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ABSTRACT
Modern scientific collaborations have opened up the op-
portunity of solving complex problems that involve multi-
disciplinary expertise and large-scale computational experi-
ments. These experiments usually involve large amounts of
data that are located in distributed data repositories running
various software systems, and managed by different organi-
sations. A common strategy to make the experiments more
manageable is executing the processing steps as a work-
flow. In this paper, we look into the implementation of
fine-grained data-flow between computational elements in
a scientific workflow as streams. We model the distributed
computation as a directed acyclic graph where the nodes rep-
resent the processing elements that incrementally implement
specific subtasks. The processing elements are connected in
a pipelined streaming manner, which allows task executions
to overlap. We further optimise the execution by splitting
pipelines across processes and by introducing extra parallel
streams. We identify performance metrics and design a mea-
surement tool to evaluate each enactment. We conducted ex-
periments to evaluate our optimisation strategies with a real
world problem in the Life Sciences—EURExpress-II. The
paper presents our distributed data-handling model, the op-
timisation and instrumentation strategies and the evaluation
experiments. We demonstrate linear speed up and argue
that this use of data-streaming to enable both overlapped
pipeline and parallelised enactment is a generally applicable
optimisation strategy.
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1. INTRODUCTION
It is widely recognised that data-intensive methods are trans-
forming the way research is conducted, as recognised in“The
Fourth Paradigm” [21]. There are many reports identifying
requirements for data-intensive computation [20, 6, 37, 23].
It is evident that improved apparatus is needed for extract-
ing information, evidence and knowledge from the growing
wealth of data. We introduce the term “datascope” for the
instruments that reveal information latent in data, just as
telescopes reveal the universe. Several software frameworks
for composing datascope are possible: workflow technolo-
gies, map-reduce systems, query engines and desk-top tools.
Each framework is subject to active research, in this paper
we focus on a subclass of workflows where data is passed
using data streams.

We investigate the potential for optimisation for data mining
and data integration (DMI) processes to reduce the overall
workflow execution time by making the best use of data
streaming. We model each request as a directed acyclic
graph (DAG). Tasks are handled by software components
named processing elements (PEs) and represented as nodes
in the graph. The nodes are connected in a pipelined stream-
ing manner, which allows the overlap of PEs’ executions—a
source PE continues data production while a consuming PE
consumes its output permitting some of the PEs to be exe-
cuted simultaneously on different portions of a data stream.
The streaming technology can process requests with large-
scale data by an efficient implementation of buffering in
main memory. Jacobs [24] has observed that the process-
ing speeds of memory access outperforms disk by a factor of
> 105. This ratio increases when random access is needed.
Section 2 describes the workflow model in detail.

Our hypothesis is that such distributed computations can
be optimised if we understand the significant costs that af-
fect streaming performance. We hypothesise candidate per-
formance factors and examine how these relate to various
cost functions. Some metrics are generic such as response
time and throughput whereas others are more important for
specific types of request. For instance, in a distributed com-
putation that involves high volumes of data movement be-



tween geographically distributed data repositories, the data
transmission costs may be the critical factor. Section 4.1
provides further discussion of performance metrics. We pro-
posed a measurement framework in Section 4.2 to capture
performance data when executing distributed computations
at different levels of abstraction.

We propose an optimisation strategy that splits a DAG into
multiple DAGs that can then be passed to separate enact-
ment engines coupled by potentially slower data streams.
The challenge is to partition automatically the initial DAG
in a way that minimises a cost function. We use data col-
lected by measurement probes to inform this decision.

In preparation for the automated optimisation, we conducted
the following manual procedure.

1. Instrumented the DAG
2. Collected internal data flows and timing measurements
3. Examined the data and choose a candidate graph cut
4. Bridged the cut with long-haul data streaming
5. Measured the performance with the parts distributed across

enactment engines
6. Explored various partitions and mappings to enactment

engines.

The intention of these manual experiments is to establish the
potential for optimisation, to identify strategies and heuris-
tic, and to set optimisation goals.

We have conducted an experiment to evaluate our optimi-
sation strategies in solving a real-world problem in the Life-
Sciences. An experiment with EURExpress-II [22] using
OGSA-DAI [14] described in Section 5. OGSA-DAI is an
extensible framework which supports data streaming of het-
erogeneous data from multiple sources, such as: relational,
XML and RDF databases, and file systems. OGSA-DAI
provides an extensive library of activities as basic building
blocks of distributed queries and workflows; they perform
functions, such as: executing queries, reading files, trans-
forming data, etc. The experimental results in Section 6
shows that a linear speed up is obtained using the proposed
optimisation strategy.

The paper is structured as follows: Section 2 describes the
streaming model and the optimisation problem. Section 3
presents our proposed optimisation strategy. Section 4 dis-
cusses the measurement technology. Section 5 describes the
experimental setup and the real application. The results
are discussed in Section 6 and related work in Section 7. We
conclude and discuss further research in Section 8.

2. PROBLEM DESCRIPTION
2.1 Streaming Model
A typical distributed computation comprises a sequence of
tasks that represent steps in a computational process that
composes data and operations that may be independently
defined. We call this a distributed data streaming graph.
Such a graph can be control-driven or data-driven: the for-
mer has dependencies to show the execution ordering or con-
trol flow while the latter represents the flow of data from one
task to another and execution ordering is inferred. Work-
flow structure is also different according to workflow engine,
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Figure 1: Pipeline example

scheduling method and enactment platform. We focus on
workflows where the data flow is explicit and the control
flow implicit, represented as a DAG. Let G = {V, E} denote
a DAG consisting of n steps, the set of tasks is represented
by vertices, V and the edges, E denote data flows from a
source task to consumer task. Figure 1 illustrates a DAG
that comprises 13 tasks V = {Q1, Q2, T1, ..., D1, D2} with
edges representing the data flow. For example, Q1 retrieves
data and passes them to T1 to perform transformation.

A task is handled by executing one or more software compo-
nents named processing elements (PEs). PEs are connecting
via data streams to form a DAG.

Characteristics of PEs:

• PEs have input(s) to receive data and output(s) to send
data.
• PEs have different data processing rates, e.g., T1 and T2

may take different amounts of time to transform a unit of
data.
• PEs may have different input consumption rates, e.g., if
M is a sort merge, it may consume data from one input
much faster than from the other.
• PEs start to process as soon as they have received suffi-

cient data for the computation. They may emit data as
soon as the processing on a unit of input has finished.
• Some PEs are aggregative, that is, they combine data from

a (sub-)sequence of (sub-)units in their input to produce
a single derived value in its output.
• The relationship between inputs and outputs may be spec-

ified, e.g., a) that a PE consumes lists from its input and
generates a tuple for each list on its output that is an
aggregation of the list, b) that a PE takes lists of tuples
on its input and emits corresponding lists of tuples with
the tuples partitioned between the outputs or c) that a
PE takes lists of tuples on input a and tuples on input b

consuming one list and one tuple at each step and emit-
ting a list of tuples which are the original tuples from a

extended by the tuples from b.
• A PE ceases processing when an input it requires has sig-

nalled it has no more data or when all of its consumers
have indicated the no longer require data, or when it is
sent a stop signal by the enactment system.

Characteristics of data streams:

• Due to different consumption rates of PEs, buffering is
needed in a data stream.
• Streaming buffers can be implemented in main memory

or spill onto disk.
• When a data stream connecting two PEs resides on sep-

arate machines, the stream implementation uses commu-
nication protocols.



2.2 Optimisation Problem
The DAG shown in Figure 1 is a common pattern in e-
Science research which involves a) integrating data from dis-
tributed repositories, b) processing these data on distributed
computing elements, and c) formatting and presenting the
results to various targets. The execution of this DAG relies
on various parameters, such as:

1. Data source selection — From which data repositories Q1
and Q2 select from?

2. Enactment platform selection — On which computing
platforms are the PEs executed? Is the workload fairly
distributed across the computing platforms?

3. Pipelining — Can a successor task start on the partial
results of a predecessor task before it has completed?

4. Parallelism — Can some of the tasks be executed in par-
allel, e.g., over partitions of a unit of input?

5. Data movement — Can certain tasks be co-located to
reduce data movement or should transfer costs be intro-
duced to prevent two PEs competing on the same pro-
cessor?

6. Tasks sequence ordering — Will it speed up the execution
time if F (filtering based on column c) is executed before
Q (quantising column b), and will it produce the same
results for all inputs?

The optimisation challenge is to find a way of organising the
distributed computation that will deliver the same results
within the application-dependent criteria at the least cost.
Various cost functions may apply, e.g., time to initial output,
time to completed output on all delivery streams or amount
of energy used. For example, by hand optimisation of an
Astronomical application, Montage, Singh et al. were able
to reduce total execution time by a factor of 10 [34].

Most of the workflow optimisation research focuses on im-
proving time-based criteria: reducing the makespan, de-
creasing the response time, etc. The primary goal is to im-
prove efficiency from the user’s perspective. Alternatively,
optimisation can address the overall resource efficiency per-
spective so that throughput can be increased, e.g., by using
resource reservation and prediction strategies. With pay-as-
you-go computing services, e.g., cloud computing, optimisa-
tion may be reformulated to reduce the charge or energy for
a job.

Both response and throughput are affected by failure and
overload, thus optimisation may consider how well systems
handle failure, e.g., by providing alternative execution paths,
cleaning up and recovering partial work after failures and
re-submitting a modified workflow to complete the failing
job. Similarly, it is necessary to handle increases in data
volume, number of jobs and both data and workflow com-
plexity without severe degradation.

Most users appreciate more abstract notations for specifying
the workflows as they can then focus on the goals of their
work. Abstraction imposes a requirement for optimisation
to achieve acceptable performance and provides an oppor-
tunity for optimisation during the automated mapping to
more concrete representation.
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Figure 2: Mapping abstract workflow onto physical
resources

3. OPTIMISATION STRATEGY
We propose an optimisation strategy that splits a DAG into
multiple DAGs that can then be passed to separate enact-
ment engines coupled by potentially slower data streams.
The proposed strategy aims to minimise the total workflow
cost within constraints imposed by data sources and desti-
nations by:

1. ameliorating performance bottlenecks by parallelising,
2. distributing enactment to balance workload,
3. minimising data movement by co-locating, and
4. performing logical transformation.

The DAG is split into partitions and data staging PEs are
added to handle data movement between platforms. The
challenge is to partition automatically the DAG in a way
that minimises a cost function.

Figure 2 illustrates how to map an abstract workflow com-
prising 9 tasks onto physical resources. We construct a
weighted DAG from the given abstract DAG, D based on
previously collected performance data. The weight of a node
vi is the computational cost per unit of data of a particular
task, wi. The weight of an edge ei,j that connects vi and vj

represents the communication cost per unit of data by the
data stream between the connected tasks. The DAG is split
into k partitions, P and mapped onto heterogeneous plat-
forms, R that consist of database server DB, workstations
W1 and W2, commodity cluster CL and high performance
computing cluster HPC. Assume that v3 produces a large



volume of data, and both w3 and w4 are high, then optimi-
sation should map v3 and v4 onto HPC.

When optimising workflows in a pipelined streaming model,
the optimiser must handle both the differences in process-
ing behaviour and data streaming rates. As described in
our previous work [4], if a PE reads all of its input tuples,
and requires multiple accesses to each tuple (referred as ag-
gregative behaviour), it requires the entire data to be held
in memory, or repeatedly re-read from disk. If v8 requires
tuples from both inputs, e.g., a merge or join, and v7 pro-
duces data faster than v9, then the stream buffer in e7,8 will
overflow to disk or have large memory requirements on the
system.

The optimiser must discover the potential of a particular
path in the DAG to be parallelised. For instance, if the
work load of v2 and v4 are high, therefore splitting the data
stream as multiple instances of v2 and v4 is beneficial. This
involves two decisions: a) where to split the data stream,
and where the data stream should be merged, and b) how
many split instances are needed to balance data rates.

Optimising the distributed computations in a pipelined stre-
aming model, across distributed and heterogeneous compu-
tational and data resources is a hard problem. We solve this
problem in stages—the preliminary stage adopts the follow-
ing assumptions, which are progressively relaxed:

1. requests tend to be repeated, either:

(a) entire workflows with different dataset;
(b) partial workflows (e.g., a sub-workflow that performs

image preprocessing);
(c) PEs (e.g., PE that performs SQL query on relational

databases),

2. enactments can be automatically instrumented, and per-
formance data collected and stored,

3. the semantic descriptions of all PEs are stored in a reg-
istry, and updating operations are allowed (e.g., adding
tags for optimisation),

4. data repositories are accessible across the network using
selected data-integration middleware,

5. requests are data-driven, and involve common scientific
type data, e.g., the recursive composition of collections
(lists, sets, bags, and trees), tuples, arrays, images, and
primitive types—we pass parts of these incrementally along
streams to allow them to be arbitrarily large.

Our optimisation depends on the operational model shown
below. We first check whether the DAG (or a subDAG)
has been enacted before, and retrieve information from the
Performance Database (PDB). We annotate each vi with se-
mantic information from the Registry (Reg) (e.g. data unit,
type structure of each input and output, parallelisable) and
derived performance summaries. We then identify the criti-
cal paths (CPs) in the DAG. The DAG in Figure 2 indicates
three execution paths, i.e. [v1,v2,v3,v4,v5], [v1,v6,v7,v8,v5]
and [v1,v6,v9,v8,v5]. The path with the slowest processing
rate is defined as the CP. The optimiser focuses on optimis-
ing the CPs. How can it find the putative CPs?

We identify the critical path by instrumenting buffer for
multi-input PEs, e.g., v5 has two input streams (e4,5 and

Read abstract DAG (D)

for all subDAG D′ of D do
if D′ previously processed then

Replace D′ with previous optimisation D′′

Annotate D′′ with semantic information from Reg
and performance data from PDB

else
Annotate D′ with semantic information from Reg

and performance data from PDB
end if

end for

Identify & Optimise Critical Paths(CPs) to produce D′′′

Instrument D′′′ to yield D′′′′

Enact D′′′′′

Update PDB

e8,5), thus, its performance depends on the rates of these
streams. e4,5 and e8,5 should be instrumented. If the rates
of e8,5 is faster than e4,5, the buffer space in e8,5 will fill.
Thus, the execution path [v1,v2,v3,v4,v5] is the critical path
that needs to be optimised, with the following approaches.

Splitting data stream and executing in parallel. The split
may be horizontal (using DB parlance) where different tu-
ples pass along parallel paths, or vertical, where different el-
ements of a tuples pass along parallel paths. By combining
the semantic annotation along the CPs, we determine which
optimisations are permissible. The final choice is based on
summation of the recomputed costs, including a) split and
merge operations, b) data transfers, and c) sorts to recon-
struct order when necessary.

Splitting workflows and moving PEs to different platforms.
Enacting a workflow in streaming manner on one platform
may cause competition for CPU cycles, memory and band-
width. For instance, running v6, v7, v8 and v9 on W1 causes
overload while W2 is under utilised. We can gain speed by
cutting the workflow into 2 partitions, and enacting on both
platforms. We identify which PEs are anchored to a specific
platform, e.g., because they access local data, and then de-
cide which edge(s) to cut based on a heuristic function that
finds an optimum within constraints, e.g.:

1. Computational load of enactment engines. Co-locating
PEs with high computational cost per unit data may gen-
erate overload.

2. Communication cost of data movement. Cutting at data
stream that involves large volumes of data may incur high
costs.

3. Data production rate of PEs. Co-locating PEs with low
data production rates while moving PEs with high pro-
duction rates will show no overall gain.

These constraints may conflict, e.g., co-locating two PEs to
reduce data movement costs, may conflict with splitting PEs
to balance workload.

Transposing PEs. Some DAGs can be optimised by chang-
ing the PEs execution order. This is a common optimisation
approach found in query optimisers. For instance, assume
that v3 is a projection PE and v4 is a selection PE. Trans-
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posing v3 with v4 will reduce the data size that needs to be
process by v3, thus shorten the workflow enactment time.
This requires both logical and performance information to
be obtained from the Registry and PDB respectively ad used
to determine logical equivalence.

Our optimisation approach is based on incremental learning
from previous executions. Thus, performance data will be
collected for every single run. Before we enact the optimised
DAG, we instrument it by placing measurement probes in
the workflow. The data collected by the measurement frame-
work (see Section 4) after the enactment step is stored in
PDB. In this paper, we focus on splitting data streams. Sec-
tion 5 describes how we optimise a Life-Sciences application
using this approach.

4. MEASUREMENT FRAMEWORK
4.1 Performance Metrics
The diversity and complexity of the scientific workflows has
increased the difficulty of doing performance analysis. Truo-
ng et al. in [39] introduced a hierarchical abstraction for
the performance analysis of workflows and identified perfor-
mance metrics for different levels of abstraction in a work-
flow. We incorporated their model into measurement frame-
work. We classify the performance metrics into two levels of
abstraction: request level and processing element level. We
define different performance metrics for both levels. Figure 3
illustrates the levels of abstraction in executing a workflow in
the ADMIRE context. ADMIRE [2]—Advanced Data Min-
ing and Integration Research for Europe—is a European-
funded project that is pioneering architecture and models
that deliver a coherent, extensible and flexible framework
to facilitate exploration and exploitation of data. A pre-
liminary version of the ADMIRE architecture was reported
in [4].

Over the years, many studies have been conducted to under-
stand the performance model and quality of services enact-
ing workflows. Various performance metrics are proposed
and used. Some of the metrics are commonly used in most
of the studies, such as response time and throughput [26],
while others provide a specific performance analysis. For in-

stance, data transfer time is used where workflows involve
distributed data sources or spatially-aware optimisation [28].
In deciding what metrics to be used in our work, we consider
whether the metrics: a) show impact of our optimisation
(streaming and parallelisation), b) are feasible in our use
case, e.g., queue waiting time is ignored in our experiment
because no batch processing is involved, but is applied on
heavily utilised machines, e.g., to evaluate workflow sched-
uler with Batch Queue Wait Time Prediction [29]. The sec-
tions below list metrics selected for our measurement frame-
work.

4.1.1 Metrics for workflow level
We define workflow execution time as the period between
the time a user submits a workflow to the ADMIRE gate-
way (a service that processes workflow requests and manage
the workflows enactment) and receives the execution results,
which includes the overall computation time for the work-
flow processes, the time spent in IO and waiting in process
queues, and any data delivery delays.

4.1.2 Metrics for processing element level
The processing time for a PE can be measured by subtract-
ing the time when the PE received the first block of data
from the time when the last block of data has been sent out.
For instance, the processing time of the SQL query PE is
time spent between the receipt of the SQL expression and
the delivery of last block of data to the next PE. Data vol-
ume is the total amount of data handled by a PE. There are
two types of measurements that can be used here, i.e., block
and tuple. The data throughput reflects the performance
of a PE and is measured in terms of tuples or blocks per
second. Table 1 summaries the metrics for PE level.

4.1.3 Metrics for parallel execution
Through the optimisation process, a DAG is split into mul-
tiple sub-DAGs that are then executed in parallel. Thus,
we have selected two common performance indicators for
parallel execution, namely speedup and efficiency.

• Speedup(S): a ratio between the execution time of a work-
flow (Ts) on a single processor and the execution time on
multiple processors (Tm), represented as:

S =
Ts

Tm
(1)

• Efficiency(E): a relationship between the speedup (S) and
the number of processors (Pn) used. It is defined as:

E =
S

Pn
(2)

4.2 Measuring Tools
In order to capture the performance data on every level of
abstraction as discussed above, we have designed three mea-
suring tools for our measurement framework, namely: mea-
surement client, observer and gatherer. The measurement
client is used to collect workflow-level performance metrics;
while observer and gatherer are used in performing internal
measurement on the server side to capture PE-level perfor-
mance metrics.



Metric Unit Description
Processing Time (pt) second Time taken to execute a PE (endT ime− startT ime)
Data Volume (dv) block/tuple Amount of data been processed
Data Throughput (dt) block/tuple per second Amount of data been processed per second (dv/pt)

Table 1: Metrics for process element level
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4.2.1 Measurement Client
Measurement Client is used to submit workflows to servers
for enactment. It does timestamping before a request is sub-
mitted to server (start time) and after the workflow is fin-
ished (end time). Therefore, the response time of workflow
execution can be obtained by:

workflow execution time = end time− start time

The data captured by the measurement client is stored in
the measurement framework database. The measurement
client is designed to allow single/multiple workflows to be
executed in an experiment and repeated as user requests.

4.2.2 Observer
Observer is designed as a PE that can be inserted into any
workflow to perform internal measurements. Observer does
time stamping and is called to measure the PE-level perfor-
mance. As illustrated in Figure 4, an observer receives an in-
put stream from a previous activity, computes data flow, and
outputs the data to the following activity without altering
the content of the input. Observer takes separate parameter
inputs for the measurement setting, which includes a unique
tag for the particular observer and an interval. As shown
in Figure 5, the first observer is placed before the activity
Noise Reduction and is labelled as preNR while another ob-
server postNR is placed after it. The interval is set to 10 for

Field Name Data
Type

Description

oid String unique identity given to an observer
count Long amount of data measured
unit String blocks, tuples or bytes
timestamp Long system timestamp

Table 2: Measurement Data Sent to Gatherer

both observers to trigger the observer does a timestamping
for every 10 blocks/tuples/bytes of data read from the input
stream, and to send the timestamp together with the meta-
data to a gatherer as a tuple. Sending measurement results
as tuples will enable the observer to connect with other ex-
isting activities such as union and merge. Table 2 shows the
data sent d to gatherer for each measurement.

4.2.3 Gatherer
Gatherer works closely with Observer in performing internal
measurement. The measurement results collected from the
observers will be streamed into a gatherer. The gatherer will
add experiment metadata, e.g., experiment ID, workflow ID,
and execution environment. The output from the gatherer
is in tuple form and can be post processed, such as inserted
into a measurement database, as shown in Figure 5, or stored
in a local file system—using standard PEs.

5. EXPERIMENT
A reasonably complex and large process has been chosen
as the test load for the experiments. We have selected the
EURExpress-II [22] use case for the experiment where we
have obtained sufficient data and a good understanding of
it.

5.1 Experiment Use Case: EURExpress-II
The EURExpress-II project aims to build a transcriptome-
wide atlas of gene expression for the developing mouse em-
bryo established by RNA in situ hybridisation. The project
annotates images of the mouse embryos by tagging images
with terms from the ontology for mouse anatomy develop-
ment. The data consists of mouse embryo image files and an
annotation database (in MySQL) that describes the images.
To date, 4 Terabytes of images have been produced and
80% of the annotation have been done manually by human
curators. We will produce multiple classifiers where each
classifier recognises a gene expression from a set of 1,500
anatomical components to classify the remaining 20% of im-
ages automatically. The studied example is divided into 3
stages: Training, Testing and Development. The training
and testing stage are performed in one workflow. Datasets
are split into 2 parts: for training a classifier and for test the
accuracy of the trained classifier. The classifier will then be
deployed to classify the remaining data.

Figure 6 outlines the test request used for measurement as
explained below:
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1. Read raw image file and annotation database.
2. Image Scaling: Scale selected images to a standard size

(320× 200 pixels).
3. Noise Reduction: Apply median filtering to reduce the

image noise.
4. Features Generation: Using wavelet transformation, gen-

erate the image features as matrices of wavelet coeffi-
cients. 64,000 features are generated per image of 320×
200 pixels.

5. Features Extraction: Reduce the features set by select-
ing the representative features for constructing classifiers
using Fisher Ratio analysis [16]. In our experiment, 24
most significant features are extracted from 64,000 fea-
tures generated in step 4.

6. Classifier Design: Build a separate classifier for each anat-
omical feature which takes image features as input and
outputs a rating of ‘not detected’, ‘possible’, ‘weak’, ‘mod-
erate’ or ‘strong’ for anatomical features (eyes, nose, etc).

7. Evaluation: Test the classifier built in step 6 against a
partition of the data not used in the preceding steps but
already classified.

We create a test workload corresponding to the EURExpress-
II described above as an OGSA-DAI workflow, where each
data-mining task is implemented as an OGSA-DAI activity.

5.2 Implementation using OGSA-DAI
An OGSA-DAI DAG is created and deployed on our com-
putational platform. Measuring PEs are inserted to collect
measurements. The instrumented DAG is executed and per-
formance data is collected. The execution is repeated with
different data sizes e.g., pre-process different numbers of im-
age files over a range of 800 to 19200. The results collected
are stored into an experiment database for subsequent anal-
ysis.

All of the PEs described in Section 5.1 have been devel-
oped as OGSA-DAI activities, as shown in Figure 7. For
instance, an OGSA-DAI activity named MedianFilterAc-

tivity is developed to de-noise the raw image. Besides the
DMI PEs (labelled as PE1 to PE9 in Figure 7), a set of utility
PEs are needed, e.g., ListConcatenate activity, is used to
concatenate feature streams from different machines to form
a single data stream for FeatureSelection PE.
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Figure 8 illustrates a parallel enactment plan of the work-
flow on the experiment platform. 7 machines (M1 – M7) are
used to process a training dataset. Each machine will re-
ceive a subset of the training data, read the selected image
files, re-scale and de-noise the retrieved images, generate
features, and perform partial feature selection (FS1). The
result of FS1 will be sent through the network to M8, and
combined with result from other machines for the remaining
feature selection calculation (FS2 and FS3). The indices of
the selected features are sent back to M1 – M7 for features ex-
traction. Finally, M8 will receive all the extracted features of
the training dataset and perform classification on it’s testing
dataset.

Data movement between the machines is implement using 2
OGSA-DAI activities, namely DeliverToTCPActivity and
ObtainFromTCPActivity. The DeliverToTCPActivity cre-
ates a TCP socket and send data to another TCP host imple-
mented in the ObtainFromTCPActivity. Data can be sent
as primitive data type, such as integer and double, or as
resizable char array. These two activities are designed to
allow fine-tuning on the transmission process by adjusting
char array size and socket buffer size, and to support large
volume of data movement with multithreads.

5.3 Experiment apparatus
Hardware infrastructure
The experimental platform comprises 8 Intel Core Duo 2.4
GHz PCs with 2GB RAM and an Intel 2 GHz Core 2 Duo
MacBook with 2GB RAM connected using a 10/100 Mbps
switch. The PCs will host OGSA-DAI servers that receive
workflow requests from a client and execute them. The Mac-
Book acts as the client submitting workflow requests.

Software infrastructure
The PCs are running on Scientific Linux (version 2.6.18-
92.1.22.el5PAE) and the Macbook is running on Mac OS
X (version 10.5.6). In order to run as OGSA-DAI server,
the PCs are installed with OGSA-DAI 3.1 GT and prereq-
uisite software, including Java 1.6, Globus Toolkit 4.2 Web
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Figure 9: Timeline of PEs execution in single ma-
chine with 6400 images

Services Core, Jakarta Tomcat 5.5 and Apache ANT. The
MacBook is installed with Java 1.6 to execute the submis-
sion client and MySQL (version 5.0) to store the captured
measurement data.

5.4 Parameters used for experiment
In each experiment, the dataset is split across a number of
machines (from 1 to 8), and the execution performance is
measured. The experiment started with 800 images running
on single machine, 2 machines to 8 machines. The number
of images is increased for each experiment iteration to 19200
images. Each iteration is repeated 10 times.

6. RESULTS AND DISCUSSION
We first examine the results of instrumenting the workflow.
Figure 9 shows the timeline of the PEs’ execution measured
by the internal measuring tools. The result obviously shows
that most of the computation time is spent in the image
preprocessing stage (PE4 and PE5) which involves massive
matrix calculations, feature generation (PE6), which takes an
image as the input to produce features using a wavelet trans-
formation algorithm where each image will generate 64,000
double type values, and feature extraction PE8, which loops
through the features list and extracts them for classification.

The aggregative behaviour of PE7 and PE9 are the bottle-
neck of the system, which breaks the streaming process. PE7
needs to read all the partial calculation of FS1, combine them
using FS2 and output an array of feature indices in FS3. PE9
receives two input streams, i.e., the training dataset and
testing dataset, as shown in Figure 7. In a standard k-fold
validation in data mining, the dataset will be divided into
k dataset, where k − 1 datasets are used for training the
classifier, and the remaining dataset is used for testing the
classifier. At ith validation, the training sub-DAG needs to
process k− 1 times data compared to the testing sub-DAG,
which results in a large difference between the data input
rate between the two input streams of PE9. Thus, PE3, PE4,
PE5 and PE6 in the training sub-DAG are identified to be
the splitting points and executed in parallel. However, the
above split causes every remote machines to send the ex-
tracted features produced by PE6 across the network to the
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Figure 11: Non-overlapped processing time of DMI
PEs compared with actual pipeline execution time

final machine that executes PE8 and PE9, which is the largest
data stream in the entire workflow. To overcome this prob-
lem, we cut at PE7, as shown in Figure 8, and successfully
reduce the overall communication cost.

From Figure 10, the overall processing time has been re-
duced with the increasing of number of computing nodes.
Next, we examine the activity level metrics for 3 data sam-
ples (i.e. 6400, 12800 and 19200 images) in Figure 11. The
colour histogram shows the processing time of 9 DMI PEs.
PE1, PE2 and PE3 show no significant impact on the over-
all execution. The bottleneck (i.e. image pre-processing,
features generation, selection and extraction) is executed in
parallel on different parts of the data sample. The total pro-
cessing time of the PEs is less than the workflow execution
time. For instance, the total processing time of the PEs for
executing 19200 images on a single machine is 4821 second,
while the real workflow execution time (indicated as red line
in Figure 11) is 1721 second. In the streaming model, a PE
will output the result to the next PE in the workflow as
soon as it finishes the computation on a portion of its data
stream.
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Figure 12 shows a linear speedup with the number of com-
puting nodes used. Figure 13 shows the efficiency of the
parallel execution, which indicates:

1. Efficiency is close to 1 for all the selected sample sizes
and number of computing nodes used.

2. Efficiency decreases when we increase the number of com-
puting nodes.

3. Efficiency increases when we increase the sample size until
a maximum is reached around 4000 to 5000 images, and
drops after that.

4. The number of images at which the maximum efficiency
is reached increases with the number of computing nodes
used.

7. RELATED WORK
Success stories from the scientific communities demonstrate
the benefits of combining efforts in terms of technology and
knowledge to solve grand challenges, e.g., in astronomy [7],
physics [8], meteorology [32], etc. A wide range of workflow
management systems (WMS) support these e-Science activ-
ities. Roger et al. highlight the role of workflow technology
in e-Science research [5].



In order to ease the combined data integration and task or-
chestration, the computation is structured as a workflow us-
ing a particular language e.g., BPEL [35] and SCUFL [30],
or graph-based representation: a general Directed Acyclic
Graph (DAG) with the tasks as the nodes (vertices) and
data dependencies as the edges (arcs) or WMS specific DAG
such as graph directed acyclic graph in XML (DAX) used
in Pegasus [13]. Visualising and manipulating workflows as
a graph may be more comprehensible than text for some
users, however, formal programming style text is more ex-
pressive for describing workflow structures. In our work,
workflows are defined using DISPEL, a language developed
in the ADMIRE project—Data-Intensive Systems, Process-
Engineering Language (DISPEL) [3], which is processed to
generate DAG for optimisation and enactment.

The execution of workflows is managed by a wide range of
WMS, e.g. Pegasus [13], Kepler [1], Taverna [31], Triana [38],
Swift [41], etc. Some of these WMS are developed to sup-
port specific scientific domain, e.g., Taverna was first used
for bioinformatics. In general, WMS provide the tools for
workflow composition and resource mapping; workflow exe-
cution engines (e.g., DAGman in Condor [10]) take charge of
executing the workflows on available resources. See [12, 40,
11] for reviews of these technologies. Callaghan et al. de-
scribe how they manage to optimise an earthquake science
application, CyberShake [9].

Some of these WMS perform optimisation. In Pegasus, op-
timisation includes workflow reduction (reusing available in-
termediate data products), task clustering (reduce schedul-
ing overhead by combining tasks), data cleanup (remove
data no longer needed) and partitioning (partitions into sub-
workflows with dependencies). Pegasus improves workflow
performance using placeholders. Placeholders are units of
work (either shell scripts or MPI wrappers) that are sub-
mitted to the queue of the execution engine, which once
launched can be used to execute multiple tasks. The place-
holder implementation is similar to the Glide-in approach [33]
in Condor.

Glatard et al. [19] define two workflow manager architec-
tures: task-based, where workflow manager is responsible in
handling computing task; service-based, where computation
is handled by external services. MOTEUR [18], is a workflow
enactor that optimises service-based workflows by exploit-
ing intrinsic parallelism (no dependencies between services),
data parallelism (different data on different threads) and
service parallelism (pipe-lining different services in handling
independent data sets). Glatard et al. also propose grouping
services of a workflow to reduce the overall overhead from job
submission, scheduling, queuing and data movement [17].

ASKALON [15] is an example of a task-based approach
workflow manager. There are three core services within the
ASKALON working closely to optimise execution: Resource
Manager (GridARM), Scheduler and Performance Predic-
tion. The resource manager handles negotiation, advance
reservation, allocation of resources and deployment of ser-
vices. Scheduler is responsible for mapping workflows and
monitoring execution, while performance prediction service
estimates of execution times. Together, they provide Qual-
ity of Service (QoS) by dynamically adjusting the optimised

schedules according to the infrastructure status.

Relational DBMS (e.g., Postgres, Oracle, DB2, MonetDB,
SciDB) use streaming in their parallelised query evaluations
[36]. These have demonstrated the power of describing op-
erators so that their re-ordering and parallelisation can be
logically inferred. In Distributed Query Processing [27, 25],
reordering rules and parallelisation are extended to permit
migration of operators along the data tree. We build on
their algorithms and extend them to an open universe of
PEs and permit DAGs as well as trees.

The principal differences between these systems and our
work is that we describe the types transmitted between PEs
in terms of a programming-language recursive type system
with primitive scientific types and then use this structure to
do finer-grained streaming. This permits measurement nor-
malised to the units handled and hence re-use of the mea-
surements in new workflow and platforms contexts.

8. CONCLUSION AND FUTURE WORK
We have explored and evaluated the feasibility of using strea-
ming technology on a Life-Sciences use case—EURExpress-
II. We have defined our optimisation strategy, which ex-
plores parallel optimisation opportunities in a workflow, split-
ting the workflow according to performance results, and ex-
ecuting these across distributed platforms. The results have
shown a linear speed up.

The present work is aimed at facilitating distributed data-
intensive computation that will be undertaken by large num-
bers of researchers and decision makers using modest local
resources and a variety of external resources associated with
their data sources. We anticipate large numbers of applica-
tions handling hundreds of gigabytes to a few tens of ter-
abytes. To facilitate their use it is necessary to automate
both the performance measurement collection and optimis-
ing transformations.

The results to-date are based on a small number of work-
flows in one application domain using a small set of PEs
with manually organised descriptions and performance data.
Our next architectural step is to build the information and
data framework for optimisation so that it involves minimal
manual procedures. Then we will extend the range of opti-
misations, the operational strategy and the experiments to
demonstrate the strategy and architecture on a representa-
tive set of applications and scales. We would be pleased
to cooperate in the construction of agreed data-intensive
benchmarks.
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