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ABSTRACT
iFlow is a replication-based system that can achieve both
fast and reliable processing of high volume data streams on
the Internet scale. iFlow uses a low degree of replication in
conjunction with detouring techniques to overcome network
congestion and outages. Computation over iFlow can be
expressed as a graph of operators. To cope with varying
system conditions these operators continually migrate in a
manner that improves performance and availability at the
same time.

In this paper, we first provide an overview of our iFlow sys-
tem. Next, we detail how our detouring technique works
in the face of network failures to provide high availability
for time critical applications. The paper also includes a de-
scription of our implementation and preliminary evaluation
results demonstrating that iFlow outperforms previous solu-
tions with less overhead. Finally, the paper concludes with
our plans for enhancing replication and detouring capabili-
ties.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Reliability, availability,
and serviceability; D.2.8 [Database Management]: Sys-
tems—Distributed databases

General Terms
Design, Experimentation, Management, Performance, Reli-
ability

Keywords
availability, fault tolerance, replication, stream processing,
detouring

1. INTRODUCTION
Recently, there has been significant interest in applications
where high-volume, continuous data streams are persistently
generated at diverse geographic locations and distant users

must receive the results of processing such data in near real-
time. Examples of these applications include online mon-
itoring of Internet components, real-time processing of fi-
nancial data streams, and sensor-based global environment
monitoring.

These Internet-scale stream processing applications can be
facilitated by a system that can express the desired compu-
tation as a graph of operators [3, 5, 6] and then instantiate
such operators over a large number of nodes [18, 21]. Stream
processing systems typically provide off-the-shelf operators
capable of fundamental processing such as filtering, aggrega-
tion and join that are essential to typical data management
applications. In addition, custom operators for specific ap-
plications can be developed and plugged into the system.

To develop a successful Internet-scale stream processing sys-
tem, we need to address challenges that arise due to node
and link failures. Studies have found that end-to-end com-
munication in the Internet may have, on average, failure
rates of at least 0.5%, but no more than 2.4% [7, 15]; an
overwhelming percentage of these failures occur at the net-
work (link) level. Further, these outages can take anywhere
from seconds to several minutes to be detected and cor-
rected [17]. Although node failures occur less frequently (up
to 0.21% of the time [17]), they can cause a loss of essential
data or temporary stoppage in data transmission. These
failures can adversely affect stream-processing applications.
In financial market monitoring, for example, missing trading
opportunities due to node and network failures may result
in a substantial revenue loss.

The effectiveness of a solution to the aforementioned prob-
lems can be measured in terms of three metrics: availability
(probability that the end user will receive the results within
the predefined time constraint), overhead (cost of additional
network and processing resources), and impact on the per-
formance (average latency measured for all users to receive
the results).

We observe that previous techniques which aim to handle
node and link failures have an important limitation when
used for Internet-scale stream processing [4, 10, 11, 12, 20]:
they provide only one means of correction, namely repli-
cation of operators. The degree of replication is typically
determined by the desired level of tolerance for network fail-
ures rather than the less frequent node failures. Such repli-
cation techniques can achieve improvements in availability



but they incur a large overhead cost.

We present iFlow, an Internet-scale stream processing sys-
tem that utilizes detouring (discovery of a new route via
a remote node) in combination with replication to address
the aforementioned limitations. The main goals of iFlow
are to (1) improve the system availability while (2) lower-
ing the cost of additional network and processing resources,
and finally (3) provide a low average latency measured over
all nodes for receiving processed data. iFlow achieves these
goals by utilizing detouring, along with operator replication
techniques.

A major contributor to Internet-scale stream processing sys-
tems’ overhead is the creation, migration and removal of
operator replicas. iFlow incurs less overhead costs by cre-
ating fewer replicas, while having at least the same level of
fault tolerance as previous stream processing systems. This
improvement can be accomplished by proactively searching
for detours from one node to another and utilizing the most
effective detours when a communication problem has been
found. The effectiveness of such detours will be described in
detail in Section 3.2.

In our approach, each node has a detour planner which re-
ceives updates via remote nodes about their current route(s)
to other remote nodes. The local detour planner is then re-
sponsible for determining potential forwarding nodes that
will allow data to be received by some destination node.
These forwarders are prioritized based upon performance
and availability benefits. The details of this technique are
discussed further in Section 3.

In this paper, we present the design and implementation of
iFlow, as well as an evaluation study conducted by running
our iFlow prototype with network latencies emulated based
upon network traffic data collected from PlanetLab [19] over
100 nodes across the globe. The evaluation results substan-
tiate the benefit of our technique over previous techniques
that rely solely on replication for fault tolerance. This pa-
per also includes our research plans on deploying replicas
and adaptively optimizing them in a manner that best takes
advantage of detouring.

The remainder of this paper is organized as follows. In Sec-
tion 2, we describe the iFlow replication model and replica
deployment design, followed by a detailed description of our
detouring capabilities in Section 3. Next, we detail the im-
plementation of detouring within iFlow in Section 4. We
present our evaluation results in Section 5 and future re-
search plans in Section 6. Section 7 summarizes related work
and Section 8 concludes this paper.

2. PRIMARY FUNCTIONS OF IFLOW
In this section, we describe the details of iFlow’s replication
model and replica deployment strategies. First, we present
an overview of the iFlow system in Section 2.1. We follow
this with the details of the system, first presenting the repli-
cation model in Section 2.2 and replica deployment in Sec-
tion 2.3. Finally, we discuss how iFlow completely recovers
from node failures in Section 2.4.

2.1 System Overview
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Figure 1: Replication Model. Nodes B and C re-

port their CPU usage to replicas ∪2 and ∪′
2. These replicas

merge streams and send the result to 1′
3 in parallel. 1′

3 uses

whichever data arrives first from ∪2 and ∪′
2, while ignoring

duplicates (see those struck-through).

iFlow is a distributed software system that aims to facilitate
Internet-scale stream processing applications [12]. In iFlow,
users express the desired computation as a network of op-
erators. iFlow contains off-the-shelf operators as described
previously (Section 1) and allows customized operators to
be plugged in as well.

In iFlow, nodes around the globe are partitioned into groups
so as to manage the entire system in a scalable fashion. Each
of these groups contains tens of nodes at diverse geographic
locations with an elected coordinator. This configuration is
required so that each group of nodes can efficiently support
stream processing that spans distant sources and applica-
tions.

2.2 Replication Model
iFlow achieves fast and reliable processing by adopting the
replication model presented in our previous work [12]. In
this model (illustrated in Figure 1), multiple replicas send
data to downstream replicas, allowing the latter to use
whichever data arrives first without being hindered by any
delayed input flow. To further expedite processing, repli-
cas run without synchronization, possibly processing iden-
tical data in a different order as illustrated by replicas ∪2

and ∪′2 in Figure 1. Despite this relaxation, the replication
model guarantees that applications always receive the same
results as in the non-replicated, fault-free case. This repli-
cation model has a distinct advantage of improving perfor-
mance with more operator replicas. It also allows the system
to continue its operation even with the presence of failures
which are typically difficult to detect on the Internet scale.
For further details about the replication model, we refer the
reader to our previous article [12].

2.3 Initial Replica Deployment
Given the replication model described in Section 2.2, a fore-
most question that arises is the initial deployment of opera-
tor replicas. The current iFlow system strives to maximize
performance and achieve an adequate level of availability by
placing the first instances of operators as in Section 2.3.1
and replicating operators as in Section 2.3.2. Our prelimi-
nary designs of a replica deployment technique for further
improving availability and a replica migration technique for



coping with changes in system conditions are presented in
Sections 6.1 and 6.2, respectively.

2.3.1 Deployment of First Operator Instances
As described in Section 2.1, iFlow forms node groups for
scalability reasons. Nodes in the same group periodically
obtain the detailed routing and latency information for all
communication paths between them. This information is
then sent to the elected coordinator.

Whenever the coordinator is requested to instantiate oper-
ators, it first selects reliable, under-utilized nodes and then
constructs an initial deployment plan where each operator
is randomly assigned to one of the selected nodes. The co-
ordinator then refines the plan by repeatedly choosing one
operator and reassigning it to a node that would improve
performance (i.e., reduce the network delays of the input
and output streams of the operator). When the planning
reaches an optimized deployment of operators, the coordi-
nator creates the first instances of operators according to
the plan.

2.3.2 Deployment of Operator Replicas
In terms of network usage, the initial deployment described
in Section 2.3.1 is likely to be sub-optimal, since it cannot
consider the data rate of each stream which is unknown when
operators are first created. Once first operators are deployed
and begin operation, iFlow deploys replicas of operators in
a manner that minimize the overall network cost similar to
operator placement approaches in the non-replication con-
text [1, 18]. The network cost is defined as the sum of in-
dividual streams’ network costs, each of which is defined as
the product of the data rate and the network latency of the
stream. This bandwidth-delay product is based on the idea
that the longer data stays in the network, the more resources
it tends to use. An optimal deployment under this metric
tends to choose fast network links, thereby ensuring high
performance.

Although the above replica deployment strategy achieves
low network usage and high performance at the same time,
it may place operator replicas to close nodes that have a high
risk of being disconnected from the rest of the network at
the same time. For this reason, each new operator replica
is placed at a node at least a predefined θ distance (e.g.,
20 ms in network latency) away from the current operator
locations.

The aforementioned replica deployment technique is static
and does not take into account detouring capabilities. Our
plans to overcome these limitations are described in Sec-
tions 6.1 and 6.2.

2.4 Repair
If a node crashes, all the operators at the node are lost. Un-
til new replicas to act on behalf of the lost operators are
created, the original fault-tolerance level cannot be guar-
anteed. To minimize such a period of instability, prompt
failure detection and replica reconstruction are required.

Suppose that a node has been sending data to replicas
o1, o2, · · · , on of an operator. If the node no longer can reach
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Figure 2: Detouring Example. Upstream node U may

send data to downstream node N through nodes C or N ′.

a subset of operator replicas {ok|i ≤ k < j∨(i ≤ k ≤ n∧1 ≤
k < j)} via all possible detours, iFlow notifies oj of the un-
availability of the above operator replicas. For example, if
o2, o3 and o5 among {o1, o2, o3, o4, o5} are unavailable, o4
would be informed of the unavailability of o2 and o3, and
o1 would be informed of unavailability of o5. If an operator
replica oj is notified regarding m peer replicas by a major-
ity of the upstream nodes (i.e., the nodes that have been
sending data to replicas {o1, o2, o3, o4, o5}), it suspects that
these replicas are unavailable due to node failures or isola-
tion from the rest of the network. In this case, m new peer
replica of oj are created and installed at the nodes selected
as described in Section 2.3.2.

3. DETOURING
3.1 Detouring Overview
In our approach, each node ensures the delivery of its output
based on acknowledgments from the destination node. If a
node does not receive an acknowledgment within a prede-
fined time period, it strives to send the data to the destina-
tion via other remote nodes. Among such remote nodes, our
detouring technique chooses a node that has the best chance
of forwarding the data, by selecting fast connections and
minimizing the overlap with the current, unavailable route.
If the forwarder selected is unsuccessful or too slow we will
select the next potential forwarder and attempt to forward
the data again. Such a detouring attempt is repeated until
the data is actually rerouted to the destination. By utiliz-
ing known routes and neighbor nodes, iFlow can overcome
network congestion and disconnections with low overhead.

3.2 Detouring
Along with the deployment and use of replicas as described
in Section 2.3, iFlow performs detouring as soon as it ob-
serves unusual transmission delays to mask network prob-
lems, with low overhead. If node U cannot send data to
some node N , it checks if any node in the same group can
successfully forward data to node N . To carry out detouring
efficiently, each node U periodically constructs a detouring
plan P[N ] for each downstream node N . A question that
then arises is how iFlow determines what detour plan would
be the best option in the face of a communication problem.

Given the current output path
−−→
UN , a detour

−−−→
UFN via a

remote node F tends to have a higher availability benefit as

(1) the overlap between
−−→
UN and

−−−→
UFN gets smaller and (2)

−−−→
UFN has a smaller delay. For example, detour

−−−→
UAN (pre-

cisely,
−−−−−→
UNAN) in Figure 2 has no availability benefit with



regard to
−−→
UN since

−−→
UN completely overlaps with

−−−→
UAN .

Further,
−−−→
UCN is more beneficial than

−−−−→
UN ′N in that (al-

though
−−→
UN does not overlap with either

−−−→
UCN or

−−−−→
UN ′N)

−−−→
UCN has a shorter delay, thus can better contribute to per-
formance.

Based on the above observation, we estimate the benefit of
each detour and insert K of them to the detouring plan
P[N ] in the decreasing order of benefit. Given the current

detouring plan P[N ], we define the benefit of detour
−−−→
UFN

as:

δ(
−−−→
UFN |P[N ]) :=

hops(
−−→
UN −

−−−→
UFN −P[N ])

hops(
−−→
UN)

1

delay(
−−−→
UFN)

(1)

The first term in Definition (1) calculates the proportion

(in terms of network hops) of
−−→
UN that does not overlap

with
−−−→
UFN and any detour in the current plan P[N ]. The

reason for considering network hops in the definition is that
router failures as well as obsolete routing information [2] are
substantial contributors to network outages.

If such routing information is not yet available, the detour
planner utilizes a pseudo-random forwarder selection pro-
cedure. In this case, iFlow selects a forwarder node from
within the group randomly, however it utilizes all potential
forwarders before re-using any nodes that have already been
selected. This ensures that all nodes have an equal chance
at forwarding, since no benefit could be calculated.

Given the detouring plan described above, if node U does
not receive an acknowledgement from node N within a pre-
defined time threshold (1000 ms in our current implementa-
tion), it extracts 2i−1 detours from P[N ] in order at each ith
round. To attempt allK detours in P[N ] within a predefined
T seconds, U conducts a detouring round every T

dlog2 (K+1)e
seconds. It is important to note that due to round-trip times
a favorable detour may have been successful, but the return-
ing acknowledgement may take longer than the predefined
waiting period. To handle this situation, we save the list of
forwarders used at the local node to match with the acknowl-
edgement that is received. Upon receiving this acknowledge-
ment, we find the forwarder in the list that was used, mark
it as successful and clear the remaining forwarders in the
list, thus ignoring any later acknowledgements received.

4. IMPLEMENTATION
For detouring to be successful, iFlow has two main compo-
nents, the Detour Planner and the Output Manager, which
handle the planning and delivery of data streams, respec-
tively. The details of the Benefit Based Detour Planner were
discussed in Section 3.2. The Output Manager, which has
been implicitly mentioned in Section 2.2, will be detailed in
the remainder of this section.

The Output Manager has four primary states, normal,
problem detected, detour found and detouring (Figure 3).
As messages are being passed through the Output Manager
to the destination node without any communication prob-
lems, the Output Manager is within the normal state. When
a problem is detected (i.e., the receipt of a message is not
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No ack
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Figure 3: Output Manager State Diagram

acknowledged within a predefined time period), the Output
Manager enters the problem detected state and begins to
take some corrective action. This state is the most complex,
as a problem may be detected when the current direct path
is slow (but not down), forwarders selected are not working
or a forwarder that was working has stopped. If the orig-
inal path is slow, there is potential that a new forwarder
could be found prior to the acknowledgement from the des-
tination. In this case, the Output Manager would enter the
detour found state. On the other hand, while forwarders are
being examined the acknowledgement may be received from
the original transmission. In such a scenario, there is no real
problem and the Output Manager will return to the normal
state and continue to use the direct path of communication.

If the problem is a serious one, the Output Manager will
continue to ask the Detour Planner for a potential forwarder
until one has been found that will successfully forward the
messages to the destination. As a forwarder is found, the
Output Manager will enter the detour found state and at-
tempt to send all buffered messages through this forwarder.
If all the messages were successfully sent via the forwarder
the Output Manager will enter the detouring state, other-
wise it will return to the problem detected state.

While in the detouring state any new messages to be trans-
mitted will utilize the current forwarder specified. If mes-
sages are continued to be succesfully forwarded, the Output
Manager will remain in this state until the detouring timeout
is reached, moving back to the normal state and utilizing
the direct path again. The detouring state is similar to that
of the problem found state, in that as new messages are
passed via the current forwarder there could be abnormal
delays, or failures that occur. If the forwarder fails while
transmitting new messages the Output Manager will return
to the problem detected state and begin searching for a new
forwarder again. Just as in the problem detected state, an
abnormal delay may not mean the detour has failed, thus if
the acknowledgement is received before a new forwarder is
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found, we simply return to the detouring state and continue
to send new messages via the detour.

We also provide an overview of the way a node is constructed
with regard to detouring in Figure 4. We have limited the
components shown to reflect those only required for detour-
ing purposes. The horizontal line separates components used
only when network latencies are emulated as described in
Section 5 (below the line) and those which are always uti-
lized (above). These emulated latencies are useful for con-
sistent evaluation of algorithms and debugging mechanisms
as well. All interactions of the components are shown via
the input/output arrows. The output manager and detour
planner have been described in some detail, however it is im-
portant to note that the output manager not only handles
the sending of messages, but the receiving of acknowledge-
ments from other remote node’s input manager. The input
manager handles the receiving of messages from the sending
node’s output manager, and also sends out acknowledge-
ment(s) when a message has been successfully received.

The two emulators in Figure 4 can be thought of as an exten-
tion of simple file readers. Each emulator will read through
specific file types (i.e., route emulator reads the traceroute
data files) and parses the recorded data. This data will be
described further in Section 5.1. The route emulator re-
creates the routes from the current node to all remote nodes
for use by the detour planner. The latency emulator is not
specifically utilized by the node, however it is used to add
artificial network delays as in real networking situations and
to determine if a node is visible to others (as if a ping request
was run).

5. EVALUATION
The current iFlow prototype extends our former stream-
processing system [12, 13] with the addition of the detouring
capabilities (Section 3). Our iFlow prototype can run on
various distributed computing platforms including Planet-
Lab [19] and server clusters. For evaluation and debugging
purposes, iFlow can also be executed while emulating net-
work delays based on network traces.

In this section, we present our preliminary evaluation results
obtained by running iFlow in the network emulation mode.
We detail our collection of ping and traceroute data used
for evaluation in Section 5.1. In Section 5.2 we discuss the
settings of our evaluation. Section 5.3 presents the detailed

results discussing the impact of replication degree as well as
different detouring techniques.

5.1 Data Collection
To compare alternative techniques under identical condi-
tions while ensuring a level of realism, we developed an ap-
plication to collect traceroute and ping data. This data was
obtained over a month on PlanetLab with measurements be-
ginning on September 17, 2009. During this time, 100 nodes
from different site locations ran ping measurements (once
every minute) and trace route measurements (once every
hour) to each of the other nodes. Each node created sepa-
rate files for pings and traceroutes to each of the other nodes
in the measurement group (i.e., each node created 99 ping
files, one for each remote node, and 99 traceroute files).

Next, we consolidated each set of data into two files per
node for the ping and traceroute measurements respectively.
Each line in the files represent the current timestamp the
measurement had run, followed by the 100 measurements to
each node. One challenge faced was that nodes on Planet-
Lab are not well managed, as many users can be utilizing
nodes causing them to have scheduling conflicts, overloading
of the network connections or complete node failure. Even
though all measurement applications were launched at the
same time there was no guarantee that all nodes were able
to perform the measurements at the same time, over the full
data collection time frame.

To account for this, we designed a data normalizer, which
scanned all the base measurement data, and found the latest
start time among all nodes. With a start time defined, we
were able to put all timestamps later than this into buck-
ets based upon the interval during which the specified task
should have ran. If there was no run for a given bucket (i.e.,
the node was overloaded/down) we would mark this bucket
as incomplete. On the other hand, if a node was able to run
it’s measurement to a remote node but failed, we marked
the bucket as a failure, indicating that the two nodes could
not communicate at the given timestamp.

With all data normalized, we found certain nodes to be far
too overloaded to give enough information about the inter-
connectivity with other remote nodes. These nodes were
then removed from our set of potential nodes to be utilized
during evaluation. This was not a hinderance however, as
we were still left with over 90 working nodes, with approxi-
mately 4GB of ping and traceroute communication data.

5.2 Settings
The evaluation ran off of the collected trace data as de-
scribed in Section 5.1. Our evaluation study assumed a sys-
tem configuration where a large number of nodes around the
world are partitioned into groups consisting of 30 nodes each.
We then observed the operation of a group while running a
network monitoring query. The query involved six nodes
that periodically measured the communication latency to
each of three remote nodes.

As shown in Figure 1, the latency readings were merged at
replicas of Union operator ∪1. To analyze the impact of node
load on network delays, the CPU load of the three nodes
were first merged at replicas of Union ∪2 and then joined
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with a single instance of all operators.

with latency readings at replicas of Join 13. This join op-
eration concatenates of the messages from the data streams
if they satisfy an equality predicate, such as identical time
stamps and node ids. Then, the replicas of 13 sent their
output data (i.e., concatenations of latency and load read-
ings) to Filters that classify the data based on predefined
predicates. The outputs of the Filters were then delivered
to end applications. All the above replicas were deployed
based on our initial deployment algorithm (Section 2.3).

Some specific settings in the evaluation include a maximum
detouring timeout of 10 minutes (i.e., after 10 minutes of
detouring, iFlow attempts to use the direct path). iFlow
utilizes a buffer management system to ensure the transmis-
sion of messages, however this buffer cannot hold an infinite
number of messages so some must be dropped. While mes-
sages are sent from this buffer, periodic routines check the
current state of the buffer potentially removing messages.
To determine if a message should be dropped, iFlow will
compare the current time the buffer examination began with
the time that the message was entered into the buffer. If the
difference is larger than the message timeout, this message
is dropped and will never be delivered to the destination. In
our evaluation, this timeout value was set at 8 seconds.

5.3 Results
To evaluate the effects of detouring, we measured the end-to-
end latency of output messages as well as the overall avail-
ability from the users’ perspective. This latency is defined
as the difference between the time when an output message
was delivered to the destination and the time when the last
input data that contributed to the output message was cre-
ated. The measurement of availability is simply the number
of messages received by the destination within an applica-
tion specific time bound (e.g. 1 second) divided by the total
number of messages that the destination would receive in
the absence of failures (both network and server). Figures 5
and 6 illustrate the impact detouring has on end-to-end la-
tency (latency), as well as the availability measurement (per-
centile) of messages received. For example, in Figure 5 fo-
cusing on the graph of the No Detouring case, at the point
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where the latency is 1 second the percentile is only 81.4%.
This shows that only 81.4% of the output messages were
received by the destination within 1 second of transmission
delay. In other words, without replication and detouring,
18.6% of output messages cannot be timely delivered.

Both figures also provide the network bandwidth usage and
network cost within the parentheses as a ratio of the base
case, No Detours. The network bandwidth usage is deter-
mined by the number of messages that are sent over the
time evaluation run. As described in Section 2.3.2 the net-
work cost is a product of the data rate of individual streams
and the network latency summed across all streams. For
example, in Figure 5 the Benefit Detour curve has a band-
width usage of 1.14 times the No Detouring case over 40
streams. Any detouring will always cause the bandwidth to
be larger, however the network cost is dramatically affected
by the technique used. By selecting effective forwarders we
can keep costs low as seen with a cost of 1.04 in the Benefit
Detour graph versus 1.14 in the Random Detour graph.

Figure 5 shows the main benefit that detouring with iFlow
can provide over its predecessor [12]. There are no extra
replicas of the operators in the query network, however by
utilizing detouring (both random and benefit based) tech-
niques the system is able to achieve 100% data transmis-
sion versus 17.5% of messages dropped due to the 8 second
timeout when no detouring is utilized. Through longer eval-
uations, we have found that this holds true upwards of 36
hours. We focused on this small 12 hour window to illus-
trate that failures at the network level can occur early. These
early failures can be detrimental to a system that is designed
to run for long periods of time and provide high availability
(weeks/months even years).

Figure 5 also details the advantages of utilizing the bene-
fit based detour planner over a randomized one. Although
both achieve 100% availability, benefit based detouring has a
lower network cost (1.04x) compared to the random detour-
ing (1.14x). The reason behind this is that a detour via a
remote node may have a shorter network delay compared to



the direct path [2] and our benefit-based detouring technique
tends to select such detours keeping delays to a minimum.
On the other hand, the network bandwidth is always higher
in the detouring case (i.e., 1.14x) as more messages need to
be sent as forwarder nodes are utilized. This is the primary
cost of utilizing detouring, however our benefit based tech-
nique strives to lower the ratio by selecting fewer forwarders
(i.e., selecting forwarders that will succeed). Finally, we can
see that the maximum end-to-end latency for the benefit
based detouring is lower (5.84 seconds) compared to ran-
dom detouring (7.13 seconds).

Detouring can overcome a lot of network problems, however,
it cannot handle the situation where a node with an operator
has been completely isolated. Replication will be required to
handle this situation, however detouring can provide large
benefit when combined with replication. Figure 6 illustrates
this point with an emphasis on benefit based detouring and
no detouring. The number within the square brackets repre-
sents the number of instances of each operator that has been
deployed. Thus, the graphs represented with [1] have no ad-
ditional replicas, whereas graphs with [2] have the original
operator(s) with a single replica of each as well, handling a
single operator failure without loss.

Even with two instances of each operator, the no detour-
ing case cannot guarantee 100% data transmission, however
by utilizing our benefit based detouring, we achieved 100%
transmission rate. This figure also implies that there is room
to improve the placement of each operator to maximize the
benefit of detouring. We can see that even in the single oper-
ator case, detouring can significantly increase the successful
data transmission, however it cannot reach 100%. With a
smarter placement of operators based upon detouring oppor-
tunities, this situation might accomplish 100% data trans-
mission. We leave this area of research as future work as
described in Section 6.1.

Figure 6 also shows the scalability of our detouring method.
We can see that the network cost over a week is still low
(1.14x) relative to the non-detouring case for single operator
placement. As replicas are added to the system, detouring
has the ability to find new routes that are even faster than
the direct route taken from a source to destination. This
implies that as the number of detours increases the potential
to lower the network cost also increases.

6. FUTURE WORK
In this section, we present ways in which we plan to expand
iFlow’s detouring and replication capabilities. Some of the
elements described here have already begun to be imple-
mented.

6.1 Detouring-Aware Replica Deployment
As described in Section 2.3, iFlow’s current replica deploy-
ment strategy does not consider detouring, thus may provide
limited availability guarantees. In this section, we detail
detour-aware replica deployment where nodes are selected
that can best benefit from new direct and indirect commu-
nication opportunities.

Suppose that operator o is already replicated at nodes
N1, · · · , Nk and we want to deploy a new replica at node

C1 C2

NM N’

S

Figure 7: Migration Example. Operator replicas are

running on nodes N and N ′. Operator migration from N to

M can improve performance from C1’s perspective.

N ′. In this case, the gain in availability can be defined
as the probability that the new replica is reachable (from
all upstream/downstream nodes either directly or through
detouring) when all the other replicas are not. We are cur-
rently developing a technique that can find for each new
replica a location that will maximize the gain in availability.

As an example, assume that an operator at node N in Fig-
ure 2 processes data from node U and then consider the
problem of replicating the operator at a different node. In
this case, node A must not be chosen as a replication point

since all possible routes from U to A (e.g.,
−−−→
UNA,

−−−−−→
UCNA,

−−−−−−−→
UN ′CNA) significantly overlap with routes from U to N ,
thus the new replica would not receive input data when the
operator at N cannot. Conversely, creating a new replica
at N ′ will be beneficial (i.e., improve availability) since N ′

may receive data from U through
−−→
UN ′ or

−−−−→
UCN ′ even if N

cannot due to the problem of
−−→
UN and

−−→
CN .

6.2 Replication-Aware Adaptation
As described in Section 2.3, the initial replica deployment
is usually sub-optimal. Further, system conditions tend to
change over time. For this reason, we are currently develop-
ing an adaptation technique that can periodically migrate
operator replicas in a manner that improves both perfor-
mance and availability.

In our adaptation technique, each node N periodically se-
lects one of its operators (say o) and then, based on the
availability benefit as in Section 6.1, selects nodes to which
migrating o will improve availability. Among such nodes, N
chooses a node to which migrating o will most improve per-
formance. The performance improvement is induced by min-
imizing the overall network cost as described in Section 2.3
except that the network cost of each data stream in this case
is weighted by the stream’s impact on clients. The reason
behind this cost definition is that the performance (i.e., the
end-to-end latency) in general depends on the fastest data
flow among multiple replicated flows, thus some streams may
have little impact on performance.

As an example, let’s assume that nodes N and N ′ in Fig-
ure 7 run operator replicas and then consider the problem of
assessing the benefit of migrating the operator replica at N

to M . In this case, stream
−−→
NC2 will be assigned a very low

weight because C2 would usually receive data from
−−−→
N ′C2

before it receives the same data from
−−→
NC2, thus

−−→
NC2 would

have little impact on C2. On the other hand, both
−−→
NC1 and



−−−→
MC1 must be assigned a high weight since C1 will be af-

fected by them (rather than the slower stream
−−−→
N ′C1) before

and after migration, respectively. It can be seen that the
migration from N to M is advantageous since the end-to-
end delay at client C1 would decrease (while C2 would not
be affected) as C1 would receive data along a faster route

(
−−−−→
SMC1) rather than the slower one (

−−−−→
SNC1).

When completely implemented, our migration technique will
be non-disruptive because it can copy the complete state of
each operator without stopping the execution of the oper-
ator. For this, we are implementing concurrent copy-on-
write data structures [14]. Further, due to other parallel,
replicated data flows, any side-effect of operator migration
is very likely to be hidden from the end-clients.

6.3 Evaluation of Replica Deployment and
Adaptation

Our iFlow prototype is designed to run over PlanetLab and
a network emulator that obtains information about network
routes and delays from network traffic archives. Emulation-
based evaluation provides us the benefit of comparing com-
peting methods under identical conditions, whereas experi-
ments on PlanetLab allows us to obtain real world results.
We intend to measure the effectiveness of replica deploy-
ment and adaptation techniques by carrying out comprehen-
sive evaluation studies with a variety of stream processing
queries and data transmission rates.

7. RELATED WORK
Studies have shown that the majority of end-to-end commu-
nication failures are caused by link failures rather than node
failures [7, 15]. Many failures were also found to occur in the
“middle” nodes between communication endpoints. A com-
mon technique to overcome this problem has been the use of
overlay networks in which nodes can communicate indirectly
via other nodes, possibly routing around outages [2, 16]. The
RON (Resilient Overlay Network) system has nodes period-
ically update their application-level routing tables based on
all-pairs ping measurements [2]. Another overlay network
called PeerWise focuses on utilizing only a single hop for-
warder and limiting the number of required connections for
routing around an outage [16]. There have been other ap-
proaches that consider detouring at the router level [9, 8].
In all of these previous approaches, network problems last
(e.g., 20 seconds on average in RON) until the routing tables
become up-to-date through periodic updates. In contrast,
iFlow can immediately overcome network problems (usually
within a second) by monitoring each message delivery and
actively discovering detours when necessary.

Previous techniques for highly-available stream processing
typically construct, for each operator, k replicas on inde-
pendent nodes to mask (k − 1) simultaneous node failures.
These techniques either execute all the operator replicas [4,
10, 20] or consistently copy the state of a subset of replicas
onto other replicas [10, 11, 14]. In contrast to these solu-
tions, our iFlow conducts detouring as soon as it notices a
transmission problem. As demonstrated in Section 5, this
enables iFlow to achieve higher availability with fewer repli-
cas than previous solutions. iFlow also strives to improve

both performance and availability by adaptively construct-
ing and migrating operator replicas.

8. CONCLUSION
This paper discusses achieving fast and highly-available
Internet-scale stream processing. In contrast to previous so-
lutions that rely only on replication of operators, our iFlow
system combines both replication and detouring (discovery
of a new route via a remote node). As shown by our pre-
liminary evaluation, this combination of replication and de-
touring leads to higher availability with less overhead than
previous alternatives. iFlow also manages replicas at diverse
geographic locations in a manner that improves both perfor-
mance and availability.

Our future work will extend the initial work presented in
this paper. First, we plan to complete the implementation of
iFlow. This implementation effort will include detour-aware
replica deployment (Section 6.1) and its incorporation into
the repair mechanism (Section 2.4) as well as the replication-
aware adaptation technique (Section 6.2). Second, we intend
to conduct a comprehensive simulation study with more var-
ious stream-processing queries and network trace data. Fi-
nally, we plan to obtain real world results by utilizing iFlow
and other solutions on PlanetLab.
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