

Versioning for Workflow Evolution

Eran Chinthaka Withana, Beth Plale
School of Informatics and Computing

Indiana University
Bloomington, Indiana

{echintha,plale}@cs.indiana.edu

Roger Barga, Nelson Araujo
Microsoft Research,

Microsoft Corporation
Redmond, Washington

{barga,nelsona}@microsoft.com

ABSTRACT

Scientists working in eScience environments often use

workflows to carry out their computations. Since the workflows

evolve as the research itself evolves, these workflows can be a

tool for tracking the evolution of the research. Scientists can

trace their research and associated results through time or even

go back in time to a previous stage and fork to a new branch of

research. In this paper we introduce the workflow evolution

framework (EVF), which is demonstrated through

implementation in the Trident workflow workbench. The

primary contribution of the EVF is efficient management of

knowledge associated with workflow evolution. Since we

believe evolution can be used for workflow attribution, our

framework will motivate researchers to share their workflows

and get the credit for their contributions.

Categories and Subject Descriptors

D.2.6 [Programming Environments]: Programmer

Workbench; D.2.6 [Distribution, Maintenance, and

Enhancement]: Version Control; E.2 [Data Storage

Representations]: Object Representation;

General Terms

Algorithms, Management

Keywords

Workflows, Evolution, Versioning

1. INTRODUCTION
Computational science experiments often involve a sequence of

activities to be carried out, with a set of configurable parameters

and input data, producing outputs to be analyzed and evaluated

further. Depending on these outputs, scientists will tweak input

parameters, input data, and activities of the experiments and its

flow, to improve experiment results. If experiment activities or

parts of the experiment can be automated, researchers utilize

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Data Intensive

Distributed Computing 2010, Chicago, Illinois USA.
Copyright 2010 ACM x-xxxxx-xxx-x/xx/xxxx…$5.00.

This work was performed while first author was an intern at Microsoft
Research and is funded in part by NSF Grant CNS-0420580

workflows to automate repeatable task steps in an efficient

manner. In a workflow setting, rather than doing everything

manually, a scientist will encode their algorithms and

experimental procedures as workflows and use the flexibility,

tools and features of workflow engines. When a workflow

framework is used continuously over an extended period of

time, the research will likely evolve along different dimensions

which will affect and evolve the associated workflow(s) as well.

After a period of time a researcher may need to review what

they have done for a variety of reasons, possibly visiting results

from weeks or months ago. Even in operational settings, where

workflows are used to produce daily results such as data

cleaning and loading, operational workflows will periodically

change. We have identified through discussion with users

several reasons why a researcher may be interested in the

evolution of his or her experimental history. For one, they may

want to visualize the evolution of the research to see the path to

the current state and what the previous attempts were. Also a

scientist may backtrack to a previous stage and take a new

direction. There may be errors in an algorithm or the experiment

and want to trace back to the origin of that error. Or they might

want to get a list of the data products and results affected by this

error. Scientists might want to visualize the data products their

experiments produced over the time and use them for various

evaluation purposes. Finally, in addition to tracing the

workflows over time, scientists may also be interested in re-

producing workflows.

Workflows encapsulate a vast amount of knowledge associated

with scientific experiments. We believe tracking the evolution of

workflows will help to aggregate this knowledge for later

analysis. The benefits of such a system include the following:

1. Tracking effects over Time. When scientists

associate their research with workflows, tracking the

evolution of these workflows becomes an

approximation to the initial problem of tracking the

evolution of their research. Along the evolution of a

workflow, all the components within it will also

evolve. Scientists should be able to look at the result

of a workflow execution and reason about how the

research came to current level to produce that

particular output. Another important aspect of tracking

the evolution is to track the lineage and the roots of

errors in the experiment. For example, if an error is

found in an algorithm or an input to the workflow, the

evolution information should be helpful for the

scientists to track back in time to find the root of the

error or the affected experiments due to these errors.

This information can be useful to revert back to the

last known good configuration and then start research

from that point onwards.

2. Comparing results. A given research line might

evolve in more than one direction. It is really

important to understand the changes on these

directions by comparing the difference between the

outputs of two or more versions of the same research.

For example, given two outputs of two different

versions of a workflow, one should be able to deduce

the reason for the difference between the two results

by looking at the lineage information.

3. Attribution. When a workflow is executed, attribution

information such as who performed the experiment,

who owns or created the workflow, who owns the data

products, etc., can be gathered. This attribution

information will later be useful to track down the

issues or to give proper credit to the original owners.

Also, while carrying out experiments it is becoming

more common to reuse subset graphs within a

workflow Scientists can utilize not only the algorithms

and implementations developed by others, but also the

data products generated including optimally derived

model parameter configurations. For example, in

natural language processing, researchers will use

bilingual corpora published by standard bodies to test

their algorithms. This reuse of a public corpus will

reduce effort but will increase its acceptance. In

research, it is not only the technical aspects that will

matter; sharing and attribution of research can and

should be an integral part of research. We can access

and download subset graphs from sources like

myexperiment.org [17] to reduce development costs.

Tracking this kind of contribution within our evolution

framework will not only provide a way to track

contributions, but also to track attribution for proper

accreditation to the contributors. This last point we

believe is an important aspects of scientific research

from social point of view. At the same time, scientists

in some domains are already motivated to publish their

work and like to see their work being appreciated and

attributed properly. We believe a workflow evolution

framework should also support work attribution. If a

workflow uses work from other research, current

workflow should have a way of attributing to previous

work.

In this paper we introduce the Workflow Evolution Framework

(EVF) and versioning model to help scientists manage

knowledge encoded in their workflow executions. We show that

versioning can be done efficiently. We discuss its

implementation and use for tracking changes to the images in a

Microsoft Word document.

The remainder of this paper is organized as follows. Section 2

discusses related work. Section 3 introduces a couple use cases

that have motivated our research and Section 4 explains the

conceptual model which enables knowledge management in

workflow evolution through versioning. Section 5 discusses the

architecture of our system and Section 6 evaluates several

versioning options. Section 7 concludes with a summary and

discussion of future work.

2. RELATED WORK
Numerous workflow orchestration and composition tools exist

[18][4][11][12][7]. The tools provide different feature sets and

selection of a given tool often depends on the usability of a tool

in a user's particular domain. Workflows have become so useful

that they have become part of almost every major e-Science

platform [13][14]. Workflows define the machinery for

coordinating execution of scientific services and linking together

the resources involved in an experiment. Workflows also help

the scientists encode repetitive tasks enabling them to focus on

the science. Once created, most workflows can be shared with

others, which helps establish best practices, but also improves

the productivity of the entire research community.

The information model of workflow evolution shares a lot in

common with provenance collection frameworks [29][14]. Both

capture a task graph and can contain information about the

environment in which the task graph will or has executed. A

significant difference between the two is that workflows are a

plan where provenance is a record of execution [28]. Workflow

information is gathered in advance of a run; provenance

information is collected on the fly sometimes with and

sometimes without the benefit of workflow information.

Information collected using the proposed workflow evolution

framework can complement provenance collection. The

workflow evolution framework can be a value to a provenance

system as it uses a single form to represent the workflow so can

be mined more easily than can workflow scripts which are babel

of formats and languages. Since most workflow frameworks

require explicit invocation of provenance handlers to capture

provenance, researchers argue for the automatic generation of

provenance data by workflow enactment engines that can be

managed through underlying storage services [6].

Researchers are interested in lineage information because this

information is important to properly document the scientific

experiments [8]. The Earth System Science Workbench [16]

uses lineage information to detect errors and determine the

quality of the data sets. The CMCS [24] system uses lineage

information to establish the pedigree of the datasets they were

using. Workflow evolution itself has been studied. VisTrails

[15] for example provides functionality to capture and track

workflow evolution. The tool also provides a workflow

orchestration environment for visualization experts to compose

workflows. The data model[30] of Vistrails captures steps in the

creation and exploration of visualizations, whereas our model

takes a data centric approach, capturing the artifacts in an

experiment and the relationships between them. Also to our

knowledge VisTrails does not support attribution such as we do

through tracking the contributions to workflows. Casati [9]

introduces the dynamic aspects of workflow evolution within a

workflow engine with emphasis on the complexities of evolving

workflows when under the condition of running instances. We

examine the problem in a slightly more abstract sense and limit

our examination to static workflows. We define workflow

evolution over an extended time duration and are not limited to

the runtime of an average workflow.

Versioning has been applied at the application level[26], the file

system/database level[10] and at the disk storage level[14]. For

efficient implementation of versioning, a system must identify

the objects to be stored, and consider the methods to store,

represent and retrieve versioned objects. Systems have saved an

object (or a copy of the object) as a version[20][21][26][28],

using delta computation[3][19][22] for versioning objects within

the systems. The Elephant file system[26], has a novel

versioning strategy positing that different types of files need

different versioning strategies. In our system, as we demonstrate

in the performance evaluation, there are advantages to

supporting multiple versioning techniques. Different models of

versioning systems have been proposed, depending particularly

on the requirements of the system that they will be used. For

example, S4[19] focuses on securing the versioned objects and

Sprite LFS[25]focuses on lowering the disk access overhead for

small writes. We focus on optimal versioning within an

eScience, workflow driven setting.

3. USE CASES
There are two use cases that have been particularly useful in

motivating our research. We discuss them here.

3.1 Supporting Research Reproduction
Research papers can contain numerous graphs, charts, and

images, but it can be difficult to determine the lineage of a

figure, particularly once time has passed and it is a colleague

who is interested. The reasons for this are several, 1.) The

artifacts associated with the figure including metadata about the

versions and locations of inputs, parameters, workflows, etc. are

not recorded or tracked, 2.) If the information is available,

collecting the data and getting it into an executable state is

difficult for a third party who wants to reproduce results, and

finally 3.) If there is a change to parameters or any other artifact,

the interested party will have to manually run the experiments,

copy the results and re-insert into the paper.

 Figure 1: Embedded Reproducible Workflow with Output

If instead the workflow and metadata of a final graph or image

are embedded into the research paper itself, and if a framework

exists to regenerate the graph, it introduces functionality not

previously available will be an important value addition to both

the readers and the authors of the paper. To enable reproducing

of research, we implemented a Microsoft Word® plug-in, shown

in Figure 1 as an aid to users to embed regeneration workflows

into their research manuscripts. Once included, user can insert

the outputs of these workflows, like visualizations of the results,

into the Word document. Figure 1 shows an embedded

workflow inside a word document, together with the output

visualization of the workflow and meta-data to re-generate the

workflow. At a later time, the reader or author himself or herself

can re-execute the embedded workflow to re-produce the results.

The plug-in enables a user to re-run the embedded workflow on

a Trident server. The add-in can be used to organize jobs,

results, and workflow from various Trident servers, helping to

more easily manage research.

3.2 Scientific Workflows
Linked Environments for Atmospheric Discovery (LEAD) [13]

pioneered cyber-infrastructure for adaptivity in response to the

immediate needs of understanding emerging severe storm

patterns. It developed a workflow system, later based on

Apache ODE, and a data subsystem that enabled workflows to

bind to the latest atmospheric observational data. Many of the

workflows preferred by users included the Weather Research

Forecast model (WRF) [23], which is configured to generate a

forecast that is valid anywhere from 3 hours to 4 days. The

models require a complex set of inter-connected parameters

(stored as Fortran “namelist” files) as input to properly initialize

the model. Once a model is run, a researcher may revisit the

namelist file to achieve more optimal performance for instance.

Our proposed framework will help the researcher understand the

lineage of the workflow, the data and parameters related to a

given output result, and the sources of data. If the researcher

needs to change a set of parameters, the framework should

enable him to go back in time, pick an old version, and create a

new branch to carry experimentation in a new direction. These

use cases motivate the overall EVF framework. In the next

section we introduce the versioning model underlying EVF.

4. VERSIONING MODEL

4.1 Model
For workflow-based research to be reproduceable, a versioning

strategy needs to consider the workflow and the associated data

products, parameters, configurations and executable should

exist, and be bound together. The Trident Workflow Evolution

framework, where we implemented EVF, supports

reproducibility by persisting all information about previously

executed experiments. If the underlying data management

services enables accessing of versioned data products, then

using EVF a scientist can re-run previously executed

experiments.

This versioning model (Figure 2) is built on two orthogonal

dimensions of workflow evolution, namely direct evolution and

contributions. Direct evolution occurs when a user of the

workflow performs one of the following actions:

1. Changes the flow and arrangements of the components

within the system

2. Changes the components within the workflow

3. Changes inputs and/or output parameters or

configuration parameters to different components

within the workflow

For example, a scientist might change the implementation detail

of an algorithm used within the system, and add that component

to the workflow, removing the previous one. Direct evolution

will primarily come from a researcher’s direct involvement in

the research that is being tracked. On the other hand

Contributions will track components that are reused from

previous system. For example, a scientist may extract a BLAST

processing module from an existing workflow available on the

Web and use it within his workflow. Or he may create a new

branch from the current research and take the research to a new

direction. In either case, the research he was doing to that point

will be a contribution to the new branch created.

Figure 2: Versioning Data Model within EVF

 One of the unique features in EVF is that it tracks both “direct

evolution” and “contributions” to research. Together this

contributes towards the existing eco-systems to acknowledge

each other’s contributions to the existing research and also

encourages scientists to share and use existing work. Versioning

of workflows and related artifacts is done at three separate

stages of execution.

1. User explicitly saves the workflow

2. User closes the workflow editor

3. Executing a workflow in the editor: since workflow

instances should always be associated with a

workflow, EVF requires all the workflows to be saved

and versioned before executing them.

This level of granularity will not capture all minor edits to a

workflow, but in applying EVF in the use cases discussed in

Section 3has established a level of sufficiency for this level of

versioning for later retrieval and workflow evolution. Figure 2

gives the data model used for versioning of objects and the

relationships between them. This model is designed such that all

the artifacts related to an experiment can be captured and

versioned using this model. Features of the model include the

following:

 Each workflow a user creates and the execution of that

workflow is recorded inside the system, together with

the associated meta-data containing information like

who own/ran the experiment, the time frames, validity

period, etc.,

 Each workflow execution is associated with the

workflow template used to run the experiment.

 All the data products used and generated in a

workflow execution is associated with the

corresponding workflow instance, enabling to track

them back later.

 Each workflow has links to the direct evolution

(unless it is the first workflow in the evolution), which

will point to the next version of the workflow, if any,

and to the contributions. These contributions track the

previous work this workflow is using inside it

attributing to the previous work.

All information is persisted in a registry, such as the Trident

Registry. A new version of a workflow will be saved within the

registry creating the next version when the user explicitly

decides to save the workflow. But information about workflow

instances and data products will be saved automatically.

The registry implementation must support the security and

privacy of the information stored in it. In our implementation,

the registry enforces a user role based authentication and

authorization scheme to enforce the security and privacy

information. But the user retains the ability to share his

information among selected set of users or all the users.

5. ARCHITECTURE
Before discussing the details of implementation, we introduce

the Trident research platform used to evaluate EVF.

5.1 Trident Research Platform

Figure 3: Key Elements of Trident Architecture

The aim in designing Trident has been to leverage existing

functionality of a commercial workflow management system to

the extent possible and focus the development efforts only on

functionality required to support scientific workflows. The

result is a smaller code base to maintain going forward,

improving sustainability and manageability of the project, and

an improved understanding of requirements unique to scientific

Trident Registry
Trident Runtime Services

Publish-Subscribe Blackboard
Data Model

Data Access Layer

Management

Monitor

Administration

Registry

Management

Workflow

Packages

Scientific

Workflows

Windows

Workflow

Foundation

Design

Workbench

Browser

workflow. Trident is implemented on top of Windows

Workflow (WF) [5], a workflow enactment engine included in

the Windows operating system. The Windows WF extensible

development model enables the creation of domain specific

activities which can then be used to compose workflows that are

useful and understandable by domain scientists. The key

elements of the Trident architecture (shown in Figure 3) include

a visual composer and library that enable scientists to visually

author a workflow using a catalog of existing activities and

complete workflows.

The Trident registry serves as a catalog of known data sets,

services, workflows and activities, and compute resources, as

well as maintains state for all active workflows. It also enables

searching for artifacts cataloged in it. With the use of data

providers, it enables the integration of new data sources into

Trident. These data providers can also be used to import or

convert data from different formats to be used inside workflows.

An execution engine exists in Trident that supports launching

workflows remotely and according to a schedule. Administration

tools allow users to register and manage computational

resources, publish workflows for external use, and track all

workflows currently running or recently completed. Users can

schedule and queue workflow execution based on time, resource

availability, etc. A set of community tools includes a web

service that enables users to launch workflows from any web

browser and a repository that facilitates the publishing and

sharing of workflows and workflow results with other scientists

which integrates with myExperiment.org [17]. At the lowest

level, Trident has a data access layer that abstracts the actual

storage service that is in use from the running workflows. The

data access layer is extensible and currently Trident supports a

default XML store and SQL Server for local storage, and

Amazon S3 [1] and SQL Server Data Services (SSDS) [2] for

cloud storage.

Workflow Foundation provides several runtime services which

can be used as required by attaching the service implementation

to the workflow runtime. Two of the most useful for our

implementation of Trident are a tracking service which enables

event based tracking of a running workflow through the use of

extensible tracking profiles, and a persistence service which

allows the workflow executor to serialize and restore the entire

working state of an in-progress workflow, allowing the executor

to pause and resume workflows and archive intermediate state to

any capable storage device.

5.2 Versioning Architecture
We implemented the Trident Workflow Evolution Framework

(EVF) within the Trident Workflow Workbench [7] to

demonstrate practicality of achieving the objectives of

versioning efficiency. The versioning model of EVF is

integrated into the Trident data model as shown in (Figure 4).

This architecture can version files locally or can use the

versioning capabilities of an external local or remote versioning

system. After the integration, any object saved in to Trident

registry is automatically versioned and can be retrieved later.

Meta-data stored inside the framework enables the retrieval of

any version of a given object. Figure 5 demonstrates the

changed object view within Trident registry, enabling the access

of versioned objects. In the example shown, in Figure 5, the

ocean workflow has four different versions. Three versions refer

to the versions in the “Direct Evolution“ and Ocean Branch

workflow refers to a branch created in the evolution of the

workflow.

Figure 4: Trident Evolution Framework Architecture

5.2.1 Implementation

Figure 5: Versioned Ocean View Workflows in Service

Registry

Trident Data Model

Trident Registry

Evolution Framework

Versioning Model

Local

Storage
Other Local/remote

Versioning System

Trident Workbench

Figure 6: The Workflow Evolution View

In this section we will explain the implementation of the

concepts of our EVF framework within the Trident Workflow

Workbench [7].

Scientists use Trident Workflow Composition and Execution

environments to create, edit and execute workflows. EVF is

integrated into both Trident composition environments and to

the service registry. Once the user is done creating a new

workflow or modifying an existing workflow, he is required to

save it to the service registry. A user can also retrieve an

existing workflow from the registry. These retrieved workflows

can be ones he created or can be download from Web resources

like myexperiment.com. Once the scientist has the workflow, he

will then execute it within Trident workflow execution

environment. All the data products and execution variables will

be tracked and automatically stored within service registry.

Evolution of workflows will be recorded and can be viewed

from the service registry. Once the user goes into the service

registry, he will see all the workflows categorized by the name

of the workflow.

Figure 5 shows the view of Trident Registry, showing the

evolution of an Oceanography workflow. There are two versions

created so far and also research is progressing along a different

direction with "Ocean Branch" workflow. To check the

workflow evolution, user will select the intended workflow and

asks for workflow evolution. Figure 6 shows the timeline view

implemented within EVF. Our framework will display,

1. A time line view of the workflow

2. Meta data for each and every version of the workflow,

containing information on who created, the time

duration it was active and the version

3. For each of the version, user will see the workflow

instances created using it and the data products

consumed and generated within them. User will have

the options of visualizing the data products, stored as

images, generated within them

4. Related contributions associated for each and every

workflow and the direct evolution information

Time-line view (shown in 6) enables navigation, through time,

by moving the time slider back and forward. This view also

enables see all results that a particular workflow version created,

along with the ability to select a result and track back to the

workflow version that created it.

5.3 Architectural Features
The architectural features enabling the workflow evolution for

the management of the knowledge associated with workflow

executions and management are several, and are provided in

more detail below.

Unique Association of Research Artifacts to Workflows:

Once a workflow is executed, it is very important to associate

the relevant data, parameters, configuration information and also

the meta-data capturing information on who performed the

experiment, when and where the output was saved, etc.,. In

addition to these information related to the current instance of

the workflow, we also need to keep track of the lineage of the

workflow itself. These unique associations will not only help to

manage the knowledge associated with the workflow, but also

will help to re-produce the same research at a later time. Within

the EVF framework, we enable these unique associations by

recording this information inside our information model.

Automatic Versioning: EVF helps scientists to version

workflows as and when they edit them. This enables a

researcher to later retrieve a previous workflow for viewing or to

create new branches from the previous workflows to take them

in a new direction. Versioning of the workflow templates inside

EVF is comparable to a typical version control system, but EVF

also has the ability to work with other versioning systems to

support different versions of the data products. EVF provides

clearly defined extension points to add new versioning systems.

Once a data provider, capable of versioning data products, is

registered with the system, EVF will save enough information to

retrieve a given version of a data product. When EVF is

associating data products with workflow executions, it will also

include this versioning information, so that the correct version of

the data product can be retrieved later, in case the scientist is

interested in reproducing the research. Also if an extension is

registered to handle the versioning system, EVF will use that

extension to automatically retrieve the data and to execute the

workflow within Trident. During workflow authoring process,

scientist will keep on changing a workflow and might also save

all the intermediate steps. But at the end he might only execute

the last version of the workflow. Should the scientist opt to

delete the previous versions, EVF gives the control to the user to

select the versions to persist inside the registry or to remove

from the system. This will not only reduce the clutter in the

scientist's workspace, but also optimizes the workflow lineage

information persistence.

Validity of a Workflow: Versioning of workflow brings up

questions about the validity of a workflow. When a new version

of the workflow is created, it is a questionable whether to leave

the previous versions of the workflow to be still executable or

not. Within EVF we leave this decision up to scientist and select

one of the solutions. In our framework each workflow is

assigned a unique ID and a version number VN and a time

interval [Vb, Ve) that represents the time interval during which a

workflow was valid. A new version of workflow ID at time t is

assigned a unique version number VN, and validity interval [Vt,

∞]. If only one version of a workflow is allowed to be active at

any point in time, which is a configuration option, the previous

version VN is assigned a validity interval of [V0, Vt). Validity of

a workflow only restricts whether it can be re-executed or not.

All the information of previous workflows can still be tracked

irrespective of this option.

Navigation through Time: Navigating through time can give a

researcher a unique view on the evolution of their research. A

scientist might see change or improvement in the results of their

experiments over time. They may witness the effects of the

different data sets being used, or may use visual evolution to

determine ownership of a piece of work or to see the

contribution this particular piece of research has from the

previous or related work. With the information model (Figure 2)

we propose in our work, navigation through time becomes easier

because it captures all the information needed for the scientists

to visualize the evolution of their work. Since this information

model associates the workflow instances of a given version of

the workflow, scientists can also see the runtime information of

each and every workflow execution. We believe that providing

this information along a time-line will give users more insight

into their research.

6. Performance Evaluation
The performance evaluation of the versioning model is focused

on evaluating three strategies for versioning. These approaches

have performance and usability tradeoffs that we attempt to

capture. The three strategies to be used during versioning are.

1. No Delta, No Checkpointing: each version of the

workflow is saved as it is to the file system and

differentiated by its version number.

2. With Delta, No Checkpointing: the difference between

the current version and the previous version (delta) of

the workflow is saved in to the file system. If a version

has to be recovered, all the deltas up to that version,

must be applied to the first version of the workflow

3. With Delta, With Checkpointing: the difference

between the current version and the previous version

(delta) of the workflow is saved in to the file system.

But the full workflow is saved after each fixed number

of versions (checkpoints). To recover a given version,

the closest Checkpointed workflow should be

retrieved and the deltas after that point should be

applied to that workflow.

We identify two workflows, arbitrarily called “O” and “M”,

selected for their difference in size of the workflow and on the

difference in bytes between two successive versions of the

workflows; see Table 1. The O workflow use case is used to

analyze the overheads of working objects, which are subjected

to small changes, compared to the size of the object. The M

workflow use case analyses the overheads of working with

objects which will be subjected to larger changes. All the

evaluations are run inside a 2.0GHz dual-core processor, 4GB

memory and on Windows 7 Ultimate 64-bit operating system.

Workflow Size (Bytes) Delta (Bytes)

O 1032 210

M 4087 2564

Table 1: Workflows Used for Evaluations

6.1 File Write
The first experiment evaluates the write time for successive

versions of a given file, for each of the three different versioning

strategies. Figures 7 and 8 show the variation of the time spent

for writing the file against the version number of the file, for O

and M workflows respectively. For both the workflows, "No

delta, No Checkpointing" option performs better, because it

takes constant amount of time to write a file as it is. "With Delta,

No Checkpointing" case is worst, because before writing the

new version of a file, it needs to recover the previous version

and get the difference with that version. For this, the system

needs to recover the previous version by retrieving all the

previous versions. As proven in the graph the time to write a

given version is directly proportional to the version number of

the file. "With Delta, With Checkpointing" case, performs better

than "With Delta, No Checkpointing" but not better than “No

delta, No Checkpointing". For the larger M workflow, with

larger deltas, "No delta, No Checkpointing" option performs at

least 20-30 times faster than the other two options.

6.2 Version Recovery Time
This experiment evaluates the time taken to retrieve a given

version of a file, for each of the three different versioning

strategies. Figure 9 and Figure shows the variation of the time

spent for recovering a version against the version number of the

file, for O and M workflows respectively. For both the

workflows, "No delta, No Checkpointing" options performs

better, because to recover a version, it only needs to retrieve the

file from the file system. "With Delta, No Checkpointing" case

is worst, because to recover a given version, it needs time to

retrieve all the previous versions to re-construct the file. As

proven in the graph the time to retrieve a given version is

directly proportional to the version number of the file. The

compromise case "With Delta, With Checkpointing", performs

better than "With Delta, No Checkpointing" but not better than

“No delta, No Checkpointing". For both the workflows, "No

delta, No Checkpointing" option performs at most 10 times

faster than the other two options.

6.3 Storage Requirements
This experiment evaluates the storage requirements for each of

the three different versioning strategies. Figure 11 and Figure 12

shows the accumulated storage requirement to save all the

versions up to a given version against the version number, for O

and M workflows respectively. As can be seen in both the

graphs, "No delta, No Checkpointing" option takes the most

storage to save a version of a file, and increases linearly with the

increase of versions. For O workflow, the other two options uses

4-5 times less storage (at most) than "No delta, No

Checkpointing" option. But for the M workflow, the storage

saving is 2 times at most.

6.4 Amount of Data Retrieved to Recover a

Version
This experiment evaluates the amount of data to be retrieved to

recover a file version (recovery overhead) for each of the three

different versioning strategies. Figure 13 and 14 visualize the

recovery overhead of all the versions up to a given version

against the version number, for O and M workflows

respectively.

Figure 7: File Write Time - O Workflow

Figure 8: File Write Time - M Workflow

Figure 9: Recovery Time - O Workflow

Figure 10: Recovery Time - M Workflow

Figure 11: Space Usage for a Version - O Workflow

Figure 12: Space Usage for a Version – M Workflow

Figure 13: Amount of Data Retrieved to Recover a Version -

O Workflow

Figure 14: Amount of Data Retrieved to Recover a Version –

M Workflow

Again for both the workflows, "No delta, No Checkpointing"

option performs better, because to recover a version, it only

needs to retrieve only that particular file from the file system.

"With Delta, No Checkpointing" case is worst, because to

recover a given version, it needs retrieve all the previous

versions to re-construct the file. As proven in the graph, using

"With Delta, No Checkpointing" option, the overhead to retrieve

a given version is directly proportional to the version number of

the file. The compromise case "With Delta, With

Checkpointing", performs better than "With Delta, No

Checkpointing" but not better than “No delta, No

Checkpointing". For O workflow, "No delta, No Checkpointing"

option’s overhead is at most 3 times better than the other two

options, whereas for the M workflow it is 15-20 times better.

7. Discussion and Future Work
We evaluate three options for maintaining the different versions

of an object in the system. Though "No delta, No

Checkpointing" options performs poorly with respect to storage

usage (4-5 times for smaller workflow, smaller delta and 2-times

for larger workflow, large delta) it outperforms both other

options with respect to version save time (20-30 times for the

large workflow, large delta and 5 times for smaller workflow,

small delta) and version recovery time (10 times for the smaller

workflow, small delta and (5 times larger workflow, large delta).

So in selecting an option to maintain objects within the system,

one should take following factors into consideration the size of

the data objects, the average changes for data objects between

different versions of the same object, and the response time to

the user and the system.

By employing a strategy to dynamically adjust to the properties

of different objects rather than adhere to a static policy, the

system will perform better. The underlying registry

implementation should be able to support saving new versions

as deltas or as it is. If the deltas are used, recovering a given

version can be achieved with or without checkpointing. Figure 2

captures the artifacts EVF can version in an experiment. Even

though output data is versioned within the EVF framework, it

can be a challenge to visualize them if the relevant software is

not available later. Our implementation enables visualization of

output data products stored as images. The system can be

extended to integrate other visualizations tools within Trident

enabling scientists to visualizations within Trident itself.

We are using the Trident Workflow Workbench in LEAD II,

and expect to use EVF in practice in that context for exploring

reproduceabiltity and experiment recreation. We are integrating

real time data sources into Trident to be used within EVF, using

the versioning control services provided by those services. An

interesting exercise is to reproduce a workflow, retrieving

previous version data inputs from those data sources, and also

the previous versions of workflows within EVF framework to

reproduce a previously run workflow.

8. References
[1] Amazon S3 Web Service. http://aws.amazon.com/s3

[2] Microsoft SQL Server Data Services (SSDS).

www.microsoft.com/sql/dataservices/default.mspx.

[3] A. Adya, W. J. Bolosky, M. Castro, G. Cermak, R.

Chaiken, J. R. Douceur, J. Howell, J. R. Lorch, M.

Theimer, and R. P. Wattenhofer. Farsite: federated,

available, and reliable storage for an incompletely trusted

environment. In Proceedings of the 5th Symposium on

http://aws.amazon.com/s3
http://www.microsoft.com/sql/dataservices/default.mspx

Operating Systems Design and Implementation (OSDI).,

36(SI):1{14, 2002.

[4] I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludascher,

and S. Mock. Kepler: an extensible system for design and

execution of scientific workflows. In Proceedings 16th

International Conference on Scientific and Statistical

Database Management, 2004, pages 423-424, 2004.

[5] P. Andrew, J. Conard, and S. Woodgate. Presenting

Windows Workflow Foundation. 2005.

[6] R. Barga and L. Digiampietri. Automatic generation of

workflow provenance. Lecture Notes in Computer Science,

4145:1, 2006.

[7] R. Barga, J. Jackson, N. Araujo, D. Guo, N. Gautam, and

Y. Simmhan. The Trident Scientific Workflow Workbench.

In IEEE International Conference on eScience, pages 317-

318, 2008.

[8] R. Bose and J. Frew. Lineage retrieval for scientific data

processing: a survey. ACM Computing Surveys (CSUR),

37(1):1-28, 2005.

[9] F. Casati, S. Ceri, B. Pernici, and G. Pozzi. Workflow

evolution. Data & Knowledge Engineering, 24(3):211-238,

1998.

[10] R. Chatterjee, G. Arun, S. Agarwal, B. Speckhard, and R.

Vasudevan. Using applications of data versioning in

database application development. In ICSE '04:

Proceedings of the 26th International Conference on

Software Engineering, pages 315{325, Washington, DC,

USA, 2004. IEEE Computer Society.

[11] D. Churches, G. Gombas, A. Harrison, J. Maassen, C.

Robinson, M. Shields, I. Taylor, and I. Wang.

Programming scientific and distributed workflow with

Triana services. Concurrency and Computation,

18(10):1021, 2006.

[12] E. Deelman, J. Blythe, Y. Gil, C. Kesselman,G. Mehta, S.

Patil, M. Su, K. Vahi, and M. Livny. Pegasus: Mapping

scientific workflows onto the grid. Lecture Notes in

Computer Science, 3165:11-20, 2004.

[13] K. Droegemeier, K. Brewster, M. Xue, D. Weber, D.

Gannon, B. Plale, D. Reed, L. Ramakrishnan, J. Alameda,

R. Wilhelmson, T. Baltzer, B. Domenico, D. Murray, A.

Wlson, R. Clark, S. Yalda, S. Graves, R. Ramachandran, J.

Rushing, E. Joseph, "Service-oriented environments for

dynamically interacting with mesoscale weather",

Computing in Science and Engineering, IEEE Computer

Society Press and American Institute of Physics, 7(6):12-

29, 2005

[14] M. Flouris and A. Bilas. Clotho: Transparent data

versioning at the block I/O level. In Proceedings of the

12th NASA Goddard, 21st IEEE Conference on Mass

Storage Systems and Technologies (MSST 2004),pages

315-328, 2004.

[15] J. Freire, C. Silva, S. Callahan, E. Santos, C. Scheidegger,

and H. Vo. Managing rapidly-evolving scientific

workflows. Lecture Notes in Computer Science, 4145:10,

2006.

[16] J. Frew and R. Bose. Earth system science workbench: A

data management infrastructure for earth science products.

In Proceedings of the 13th International Conference on

Scientific and Statistical Database Management, pages

180-189. IEEE Computer Society, 2001.

[17] C. Goble and D. De Roure. myExperiment: social

networking for workflow-using e-scientists. In Proceedings

of the 2nd workshop on Workflows in support of large-

scale science, page 2. ACM, 2007.

[18] D. Hull, K. Wolstencroft, R. Stevens, C. Goble, M. Pocock,

P. Li, and T. Oinn. Taverna: a tool for building and running

workflows of services. Nucleic acids research, 34(Web

Server issue):W729, 2006.

[19] P. D. In, J. D. Strunk, G. R. Goodson, M. L. Scheinholtz,

C. A. N. Soules, and G. R. Ganger. Self-securing storage:.

In Symposium on Operating Systems Design and

Implementation, pages 165-180. USENIX Association,

2000.

[20] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P.

Eaton, D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon,

C. Wells, et al. Oceanstore: An architecture for global-scale

persistent storage. ACM SIGARCH Computer Architecture

News, 28(5):190-201, 2000.

[21] E. Lee and R. A. Thekkath. Petal: Distributed virtual disks.

In Proceedings of the Seventh International Conference on

Architectural Support for Programming Languages and

Operating Systems, pages 84-92, 1996.

[22] J. P. MacDonald. File System Support for Delta

Compression. Master's thesis, University of California at

Berkeley, 2000.

[23] J. Michalakes, J. Dudhia, D. Gill, J. Klemp, and W.

Skamarock. Design of a next-generation regional weather

research and forecast model. Towards Teracomputing,

pages 117{124, 1998.

[24] C. Pancerella, J. Hewson, W. Koegler, D. Leahy, M. Lee,

L. Rahn, C. Yang, J. Myers, B. Didier, R. McCoy, et al.

Metadata in the collaboratory for multi-scale chemical

science. In Proceedings of the 2003 International

conference on Dublin Core and metadata applications:

supporting communities of discourse and

practice|metadata research & applications, page 13.

Dublin Core Metadata Initiative, 2003.

[25] M. Rosenblum and J. K. Ousterhout. The design and

implementation of a log-structured file system. In

Proceedings of the thirteenth ACM symposium on

Operating systems principles, pages 1-15, New York, NY,

USA, 1991. ACM.

[26] D. Santry, M. Feeley, N. Hutchinson, and A. Veitch.

Elephant: The file system that never forgets. In Workshop

on Hot Topics in Operating Systems, pages 2-7. IEEE

Computer Society, 1999.

[27] Y. Simmhan, B. Plale, and D. Gannon. A survey of data

provenance in e-science. ACM SIGMOD Record, 34(3):36,

2005.

[28] M. Stonebraker. The design of the postgres storage system.

Morgan Kaufmann Publishers. pages 289-300, 1987.

[29] I. T. Foster, J.-S. Vockler, M. Wilde, and Y. Zhao.

Chimera: A virtual data system for representing, querying,

and automating data derivation. In Proceedings of the 14th

International Conference on Scientific and Statistical

Database Management, pages 37-46, Washington, DC,

USA, 2002. IEEE Computer Society.

[30] L. Bavoil, S. P. Callahan, P. J. Crossno, J. Freire, C. E.

Scheidegger, C. T. Silva, H. T. Vo. Vistrails: Enabling

interactive multiple-view visualizations. In IEEE

Visualization, 2005. VIS 05, pages 135-142

