
File-Access Patterns of Data-Intensive Workflow
Applications and their Implications to Distributed

Filesystems

Takeshi Shibata
University of Tokyo

Department of Information and
Communication Engineering

Graduate School of
Information Science and

Technology
shibata@logos.ic.i.u-

tokyo.ac.jp

SungJun Choi
University of Tokyo

Department of Information and
Communication Engineering

Graduate School of
Information Science and

Technology
demyan@logos.ic.i.u-

tokyo.ac.jp

Kenjiro Taura
University of Tokyo

Department of Information and
Communication Engineering

Graduate School of
Information Science and

Technology
tau@logos.ic.i.u-

tokyo.ac.jp

ABSTRACT
This paper studies five real-world data intensive workflow
applications in the fields of natural language processing, as-
tronomy image analysis, and web data analysis. Data in-
tensive workflows are increasingly becoming important ap-
plications for cluster and Grid environments. They open
new challenges to various components of workflow execution
environments including job dispatchers, schedulers, file sys-
tems, and file staging tools. The keys to achieving high per-
formance are efficient data sharing among executing hosts
and locality-aware scheduling that reduces the amount of
data transfer. While much work has been done on schedul-
ing workflows, many of them use synthetic or random work-
load. As such, their impacts on real workloads are largely
unknown. Understanding characteristics of real-world work-
flow applications is a required step to promote research in
this area. To this end, we analyse real-world workflow appli-
cations focusing on their file access patterns and summarize
their implications to schedulers and file system/staging de-
signs.
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1. INTRODUCTION
Workflow facilitates integration of individually developed
executables, making parallel processing readily accessible to
domain experts. Thus it has become an important disci-
pline in various fields including natural science, engineering,
and information processing. Many systems for executing
workflows have been developed [1, 2, 3]. More recently,

programming paradigms and systems specifically designed
for large data processing such as MapReduce [4], Hadoop1,
and Dryad [5]2 made it popular to utilize parallel process-
ing without an involved effort of parallel programming. An
obvious common goal of these systems is efficient execution
of workflows. To this end, there have been efforts on various
components of workflow engines including scheduling algo-
rithms [6, 7, 8, 9, 10, 11, 12], data transfers [13, 14], and
fast dispatchers [15]. There are efforts focusing on schedul-
ing with data transfer costs taken into account [16, 17, 18,
19] A good survey on scheduling algorithm is in [20].

Despite their importance, practical evaluation of workflow
systems have been rare and remain difficult, mainly due to
lack of commonly accessible benchmarks. Even with a real
application, translating the result on a particular platform
into a generally acceptable observation on workflow systems
is difficult because performance of a workflow depends on
so many components of the environment such as nodes, net-
works, file systems, and so on. This is particularly so be-
cause workflows typically consist of many sequential exe-
cutables each of which may have unknown sensitivities to
their environments. Most existing studies on scheduling al-
gorithms therefore have been based on simulation with syn-
thetic workloads such as randomly generated task graphs.
Bharathi et al. [21] is one of the few studies that systemat-
ically characterizes several real workflow applications. The
present paper shares the same spirit as theirs, but pays a
special attention to IO (file access) behaviors of applications.

A single workflow generally consists of a set of tasks each
of which may communicate with (i.e. depends on or is de-
pended upon) another task in the workflow. Since a task
is typically a sequential (single node) application, a data
transfer among tasks is generally handled by the workflow
system. Data may be implicitly transferred via a shared
file system or explicitly moved by a staging subsystem. Ei-
ther case, they generally go through a secondary storage to
ensure a certain degree of fault tolerance—that a workflow

1http://hadoop.apache.org/
2http://research.microsoft.com/en-us/projects/Dryad/



can restart from a point where a job failed. As such, un-
derstanding IO behaviours of real workflow applications is
very important for implementing efficient workflow systems.
It is particularly so for data-intensive workflows, which are
becoming major targets of workflow systems.

To this end, this paper shows the result of our study on
five real workflow applications in the fields of natural lan-
guage processing, web data analysis, and astronomy image
analysis. With this study, we like to provide data points
by which we can investigate important design questions for
implementing workflow and related subsystems such as file
systems. Relevant questions include:

• How effective is it to place jobs according to file affinity,
and what is the tradeoff between the complexity and
benefit of scheduling algorithms?

• What are advantages and disadvantages of using shared
file systems (such nas NFS[22], Lustre3, GPFS [23]4,
and Ceph[24]) over using explicit staging?

• How much we can gain from staging systems that trans-
fer files directly between compute hosts rather than
indirectly through a central home node?

• Likewise, how much we can gain from user-level file
systems such as Gfarm [25] or GMount [26] that can
use any compute host as a storage server?

2. RELATED WORK
2.1 Workflow Studies
Bharathi et al. [21] is the closest to the present work. It
studies five real workflow applications. It analyses depen-
dency graphs of each workflow and identifies common com-
munication and dependency patterns such as pipeline, data
distribution, aggregation, and redistribution. It also shows
statistics on job granularities. In addition to dependency
patterns, we also study file access behaviors and discuss their
implications to file system or staging designs.

2.2 Executable Workflows
Montage [27] is one of the few workflow applications that
can be readily downloaded and executed by others. Both
Bharathi et al. [21] and our work include this application
as a target of their studies. We will provide four more exe-
cutable applications with annotations that can be shared by
researchers in this community.

2.3 Workflow Collections
For publicly accessible collection of workflows, Bharathi et
al. also provides WorkflowGenerator web site5, which gen-
erates DAGs whose nodes are tasks annotated with runtime
and files used. Files are annotated with their sizes, so depen-
dencies and communication volumes can be reconstructed
from the DAGs. We are preparing a web site that provides
similar data for applications studied in this paper. In addi-
tion, we will provide more comprehensive traces of file access
behaviors, as well as their executables.

3http://www.sun.com/software/products/lustre/
4http://www-03.ibm.com/systems/clusters/software/gpfs/
5http://vtcpc.isi.edu/pegasus/index.php/WorkflowGenerator

myExperiment6 is a repository of workflow descriptions, cur-
rently providing more than 750 workflows. Each workflow is
given as a description for a particular system (mostly for
Taverna [3]), and not annotated with profile information
such as runtimes and file sizes. The number of workflows
we are going to provide is much smaller, but we are trying
to provide them in a form executable by others.

2.4 Workflow Scheduling Techniques and Dis-
tributed File Systems

There have been efforts on various components of workflow
engines including scheduling algorithms [6, 7, 8, 9, 10, 11,
12]. However, most of those methods require the complete
form of DAGs for workflows and completion time, input/out-
put file size for each jobs, etc. It is difficult to apply schedul-
ing techniques such as HEFT without those information.

Especially, The complete form of DAGs requires workflow
descriptions to have explicit declarations of input/output
files for each job. Because the workflow descriptions we ex-
amined in this paper has no explicit form of input/output
files, some systems which help dispatched jobs find required
files and register output files is required. Distributed file
systems are able to be used for that purpose.

3. WORKFLOW EXECUTION AND FILE AC-
CESS LOGGING

3.1 Workflow Engine
Workflows described in this paper are described in Make-
files and a parallel and distributed make engine called GXP
Make7 was used to execute them. Make is a convenient tool
for describing jobs with dependencies and can naturally be
used for describing executing workflows.

Except for Montage, all workflows are written in Makefile
by their original authors. For Montage, one of the tools for
it generates an abstract workflow in an XML format called
DAX, used Pegasus. Output DAX files are converted to
Makefiles. Every job description by the tag 〈job〉 is con-
verted to a ”rule” of makefile; commands of a rule are ex-
tracted from 〈job〉 tags, whereas dependency (prerequisite)
and target filenames from 〈uses〉 tags with arguments ’link =
”input”’ and ’link = ”output”’, respectively.

GXP Make runs on top of an existing Make implementa-
tion GNU Make, which supports parallel execution for a
single multiprocessor node. GXP Make extends this func-
tion to parallel execution in distributed environments by in-
tercepting its child process invocations. Processes forked by
the underlying GNU make enter a queue managed by GXP
make; It then dispatches jobs to available workers that have
been acquired by any underlying resource manager such as
TORQUE, SGE, SSH, etc. Input and output files of tasks
are stored in a single network file system, such as NFS, Lus-
tre, GFarm, etc.

The choice of this particular workflow system is largely or-
thogonal to the results presented in this paper. It is not dif-
ficult to automatically generate descriptions for other work-

6http://www.myexperiment.org/
7http://www.logos.ic.i.u-tokyo.ac.jp/gxp/



flow system such as DAGMan, given file access logging meth-
ods presented in the next section.

3.2 File Access Logging
In data intensive applications, it is important to examine
how much data are transferred over the network, when and
where these transfers happen, and where bottlenecks are.
When data are transferred mainly as files through a dis-
tributed file system, the detail of file access is required to
extract such information. In order to record file access op-
erations, we developed a logging tool which is specialized
for GXP Make using a tool called Filesystem in Userspace
(FUSE). Table 1 shows the recorded data for each access.

Table 1: logged data par a file access operation
job id hostname:processId

operation read, write, open, create, getattr, mkdir, etc.
data id filename
date execution time of each operation in nsec.

from the epoc
time blocking time during each operation
size size for each read and write

A file system using our logging tool provides a mount point
under which the target directory is mirrored. When a pro-
cess accesses a file or a directory under the mount point,
one of our registered callback routines is called by FUSE, in
which the access is logged along with the client process id.

We need to translate the process id to the identity of a job
(note that a job may consist of multiple processes). GXP
Make gives a unique number to each job through an en-
vironment variable (GXP_WORK_IDX). When our logging tool
receives a callback, it records GXP_WORK_IDX of the client
process if it is the first callback from that process.

When the file system is unmounted after logging all file ac-
cess of a workflow, access logs by all hosts are collected to
form a database. Dependencies among dispatched jobs and
accessed files are inferred from those files. Dependencies are
inferred as follows. (1) If a job X accessed a file A with
any file operation, X is related to A. (2) If X created A,
then A depends on X (X → A), otherwise X depends on A
(A → X).

After the database is created, the workflow DAG is gen-
erated as a clickable HTML file with information for the
workflow execution. Statistics for file-access patterns of each
job and each category for jobs are also extracted from the
database. A category for jobs is a set of jobs which are de-
rived from the same line in the makefile, or the same com-
mand without input file.

All dispatched command lines, or jobs, are divided into cat-
egories by the following steps.

1. Strings which is called normal commands are extracted
from the given makefile by shallow pursing. Each nor-
mal command is basically corresponding to single line
of the makefile.

2. The distance of dispatched command lines from nor-
mal commands are measured by edit distance. Each
dispatched command line is assigned to a category
which is represented by the nearest normal command.

For instance, if the following block is in a makefile :

DIR := some dir
$ (DIR)/%. input : $ (DIR)/%. output

cmd $< > $@

then the corresponding normal command is

cmd some dir /%. input > some dir /%.output .

Although another FUSE-based tool ParaTrac [28] offers sim-
ilar results to ours, our tool is implemented independently
for different purpose. While ParaTrac is a general purposes
profiling tool, this profiling tool is specialized for GXP Make
workflow system and has several different functions from
ParaTrac. For example, while our tool can not produce
fine-grade analysis such as statistics for time when ’read’
operations occur in processes, it is able to divide jobs into
categories for given makefiles and show their statistics, ex-
tract user cpu time of each job and show critical path of
the workflow, produce workflow DAGs in HTML files with
information of workflow execution, and so on.

4. WORKFLOW APPLICATIONS
In this section, details and profiling result for the five work-
flow applications 8 are given. They are:

• Medline to Medie Indexing

• Case Frames Construction

• Similar Pages Extraction

• Supernovae Explosion Detection

• Montage

The first two are applications in natural language process-
ing; Similar Pages Extraction is a data mining application
applied to a large collection of web pages; The last two are
image analysis applications in astronomy.

The experimental environment is a single cluster composed
of 15 nodes (120 CPU cores) with a single NFS server. They
are connected by Gigabit Ethernet with bonding (2Gbps/n-
ode). We use GXP make as the workflow engine.

Details of file-access patterns are logged and analysed by
means of the previous section.

Following subsections describe each application with more
details.

8https://www.intrigger.jp/wiki/index.php/Applications



4.1 MEDLINE to MEDIE
MEDLINE to MEDIE Indexing (hereafter M2M) workflow
creates indexing database for a running search engine called
MEDIE.9 It indexes all registered abstracts in the MED-
LINE, the world largest biomedical text database. It indexes
and retrieves sentences with their semantic subjects, verbs,
and objects, enabling queries such as “what does p53 acti-
vate?” To this end, its indexing involves deep natural lan-
guage processing including parsing, requiring a large amount
of CPU times and intermediate data storage. M2M takes a
compressed XML text files as its input, each containing a
number of biomedical papers in MEDLINE. Most tasks in
M2M input and output compressed XML files.

Figure 1 shows a sub-workflow of M2M for a single input
file. A circle is a single task, and a square represents a file
created or read by tasks. An arrow from a task to a file
indicates that the task created the file, and one from a file
to a task that the task opened the file for reading. The most
time consuming part is parsing done by a parser called Enju.
This is parallelized within each input file by splitting the
intermediate file right before the parsing into small chunks.
This can be seen as a number of horizontally aligned boxes
around the middle of the graph.
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Figure 1: MEDLINE to MEDIE

Each input file results in 68 independent jobs, including nat-
ural language processing, database creation, managing and
conversion of files described in XML, etc. Resource con-
suming tasks are listed below in the decreasing order for
execution time.

1. Enju : HPSG parser, which constructs of predicate
argument structures.

2. Akane : Protein-protein interaction inference from sen-
tences.

3. Genia-tagger : part-of-speech tagging and shallow pars-
ing for biomedical text.

9http://www-tsujii.is.s.u-tokyo.ac.jp/medie/
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4. Medie-ner-disamb.: named entity recognition for biomed-
ical terms, such as protein names, and removing am-
biguity from them.

5. Medie-ner-filter: preprocess for Medie-ner-disamb.

6. MakeDB : creation index database for MEDIE.

7. Som-merge : merging intermediate XML files.

Figure 2(a) shows a timing detail of the fifteen most time
consiming tasks for 99 input files (491 MB). In the experi-
ment, Enju is executed in 3584 times and each of the other
tasks is executed 99 times (once for each input file). While
the most time-consuming task, Enju, is clearly cpu-intensive,
the second one, Akane, is very IO intensive. Moreover, it
spends a significant amount of time on meta-data accesses.
Overall, 46% of the whole time are consumed by file IO and
metadata access (Figure 2(b)). Details of metadata accesses
are shown in Table 2.

4.2 Similar Pages Extraction
Similar Pages is a workflow that takes a large number of
texts collected from the web as input and analyses them. It
outputs all pairs of ’similar’ sentences, which have Hamming
distances smaller than a specified threshold. The key algo-
rithm, called Sachica, is able to enumerate all such pairs



Table 2: detail of file metadata access for M2M
getattr readdir open

count 1,749,482 99 3,418,394
aggregate time[sec.] 84,266 4 128,671
average time[msec.] 48 40 38

time ratio 0.39 0 0.59

create mkdir unlink
count 21,642 496 4,871

aggregate time[sec.] 1,199 33 1,069
average time[msec.] 55 67 219

time ratio 0.01 0 0.01

rapidly [29]. The dependency DAG of Similar Pages Ex-
traction workflow is shown in Figure 3. It has three kind of
tasks:

• Mkbins : gather all input text files and split them into
a given number (N) of files.

• Sachica1 : find pairs of similar subsequences in a single
file.

• Sachica2 : find pairs of similar subsequences in two
files, one from each of them.

sachica1

xresult.1.bz2 log.1

mkbins

bin.2 bin.table.0 bin.table.1 bin.table.2bin.0bin.1

sachica2

xxresult.0.1.bz2 log.0.1

sachica2

log.0.2 xxresult.0.2.bz2

sachica2

log.1.2 xxresult.1.2.bz2

sachica1

log.2 xresult.2.bz2

sachica1

xresult.0.bz2 log.0

4.txt 2.txt 5.txt 3.txt 8.txt 9.txt 0.txt 6.txt 7.txt 1.txt

Figure 3: Similar Pages Extraction workflow

Characteristic of the dependency DAG for Similar Pages is
that Sachica1 and Sachica2 have N and N(N − 1)/2 jobs
respectively, where N is the number of files Mkbins outputs.
Each split file is read N times from Sachica1 and Sachica2.

Figure 4 shows an experimental result for about 1 million
(total 5 GB) input files with N = 30 (Mkbin:1, Schica1:30,
Schica2:435). Mkbin is very file-access intensive, whose cost
are mainly IO operation ’read’ and metadata operations ’get
attribute’ and ’open’. Overall, file-access cost occupies the
half of its execution time and ’read’ is the main reason of
the file-access costs.

4.3 Case Frames Construction
Case Frames Construction is a workflow to create data struc-
tures in natural language processing called case frames [30,
31]. Case frames, which are frequent patterns of predict-
argument structures, are generated by analysing large mount
of text collected from the web. The workflow is mainly con-
structed from the following jobs in the increasing order with
consuming time(Figure 7(a)):

1. parse-comp : a parser for Japanese texts with KNP [30]
including named entity recognition.
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1 2 3Ranking
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 meta data read write stime utime

(a) Time detail of each job utime stime write readmetadata
(b) Time detail for whole workflow

Figure 4: Similar Pages :Time detail of each job and
of the whole workflow

2. make-caseframe : a job that creates case frames by
extracting reliable predicate-argument examples from
the parsing result.

3. cf-distribute-rest : a job that adds all case frames to
clusters made by cf-clustering.

4. cf-clustering : clustering highly frequent case frames
and merging them with similarity.

5. calc-of-similarity : computing similarities for each pair
of case frames.

The DAG for the workflow with 4 input files is shown in
Figure 5. As the figure shows, all files output by the up-
stream jobs are gathered into one large file, and it is split
into files with other size, and finally they are combined into
a result file. So parallelism of the workflow has two peaks.
Figure 6 shows the number of concurrent jobs with respect
to the elapsed time (in seconds) of an execution.

In the experiment, 59 % of the whole time is spent for file
access, while the ratio of time for each job has large variance
(Figure 7).

4.4 Finding Supernovae
Finding Supernovae is a workflow to find coordinates where
supernovae appears to be from astronomical data. The work-
flow uses the same software and data with Data Analysis
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Figure 5: Case Frames Construction

Figure 6: Parallelism of an execution for Case
Frames Construction

Challenge on IEEE Cluster/Grid 2008 10. Each pair of as-
tronomical images which are for the same position but dif-
ferent time is compared with each other and the positions of
candidates for supernovae are listed up. Finally the candi-
date positions are gathered into one file. Figure 8 shows the
DAG of the Finding Supernovae for 2 pairs of input images.

In this workflow, the most heavy job (imbus3vp3) is rela-
tively compute-intensive while other jobs are not.

4.5 Montage
We execute Montage DAX and, take log and generate the
dependency graph(Figure 11).

Each input file is a astronomic image file, and the workflow
gathers them into one picture. In the experiment we use

10http://www.cluster2008.org/challenge/
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Figure 7: Details for Case Frames Construction
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Figure 8: Finding Supernovae

3156 2MASS(J)images as input, where each size of them is
about 2MB .

As Figure 11(b) shows, almost of the aggregate time is con-
sumed for file access. Concentrating all files to single file
server becomes the bottleneck and degrades performance of
the workflow.

Percentage of cpu usage time to aggregate time becomes
larger as the input size (Figure 11(c)), which means that
concentrating data access degrades throughput of the file
server.

5. COMPARISON FOR DESIGNS OF WORK-
FLOW SOLVERS

In this section, we investigate various cost for designs of
workflow solvers such as staging, centorized file system, schedul-
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Figure 10: montage workflow

ing, based on logged data for workflows in the previous sec-
tion.

5.1 Centralization Costs
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A staging is a process to transfer required files to nodes
in advance. Many staging methods send all updated and
created files to central servers when jobs finish. Since inter-
mediate files are not sent directly from the node who output
them to other nodes in those methods, called centralized
staging, bandwidth and latency to access for central servers
frequently becomes a bottleneck especially for data intensive
workflows.

Many centralized file systems, such as NFS and LUSTRE,
also have the same problem, whereas distributed file sys-
tems, such as Gmount and Gfarm, can be more effective
since they locate files on local disks of nodes and send them



if necessary.

While input and output files of a workflow are usually re-
quired to be located on file system, intermediate files, which
are both read and written by jobs of the workflow, are not.

We assume that files which are only read during the work-
flow execution are the input files and that files which are
only written are the output files. Table 3 shows input, inter-
mediate and output aggregate file size and the intermediate
rate ( intermediate/(input + intermediate + output) )
for each workflow in the previous section. It is possible to
avoid 40-88% of file transfer to central servers on centralized
file systems and staging systems that can be become a bot-
tleneck for the whole workflow performance if intermediate
files does not send to the central servers.

Table 3: ratio for the aggregate size of intermediate
files

input interm. output [GB] interm. rate
m2m 0.51 97.43 13.25 0.88

similarpages 2.49 2.49 0.97 0.42
caseframes 0.73 46.74 58.51 0.44
supernovae 77.91 103.48 78.26 0.40
montage 7.26 72.84 21.44 0.72

5.2 Locality-aware Scheduling
When a scheduler for workflows decides the compute nodes
where each job are dispatched, it is important to consider
the cost to access files located on remote nodes. Jobs are
preferred to be lunched at a compute node where as many
input files are located on the local disk or memory.

In many scheduling methods like HEFT [7], the cost to ac-
cess files on remote nodes are considered when jobs are as-
signed to compute nodes, as well as predicted computation
time for jobs, length of critical path, etc. Let us define
that a job Y depends on a job X if some output file of
X is input file of Y . If a job X has some jobs that de-
pend on only X, it is very likely that, at least, one of jobs
which depends on X is assigned to the same node with X
with any criterion for assignments of jobs. In order to mea-
sure how much size of files are able to read from local in
locality-aware scheduling methods, for each job X, a job
Y which depends on X are randomly selected among jobs
depends on X, and X and Y are assigned the same node.
Talbe 4 shows the result of the assignment for each work-
flow. While Case Frames Construction has high local read
rate local/(local+input+remote), Similar Pages Extrac-
tion does not. The difference of them mainly arise from the
difference of the average number of branches in the DAGs of
the workflows. If a workflow has the small averaged number
of branches for a job in the DAG, considering locality aware-
ness became more important. As Figure 3 and 5 shows,
most jobs of Case Frames Construction have one branch
while those of Similar Pages Extraction have 30 branches.

5.3 Costs for Metadata Operations
Metadata operations often be non-negligible costs on a single
file system. Table 5 shows the experimental result in the
previous section shows. The reason for the cost of metadata
operations hardly depends on bandwidth limitation but on

Table 4: local read for locality-aware scheduling
read size [GB]

input local remote local read rate
m2m 0.51 69.56 119.35 0.36

similarpages 2.49 0.17 74.61 0.002
caseframes 0.73 46.35 0.99 0.96
supernovae 233.73 37.50 67.54 0.11
montage 9.13 56.93 235.86 0.18

access latency to the metadata server on the file system with
keeping consistency. Thus metadata operation cost should
be able to reduce much less if staging is used in stead of a
single file system, since metadata access is only in local nodes
and keeping consistency with other nodes is not required
with stating methods.

Table 5: the ratio of metadata access costs
ratio for whole ratio for file-access

m2m 0.12 0.21
similarpages 0.13 0.18
caseframes 0.05 0.09
supernovae 0.04 0.10
montage 0.32 0.32

6. CONCLUSION
In Section 5, advantages of modifying file systems, staging
methods and scheduling methods are estimated by analysing
dependency graphs generated from logs. Since those work-
flows have no explicit declaration of input and output files
for each job, dependencies between files and jobs are created
by analysing file access logs. Three key insights for perfor-
mance are drawn from the experiments. First, the total load
on the central file server decreases by 40 − 88% if interme-
diate files are sent not going through the central file servers,
but directly from the producer to the consumer. Secondary,
if locality-aware scheduling methods are applied, their effec-
tiveneses highly depend on the shapes of DAGs (the reduc-
tions are from 0.002−0.96). In particular, it largely depends
on the number of children per job. Lastly, 9− 32% of whole
file access cost can be eliminated when a staging is used in-
stead of a file system, because a large part of file access costs
comes from the metadata operation latency between clients
and servers.

Our future direction includes using profiled information to
statistically infer various information about jobs such as
names of input files, names of output files, size of output
files, and the execution time of the job from the command
line. If many of them are successfully estimated, it is pos-
sible to build a framework in which jobs can be described
without explicit staging directives, files transparently shared
across nodes, yet executed very efficiently.
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