows that Web traffic exhibits behaviour consistent with
self-similar traffic models. The paper also demonstrates that the
self-similarity in network traffic can be explained in terms of file
system characteristics and user behaviour. In our paper, we also
evaluate the self-similarity property of the traffic generated by this
grid site.

The third group is focussed on analysing TCP traffic, conges-
tion avoidance behaviour and the impact of a random loss process
on a TCP connection, such as [25, 22, 6]. These works focus
on how to build stochastic models of the TCP throughput, which
is represented using packet loss, round trip delay, etc. Among
these works, Kumar [22] proposes a stochastic model to study the
throughput performance of various versions of Transport Control
Protocol (TCP) in a local network. TCP throughput is computed as
the reward rate in a certain Markov renewal reward process. The
paper shows that for large packet-loss probabilities, TCP-Reno per-
forms no better, or worse, than TCP-Tahoe but TCP-NewReno is a
considerable improvement over TCP-Tahoe. In addition, Padhye
et al. [25] develop an analytic characterisation of the steady state
throughput of TCP-Reno, as a function of loss rate and round trip
time for the TCP flow. It captures the essence of TCP’s congestion
avoidance behaviour. The model is evaluated using a number of
TCP connections between the United States and Europe.

Despite this plethora of works on various types of traffic and
workload analysis, very little effort has been made to deliberately
study grid sites and the network. The reasoning behind this lack of
understanding of grid traffic properties is twofold. First, grid ap-
plication developers tend to assume that all grid traffic is made up
of elephants and mice, i.e. huge bulks of data and (relatively) tiny
control signals, respectively. This assumption has been evident in
grid literature for a long time, but is invalid as illustrated in [12] and
in the results of our study. Second, there is seemingly a common
lack of interest within the community of Grid users about network
issues, with the premise that over-provisioning the network will
deal with any shortcomings, if any. This is problematic as many
Grid applications do not run on dedicated or over-provisioned in-
frastructures. System designers and researchers who wish to work
on new technologies for the Grid have to rely on Grid simulation
packages to evaluate their prototypes. Unfortunately, current Grid
simulators do not offer any realistic models of Grid traffic, which
follows from the lack of Grid traffic studies we outlined. Most Grid
simulators assume that Grid traffic is merely Internet traffic which
is not an accurate assumption, as will be discussed later in this pa-



Figure 1: The Architecture of the UIBK LCG Grid Site

per.

3. GRID SITE INFRASTRUCTURE
The UIBK grid site consists of one cluster frontend (dual-core

Intel Xeon 2.66GHZ, 2GB RAM, 80GB IDE), which is connected
with other grid sites, via the EGEE service grid infrastructure, by
a 300Mbps link. The UIBK cluster comprises of 19 Worker Nodes
(WNs) which provide the computational resources (dual-core Intel
Xeon 3.0 GHz, 2GB RAM, 80GB SATA) (see Figure 1). In addi-
tion, there is a storage server (2 Intel Xeon 2.66 GHz, 2GB RAM,
32GB SCSI) which manages two 1.7TB RAID 5 arrays. Several
standard grid applications are deployed on the cluster, including
Globus GRAM, GridFTP, BDII, gLite software stacks and the Net-
work File System (NFS). All of these distributed solutions generate
data over the infrastructure network.

In order to evaluate the traffic behaviour of this grid site, we cap-
tured all the traffic generated from the site. This was achieved by
running tcpdump on the headnode of the site through which all traf-
fic from the cluster passes. Due to the huge amount of processing
power and storage space consumed by the monitoring process, we
limited the monitoring period to the duration of seven days. This
is because we perform our analysis at the "second" level for seven
days of traffic data collection, which already contained more than
half a million records. This is sufficiently large for us to perform
a reasonably fine-grained analysis and capture detailed traffic be-
haviours at the packet-level. If characteristics like self-similiarity,
correlations or long-range dependencies exist, such a duration is
long enough to capture these traffic behaviours. In addition, our
ultimate traffic modelling aim is to build analytical traffic models
“on-the-fly". The model should be able to quickly adjust itself with-
out needing to observe a very large set of traffic traces. This should

achieve a desired level of accuracy while at the same time avoid-
ing non-stationary behaviour [20]. Thus the observation duration
should be sufficiently long for our purposes.

The experimental data provides details of all packets sent out
from this grid site. We derived network traffic performance met-
rics of interest, each of which can be regarded as a stochastic pro-
cess, and then analysed their characteristics. We perform packet-
level analysis of throughput, packet size, packet rate, delay and loss
for measuring the packet generation behaviour. With these perfor-
mance metrics defined, we then developed a set of Perl- and AWK-
based scripts to process the collected data traffic information. In
the following section, we will introduce more detail about the traf-
fic characteristic analysis.

4. TRAFFIC CHARACTERISTICS AND EVAL-
UATION

In order to analyse which applications generate significant amounts
of data and TCP connections from the grid site, we first examined
how much data is sent over each TCP port and how many connec-
tions are initiated by the site nodes over the monitored period. This
provides us with useful information about grid site traffic behaviour
to learn about the application level traffic characteristics. Then we
study the self-similiarity properties and analyse suitable statistical
models for each traffic metric, which provides more insight into the
packet-level grid traffic characteristics.

4.1 Application-Based Traffic
Table 1 shows a summary from a data-oriented and connection-

oriented perspective for the grid applications considered1. As out-
1Due to space limit, we only show individual port traffic which gen-



Application Port(s) Data Sent
(%)

Connections
(%)

SSH 22 0.38% 0.05%
NFS 2049 29.38% 0.87%
GRAM 2119 0.01% 1.7%
BDII 2170 28.39% 62.25%
GridFTP 2811 0.003% 0.35%
Ganglia 8649 0.97% 6.69%
Globus TCP
Port Range

40000–
40500

0.42% 1.04%

Other Ports above
30000

40.108% 26.4049%

Table 1: Application-Based Grid Traffic Analysis

lined in Table 1, BDII and NFS both generate a large proportion
of data. BDII generated 28.39% of the total data sent and initi-
ated 62.25% of the 350,000 connections. This indicates that the
GLUE [7] dynamic resource information publishing service con-
sumes quite a large proportion of network resources and this traffic
is mostly short-live TCP connections. However, this may not be
desirable for traffic optimisation and so a more economical scheme
for publishing grid site resource information could be considered
to strike a trade-off between network resource consumption and
the update speed of grid resource information. Further, we see that
the Ganglia [3] cluster monitoring system generates a considerably
substantial amount of TCP connections. Specifically, we see that
Ganglia generates 1% of the data and 6.69% of the total connec-
tions. We also know that Globus jobs for this grid site are submit-
ted through port range 40000–40500. Thus, we calculated the data
communicated through these Globus job ports and found that they
represent around 1.04% of the total connections and just 0.42% of
the total data. These results indicate that the data traffic of this
grid site is not heavily dominated by Globus job behaviour. Fi-
nally we also summarise the total data and connections above TCP
port 30000 (including Globus) due to the fact that we observe most
other traffics are through these high ports. They represent around
26.4049% of the total connections and 40.108% of the total data.

Overall, from Table 1, we can see that the traffic generated by
BDII for publishing resource information and NFS for transferring
files have significant impacts on the traffic behaviour of this grid
site. It is also observed that the traffic of different applications on
this grid site are quite different from each other. For example, ap-
plications such as NFS generate more data and less connections, in-
dicating that a relatively large amount of data is transferred for each
established TCP connection. In contrast, applications such as BDII
and Ganglia generate less data for each established connection but
they create these TCP connections quite frequently. This is due to
the dynamic nature of grid monitoring and resource publishing ap-
plications. As such, when modelling individual grid applications,
these characteristics must be taken into consideration. We also see
that there are is very little HTTP or Web traffic (port 80 or 8080)
generated, which is already a distinctive difference from many Web
clusters and data centres. For other traffics, due to limited knowl-
edge of the site’s port configuration, we do not know exactly which
applications generate them. However, in later sections, we involve
all of these traffics for the packet level synthetic traffic analysis.

4.2 Self-Similarity Evaluation
We then analysed the self-similar and long-range dependence

erate significant amounts of data / number of connections (larger
than 1%).

Metric Hurst Exponent
Estimate

Correlation Coeffi-
cient

Packet Rate 0.501–0.800 98.35%–99.85%
Throughput 0.516–0.790 98.26%–99.91%
Packet Loss Rate 0.592–0.835 98.40%–99.96%
Packet RTT 0.648–0.698 97.93%–98.67%

Table 2: Self-Similarity Analysis

properties [19, 31] for each evaluated packet-level traffic metric
(see Table 2) for the overall traffic behaviour. A self-similar process
looks qualitatively the same irrespective of the time scale. Long-
range dependence is different in that it measures the memory of
a process by measuring its statistical decay rate in comparison to
exponential decay. This involves calculating the autocorrelation
decay, a statistical measure of the relationship between a random
variable and itself at different time lags. The Hurst parameter H is
a key measure for the persistence of self-similarity and long-range
dependence [31]. Technically, a stochastic process X(t) is statis-
tically self-similar with parameter H(0.5 < H < 1) if, for any
real value a > 0, the process a−1x(at) has the same statistical
properties as X(t). Here, the closer H is to 1, the stronger the de-
pendence of the process is. Whereas if H = 0.5, it follows that the
model has short range dependence. It has been shown in [29] that a
Poisson model can be used to describe short-range dependent traf-
fic, which does not take into account the autocorrelation concept
due to the independence hypothesis in the data. Thus, we measure
the autocorrelation (see Figure 2) of each traffic metric as well as
an assistant measurement.

With these considerations, we plotted the autocorrelation and es-
timated the correlation coefficient for each metric. We estimated
H on a daily basis, where we adopted rescaled range (R/S) estima-
tor [15] and computed H . Table 2 presents each Hurst parameter
estimate and the correlation coefficient results. These experimental
results show that packet rate, throughput, packet loss and packet de-
lay are time-dependent and self-similar. This is because the Hurst
parameter estimate for both packet rate and throughput trend are
larger than 0.5. Together with the autocorrelation results, all of
these parameters potentially exhibit long-range dependencies.

4.3 Statistical Analysis
We derive approximate traffic models using Gaussian mixture

distributions for the traffic generation behaviour of this grid site.
This involves applying the λ2 discrepancy measure proposed in
[30] and the expectation maximisation method to estimate the pa-
rameters for Gaussian mixture distributions being tested. Given
an initial parameter estimate vector, these methods try to improve
it on each subsequent iteration and the algorithm terminates when
the stopping criteria is satisfied. With such underlying techniques,
we can then find the best approximated models with suitable pa-
rameters.

4.3.1 Mathematical Methodology
It has been found that large “messy" data sets [18] might cause

approximated models to become biased against the real traffic be-
haviour. Also discovered in [18], the same occurs when it exhibits
significant autocorrelation, which can be seen from our autocorrela-
tion results in Figure 2. Thus, we apply the λ2 discrepancy measure
proposed in [30]. This method has been shown to be effective for
examining large messy traffic data [10]. Instead of testing how well
a particular data set can be approximated by a probability distribu-
tion, the method shown in [30] discovers the discrepancy between



(a) Packet Rate (b) Throughput (c) Packets Lost Rate (d) Packet RTT

(e) Packet Rate Autocorrelation (f) Throughput Autocorrelation (g) Packet Loss Rate Autocorrela-
tion

(h) Packet RTT Autocorrelation

Figure 2: Network Performance for Consecutive 7 Days

the actual data and the statistical model. The larger the discrepancy
the worse the model, and vice versa. In practice, λ2 > 1 gives a
significant difference. The estimator λ2 is given by:

λ2 =
X2 −K − df

n− 1
,

where n is the number of observations in the data set; df represents
the number of degrees of freedom of the test given by df = n −
1 − npi where npi is the number of parameters that were used
to estimate the analytical distribution; X2 and K are given by the
following equations:

X2 =

NX
i=1

(Yi − npi)
2

npi
, and K =

NX
i=1

Yi − npi

npi
,

where Yi is the number of items in bin i of the empirical data which
is partitioned into N bins. To solve the possible divide-by-zero
problem with deterministic distributions, in [23] the following al-
ternative equations are used:

X2 =

NX
i=1

(npi − Yi)
2

Yi
, and K =

NX
i=1

npi − Yi

Yi
.

In our analysis, rather than using the original raw data, we use
it by applying a logarithmic transformation. This can reduce the
range of data and can be used to stabilise the variance of a sample
[27]. From the analytical models found in the log-transformed do-
main, it is easy to derive the analytical expressions of the distribu-

tions into the original domain. Once we get an analytical model, we
compare them to the empirical data by means of graphical represen-
tations of the corresponding probability density functions (PDFs)
and quantile-quantile plot (Q-Q plot). The Q-Q plot is powerful for
examining whether the dataset fits well with the analytical model
based on the estimated parameters. These are obtained by plot-
ting the quantiles of the two cumulative distributions against each
other. The closer to the identity function (i.e. a straight line passing
through points (0, 0) and (1, 1)) the better the match between the
two distributions.

We model the data sets with Gaussian Mixture Models (GMMs)
to improve the approximation results rather than using a single dis-
tribution, such as the Extreme distribution, which is widely being
used as an analytical model for approximating the cluster traffic
generation behaviour [13]. The related application of finite GMMs
is receiving increasing attention, which is flexible enough to cap-
ture various shapes of continuous distributions that do not fall into
any of the known parametric probability distributions. With some
mixtures, the peaks of the original empirical model may not be
obvious. In general, for finite mixtures of k-GMMs, the mixture
density is defined as:

f(x, p1, p2, · · · , pk, µ1, µ2, · · · , µk, σ
2
1 , σ

2
2 , · · · , σ2

k) =

kX
i=1

piN(µi, σ
2
i ),

with mixing proportion p1, p2, · · · , pk and such that
Pk

i=1 pi = 1.



The mixing proportion denotes the probability that a given obser-
vation arises from the i−th mixture component by x ∼ N(µi, σ

2
i )

with probability pi, where 1 ≤ i ≤ k.
Our results show that adopting GMMs and λ2 discrepancy mea-

sures are good and flexible in modelling the shape of the traffic of
a grid site. It is worth mentioning that we adopted the Expecta-
tion Maximisation (EM) algorithm to estimate the parameters of
GMMs. This is because although MLE is the most popular method
used to estimate parameters for the distributions being tested, it has
certain limitations. For instance, it is required that the likelihood
function must be bounded [33]. However, this cannot always be
achieved. In our case, the Gaussian mixture likelihood function
is unbounded for some measured traffic metrics. Therefore MLE
fails to converge, but the convergence of EM algorithm is mathe-
matically proven. Therefore, we adopted the EM algorithm applied
to parameter estimation of GMMs.

4.3.2 Traffic Analysis
We are interested in finding an accurate model to characterise

packet-level traffic generation behaviour of this grid site. We ap-
plied the statistical techniques discussed in Section 4.3.1 to each of
our traffic metrics on a separate daily basis. This allowed us to re-
duce the non-stationary effect of the traffic as well as to show that
our adopted modelling approach is adaptive to traffic characteris-
tics.

We show the plots in a comparison of the empirical and estimated
analytical results for each day, along with a Q-Q plot. A summary
of our findings is given below. To save space, we only show a rep-
resentative on one day for PDFs and Q-Q plots of the best approxi-
mated GMMs. We obtain very similar results for all the other days

Day Distribution Parameters λ2

1 GMMs µ1 = 3.3752, σ1 = 1.6906,
µ2 = 4.3200, σ2 = 0.4841,
p1 = 0.5862, p2 = 0.4138

0.1165

Extreme a = 4.4744, b = 1.5082 0.3690
2 GMMs µ1 = 4.2445, σ1 = 0.5087,

µ2 = 3.8926, σ2 = 1.9592,
p1 = 0.4264, p2 = 0.5736

0.1820

Extreme a = 4.8642, b = 1.7398 0.3874
3 GMMs µ1 = 2.6092, σ1 = 1.2126,

µ2 = 4.3127, σ2 = 0.5786
p1 = 0.3805, p2 = 0.6195

0.0057

Extreme a = 4.2168, b = 0.9453 0.0293
4 GMMs µ1 = 3.1786, σ1 = 1.5985,

µ2 = 4.2493, σ2 = 0.5442,
p1 = 0.4810, p2 = 0.5190

0.0657

Extreme 4.3583, b = 1.3391 0.5001
5 GMMs µ1 = 2.4609, σ1 = 1.2223,

µ2 = 4.2681, σ2 = 0.6039,
p1 = 0.2981, p2 = 0.7019

0.0111

Extreme a = 4.2502, b = 0.8869 0.0390
6 GMMs µ1 = 2.5319, σ1 = 1.2147,

µ2 = 4.2773, σ2 = 0.5893,
p1 = 0.2998, p2 = 0.7002

0.0107

Extreme a = 4.2628, b = 0.8589 0.0440
7 GMMs µ1 = 3.4463, σ1 = 1.8693,

µ2 = 4.2540, σ2 = 0.5243,
p1 = 0.5065, p2 = 0.4935

0.0986

Extreme a = 4.5698, b = 1.5671 0.4584

Table 3: Summary of Results for Throughput

(summarised in Table 3 and Table 4) where the GMM is compared
with adopting Extreme distribution as the underlying model.

Throughput: Figure 3(a) presents comparisons between empir-
ical and analytical models. It is clear that the analytical data from
GMMs approximate the actual traffic data quite well, confirming
the goodness of the approximation. The Q-Q plot in Figure 3(b)
also shows a good approximation. The GMMs are presented in
Table 3, including their parameters and the Extreme distribution
discrepancy analysis. For each day, the first row always shows a
low value for the discrepancy measure by GMMs, i.e. Day 1, λ2 =
0.1165 and the second row displays the results for Extreme distri-
bution, i.e. Day 1, λ2 = 0.3690, relatively poorer than GMMs.

Packet Rate: Figure 4 and Table 4 shows a good approximation
between the empirical and GMMs. Note that the Q-Q plot shows
a good match, apart from where the difference in the tail. This,
however, is a small and insignificant fraction of the overall data
set. In most cases, an extreme tail is ignored when constructing a
model or, where necessary, the technique of distribution splitting is
applied to obtain separate approximations [10].

Packet Loss Rate: Our analysis results show that for almost
every day the percentage of packet loss is stable around the range
of 2% to 5%. It is interesting to note that on day 1 there is a serious
loss of packets, around 13% loss for unknown reasons, which is
worth investigating further. Due to space limitations, we only show
the PDF of packet loss rate in Figure 5(a). Our GMM-based model
approximates closely to the real traffic data with k = 3, which
confirms the goodness of the approximation.

RTT: Figure 5(b) demonstrates a good agreement between the
empirical traffic data and the analytical model of packet RTT, which
is shown by GMMs with k = 3 as well .

Day Distribution Parameters λ2

1 GMMs µ1 = 3.9813, σ1 = 1.4541,
µ2 = 5.3666, σ2 = 1.8694,
p1 = 0.9250, p2 = 0.0750

0.0719

Extreme a = 5.2674, b = 0.8375 0.1596
2 GMMs µ1 = 4.3293, σ1 = 0.4277,

µ2 = 3.7855, σ2 = 1.8523,
p1 = 0.2962, p2 = 0.7038

0.1498

Extreme a = 4.7664, b = 1.6706 0.3466
3 GMMs µ1 = 3.0776, σ1 = 1.4402,

µ2 = 4.3741, σ2 = 0.4623,
p1 = 0.6073, p2 = 0.3927

0.0791

Extreme a = 4.2260, b = 1.4113 0.1339
4 GMMs µ1 = 3.0275, σ1 = 1.4838,

µ2 = 4.3454, σ2 = 0.4531,
p1 = 0.6203, p2 = 0.3797

0.0953

Extreme 4.1879, b = 1.3615 0.9929
5 GMMs µ1 = 1.9560, σ1 = 0.8671,

µ2 = 4.2370, σ2 = 0.5892,
p1 = 0.3347, p2 = 0.6653

0.0053

Extreme a = 4.0388, b = 0.7667 0.1249
6 GMMs µ1 = 3.4476, σ1 = 1.5975,

µ2 = 4.3833, σ2 = 0.4285,
p1 = 0.6967, p2 = 0.3033

0.0209

Extreme a = 4.4222, b = 1.4333 0.1051
7 GMMs µ1 = 4.3256, σ1 = 0.5783,

µ2 = 3.3965, σ2 = 1.9609,
p1 = 0.3019, p2 = 0.6981

0.0775

Extreme a = 4.5583, b = 1.6371 0.2573

Table 4: Summary of Results for Packet Rate
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Figure 4: Packet Rate Day 5

Packet Size: For the packet size analysis, our evaluation shows
that a large portion of the packets are in the 1024-2047 Byte range,
with a relatively small variation. The two dominant packet sizes
are 1514 and 66 Bytes, claiming 55.1% and 36.6%, respectively,
of all captured packets. Packets of such sizes typically represent
the maximum transmission unit (MTU)-worth of data and an ac-
knowledgement (ACK) respectively (including TCP, IP and MAC
headers).

Finally, we analyse the correlation between packet size, packet
rate and throughput. Intuitively, the packet rate metric should be
independent of the packet size and have a linear relationship with
the network throughput. These dependence relationships could be
interpreted quantitatively using the correlation coefficient value be-
tween the metrics. When two sets of data are completely indepen-
dent the correlation coefficient value should be 0, whereas when
two sets of data are completely dependent the correlation coeffi-
cient value should be 1. In our case, the correlation coefficient
value between packet size and packet rate is 0.001319813, which
indicates these two metrics are actually almost independent of each
other. However, we found that packet rate has a positive correlation

with throughput as the correlation coefficient approaches 0.4797655.

4.3.3 Summary
Overall, all of these statistical analysis results help us identify the

synthetic traffic behaviour of the grid site. Such information is im-
portant for understanding network utilisation and efficiency of grid
sites, thus allowing optimal design and fine-tuned management of
the underlying network. The GMM-based modelling approach can
be reused as a foundation for “on-the-fly" analytical model approx-
imation with continuously updated parameters. Such an approach
can achieve an accurate model approximation adaptively as well as
avoid the non-stationary effects of long term observation. The re-
sults presented in this paper can also be used to build approximate
data generation models for grid sites and develop simulators.

5. IMPLICATIONS & FUTURE WORK
The work presented here is merely a starting point. Our analysis

is from one grid site which might be not representative enough of
the LCG or other grid sites. However, this work reveals a number
of interesting questions and research directions, which would be
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important for network designers and researchers who wish to in-
corporate a realistic representation of grid site traffic in their work.
Thus, these results are still quite valuable as, to our knowledge,
there is little work for grid site traffic analysis at this level.

The characteristics of the data traffic generated by the UIBK grid
site is useful for several reasons. Although the observation dura-
tion is only seven days, the traffic traces contain more than half a
million records at the “second" level contributing to highly fine-
grained traffic analysis. These traces are long enough to discover
many fine degree traffic behaviours, such as self-similarity, long-
range dependencies and traffic correlations etc., all of which are
important to be taken into consideration for future grid sites net-
work design, performance enhancement and traffic prediction. For
example, as pointed out in [11], the Hurst parameter H , used to
measure the self-similairy property, provides a better satisfactory
measure of the “burstiness" of self-similiar traffic. The nature of
congestion produced by self-similar traffic models differs from that
predicted by standard formal models and displays a more compli-
cated behaviour.

In addition, in this paper we reveal that both BDII and NFS con-
sume a large proportion of this grid site traffic. For NFS traffic,
it might lead us to rethink the design and network management of
grid sites or more generally high performance clusters. The ques-
tion arising here is how should we optimise the design of future
grid sites to avoid such a big chunk of NFS traffic to storage servers
generated from the grid headnode, which might be undesirable. For
BDII traffic, it brings up the question of how should we optimise
the frequency of the grid resource publishing behaviour to avoid ex-
cessive advertisement traffic? For example, when the workload of
a grid site is high, should a grid site publish its current status more
frequently to avoid being selected or it should publish resource in-
formation less frequently to free some of its network resources?
Such questions need to be answered for optimising grid systems.

Furthermore, as we see from our analytical results, most metrics
can be approximated reasonably well by using GMMs throughout
the seven days duration. These results imply that even if we col-
lect more data, we probably can still use GMMs as the underlying
model with different parameters. Therefore, GMMs can be a good
candidate as an empirical traffic modelling tool. In our case, two or
three Gaussian process mixtures (k = 2, 3) can achieve a reason-
able approximation. This result shows two benefits for future work

on modelling or simulation of grid site traffic generation. First, with
relatively low dimensional GMMs (k = 2, 3), the number of pa-
rameters for GMMs are not large, which balances the complexity of
the model and the accuracy of traffic approximation. Second, since
GMMs fit better than most other empirical distributions for all the
analysed metrics, we can avoid the use of many other distributions
for model approximation in the future. These single distribution-
based models are still used in a significant number of works on traf-
fic analysis, e.g. [13]. This can reduce the computation overhead
significantly. Since GMMs only contain Gaussian processes with
a lower computation overhead and the simplicity of the underlying
mathematics form, traffic analysis can be embedded as a module
of a real-time traffic monitoring process. This allows “on-the-fly"
accurate traffic model extraction and traffic performance prediction
in real-time. This approach would be promising for building future
grid network monitoring frameworks as well as for high-level ap-
plications, which need such real-time information for application
specific purposes (e.g. server selection in terms of the predicted
network performance).

The models developed in this paper can also be used for opti-
mising the performance of network protocols or grid applications
(such as TCP, GridFTP). For example, Yildirim et al. [34] show
how to improve TCP throughput performance by constructing a
balance among tuned buffer sizes and parallel data streams. In
their algorithms, network metrics such as packet RTT and packet
loss rate are needed for optimisation. The traffic characterisation
results introduced in this paper can be adopted to achieve a better
prediction of these network metrics. Our approaches can be used
to further improve such optimisations, which also directly implies a
performance improvement of GridFTP-based parallel data transfer
behaviour and its workload as introduced in [21].

For future work, we hope to analyse multiple grid site traffic with
a finer degree of granularity and a longer duration. This might al-
low us to confirm our findings or discover new traffic characteristics
that differ from the results of this paper. Either outcome would be
valuable. We also aim to perform detailed analysis for some critical
grid network interactions, such as BDII-based resource advertise-
ments. We also hope to adopt more sophisticated analysis methods,
such as fractional Brownian motion (fBm) models to approximate
the self-similar and non-stationary behaviour of the data traffic. Fi-
nally, we plan to build accurate grid site traffic generators based on



our empirical observations.

6. CONCLUSION
Understanding the nature of traffic in grid sites is essential for

engineering, operations, and performance optimisation. To achieve
such goals, it is important to know the expected traffic behaviour
of the major contributors to the grid traffic. In this paper, we in-
troduced the evaluation results for the traffic behaviour observed
at the UIBK site, an LCG site running real-world production-level
grid services. We investigated the proportion of traffic generation
by different applications and found that traditional HTTP and other
Web applications, which generate a large proprtion of the traffic on
the Internet, have only a minor impact on grid sites. Instead, grid
applications, such as BDII for grid resource advertisement, gener-
ate a significant proportion of traffic. Such results implicate differ-
ent traffic behaviour between a grid site and Web or data centres.

Furthermore, we revealed that the traffic behaviour of this grid
site exhibits self-similarity and long-range dependency. Such be-
haviour has serious implications for the design, management and
optimisation of high-speed networks, such as in congestion avoid-
ance and traffic load balancing. It indicates that an optimal data
traffic solution based on traditional memoryless Poisson traffic mod-
els will be suboptimal when the traffic exhibits self-similarity and
long-range dependencies properties.

We performed a packet-level statistical analysis of the generated
traffic. Using the λ2 discrepancy measure we developed the ana-
lytical models by means of a mixture of Gaussian processes. Such
models have a good agreement between the actual traffic data and
analytical modelling as well as keep a reasonable model complex-
ity, which is not too difficult to implement. This is better than us-
ing a single distribution presented in many existing results. The
simplicity of using only Gaussian processes also enables the possi-
bility of “on-the-fly” traffic model approximation with reasonable
computational overhead, which would allow us to build accurate
“on-the-fly" traffic predictions. This can be applied to real-time
traffic monitoring and higher-level optimisation of data intensive
applications.

Overall, our results in this paper cover a number of important
aspects of the network data traffic characteristics of a grid site. To
our knowledge, the traffic analysis work we presented in this pa-
per is the only analysis of a real-world production level grid site.
We believe that such an evaluation is valuable for future grid site
design, development, performance improvement, network manage-
ment and data-aware application design.
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