
ROARS: A Scalable Repository
for Data Intensive Scientific Computing

Hoang Bui, Peter Bui, Patrick Flynn, and Douglas Thain
University of Notre Dame

ABSTRACT
As scientific research becomes more data intensive, there
is an increasing need for scalable, reliable, and high perfor-
mance storage systems. Such data repositories must provide
both data archival services and rich metadata, and cleanly
integrate with large scale computing resources. ROARS is
a hybrid approach to distributed storage that provides both
large, robust, scalable storage and efficient rich metadata
queries for scientific applications. In this paper, we demon-
strate that ROARS is capable of importing and export-
ing large quantities of data, migrating data to new storage
nodes, providing robust fault tolerance, and generating ma-
terialized views based on metadata queries. Our experimen-
tal results demonstrate that ROARS’ aggregate throughput
scales with the number of concurrent clients while providing
fault-tolerant data access. ROARS is currently being used
to store 5.1TB of data in our local biometrics repository.

1. INTRODUCTION
Recent advances in digital technologies now make it possi-

ble for an individual or a small group to create and maintain
enormous amounts of data. “Ordinary” researchers in all
branches of science operate cameras, digital detectors, and
computer simulations that can generate new data as fast as
the researcher can pose a hypothesis. This increase in the
production of data allows the individual to carry out com-
plex studies that were previously only possible with a large
staff of lab technicians, computer operators, and system ad-
ministrators. Of course, such problems are not limited to
science. A similar discussion applies to digital libraries, to
paperless business, or to a thinly staffed internet startup
that finds sudden success.

Unfortunately, this huge growth in data and storage comes
with the unwanted burden of managing a large data archive.
As an archive grows, it becomes significantly harder to find
what data items are needed, to migrate the data from one
technology to another, to re-organize as the data and goals
change, and to deal with equipment failures.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DIDC 2010, Chicago, IL
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

The two canonical models for data storage – the filesystem
and the database – are not well suited for supporting these
kinds of applications. Both concepts can be made parallel
and/or distributed for both capacity and performance. The
relational database is well suited for query, sorting, and re-
ducing many discrete data items, but requires a high degree
of advance schema design and system administration. A
database can store large binary objects, but it is not highly
optimized for this task [14]. On the other hand, the filesys-
tem has a much lower barrier to entry, and is well suited for
simply depositing large binary objects as they are created.
However, as a filesystem becomes larger, querying, sorting,
and searching can only be done efficiently if they match the
chosen hierarchical structure. As an enterprise grows, no sin-
gle hierarchy is likely to meet all needs. So while end users
prefer working with filesystems, current storage systems lack
the query capabilities necessary for efficient operation.

To address this mismatch, we have created ROARS (Rich
Object ARchival System), an online data archive that com-
bines some features of both the filesystem and database
models, while eliminating some of the dangerous flexibil-
ity of each. Although there exist a number of designs for
scalable storage [9, 7, 8, 25, 2, 3, 19] ROARS occupies an
unexplored design point that combines several unusual fea-
tures that together provide a powerful, scalable, manageable
scientific data storage system:

• Rich searchable metadata. Each data object is
associated with a user metadata record of arbitrary
(name,type,value) tuples, allowing the system to pro-
vide some search optimization without demanding elab-
orate schema design.

• Discrete object storage. Each data object is stored
as a single, discrete object on local storage, replicated
multiple times for safety and performance. This allows
for a compact statement of locality needed for efficient
batch computing.

• Materialized filesystem views. Rather than im-
pose a single filesystem hierarchy from the beginning,
fast queries may be used to generate materialized views
that the user sees as a normal filesystem. In this way,
multiple users may organize the same data as they
see fit, and make temporal snapshots to ensure repro-
ducibility of results.

• Transparent, incremental management. ROARS
does not need to be taken offline even briefly in order
to perform an integrity check, add or decommission

servers, or to migrate to new resources. All of these
tasks can be performed incrementally while the sys-
tem is running, and even be paused, rescheduled, or
restarted without harm.

• Failure independence. Each object storage node
in the system can fail or even be destroyed indepen-
dently without affecting the behavior or performance
of the other nodes. The metadata server is more crit-
ical, but it functions only as an (important) cache. If
completely lost, the metadata can be reconstructed by
a parallel scan of the object storage.

In our previous work on BXGrid [4], we created a disci-
pline specific data archive tightly integrated with a web por-
tal for biometrics research. ROARS is our “second version”
of this concept, which has been decoupled from biometrics,
generalized to an abstract data model, and expanded in the
areas of execution, management, and fault tolerance.

This paper is organized as follows. In section 2, we present
the abstract data model and user interface to ROARS. In
section 3, we describe our implementation of ROARS using
a relational database and storage cluster. In section 4, an
operational and performance evaluation of ROARS is pre-
sented. In section 5, we compare ROARS to other scalable
storage systems. We conclude with future issues to explore.

2. SYSTEM DESIGN
ROARS is designed to store millions to billions of indi-

vidual objects, each typically measured in megabytes or gi-
gabytes. Each object contains both binary data and struc-
tured metadata that describes the binary data. Because
ROARS is designed for the preservation of scientific data,
data objects are write-once, read-many (WORM), but the
associated metadata can be updated by logging. The sys-
tem can be accessed with an SQL-like interface and also by
a fileystem-like interface.

2.1 Data Model
A ROARS system stores a number of named collections.

Each collection consists of a number of unordered objects.
Each object consists of the two following components:

1. Binary Data: Each data object corresponds to a sin-
gle discrete binary file that is stored on a filesystem.
This object is usually an opaque file such as a TIFF or
PDF, meaning that the system does not extract any in-
formation from the file other than the basic filesystem
attributes.

2. Structured Metadata: Associated with each data
object is a set of metadata items that describes or an-
notates the raw data object with domain-specific prop-
erties and values. This information is stored in plain
text as rows of (NAME, TYPE, VALUE, OWNER, TIME) tuples
as shown in the example metadata record here:

NAME TYPE VALUE OWNER TIME

recordingid string nd3R22829 pflynn 1257373461

subjectid string nd1S04388 pflynn 1257373461

state string problem dthain 1254049876

problemtype integer 34 dthain 1254049876

state string fixed hbui 1254050851

In the example metadata record above, each tuple con-
tains fields for NAME, TYPE, VALUE, which define the name of
the object property, the type, and its value. Because ob-
jects may have varying number and types of attributes and
the user never specifies an exact specification of what ob-
jects should contain, this data model is schema-free. How-
ever, since scientific data tends to be semi-structured, the
data model allows for the storage system to transparently
group similar items into collections for efficiency and orga-
nizational purposes. Due to this regularity in the name and
types of fields, and the ability to automatically group objects
into collections, we consider the data model to be schema-
implicit. The user never formally expresses the schema of
the data objects, but an implicit one can be generated from
the metadata records due to the semi-structured nature of
the scientific data.

In addition to the NAME, TYPE, and VALUE fields, each meta-
data entry also contains a field for OWNER and TIME. This is
to provide provenance information and transactional history
of the metadata. Rather than overwriting metadata entries
when a field is updated, new values are simply appended
to the end of the record. In the example above, the state

value is initially set to problem by one user and then later
to fixed by another. By doing so, the latest value for a
particular field will always be the last entry found in the
record. This transactional metadata log is critical to scien-
tific researchers who often need to keep track of not only
the data, but how it is updated and transformed over time.
These additional fields enable the users to track who made
the updates, when the updates occurred, and what the new
values were.

This data model fits in with the write-once-read-many na-
ture of most scientific data. The discrete data files are rarely
if ever updated and often contain data to be processed by
highly optimized domain-specific applications. The meta-
data, however, may change or evolve over time and is used
to organize and query the data sets.

2.2 User Interface
Users may interact with the system using either a command-

line tool or a filesystem interface. The command line inter-
face supports the following operations:

IMPORT <coll> FROM <dir>

QUERY <coll> WHERE <expr>

EXPORT <coll> WHERE <expr> INTO <dir> [AS <pattern>]

VIEW <coll> WHERE <expr> AS <pattern>

DELETE <coll> WHERE <expr>

The IMPORT operation loads a local directory containing
objects and metadata into a specific collection in the reposi-
tory. QUERY retrieves the metadata for each object matching
the given expression. EXPORT retrieves both the data and
metadata for each object matching the given expression,
which are stored on the local disk as pairs of files. VIEW

creates a materialized view on the local disk of all objects
matching the given expression, using the specific pattern for
the path name. DELETE removes data objects and the related
metadata from the repository, and is usually invoked only
after a failed IMPORT. Given constraints by users, ROARS
finds all associated data objects, deletes them and removes
the metadata entries.

Applications may also view ROARS as a read-only filesys-
tem. Individual objects and their corresponding metadata

1.tiff 1.tiff 1.tiff 1.tiff 1.tiff 1.tiff 1.tiff 1.tiff 1.tiff 1.tiff 1.tiff 1.tiff 1.tiff 1.tiff1.tiff

ROARS

ParrotMaterialized
View

Faces

Female

Faces Images in Materialized View

Asian Hispanic

export view

Hispanic

Male

White Asian White

Figure 1: Example Materialized View

can be accessed via their unique file identifiers using absolute
paths:

/roars/mdsname/fileid/3417

/roars/mdsname/fileid/3417.meta

However, most users find it effective to access files using
materialized views. Using the VIEW command above, a
subset of the data repository can be queried, depositing a
tree of named links onto the local file system. Each link is
named according to the metadata of the containing object,
and points to the absolute path of an item in the reposi-
tory. For example, Figure 1 shows a view generated by the
following command:

VIEW faces WHERE true AS "gender/race/fileid.type"

Because the materialized view is stored in the normal lo-
cal filesystem, it can be kept indefinitely, shared with other
users, sent along with batch jobs, or packed up into an
archive file and emailed to other users. The creating user
manages their own disk space and is this responsible for
cleanup at the appropriate time. The ability to generate
materialized views that provide third party applications an
robust and scalable filesystem interface to the data objects is
a distinguishing feature of ROARS. Rather than force users
to implant their domain-specific tools into a database exe-
cution engine, or wrap it in a distributed programming ab-
straction, ROARS enables scientific researchers to continue
using their familiar work flow and applications.

3. IMPLEMENTATION
Figure 2 shows the basic architecture of ROARS. To sup-

port the discrete object data model and the data opera-
tions previously outlined, ROARS utilizes a hybrid approach
to construct scientific data repositories. Multiple Storage
Servers are used for storing both the data and metadata in
archival format. A Metadata Server (MDS) indexes all of
the metadata on the storage server, along with the location
of each replicated object. The MDS serves as the primary
name and entry point to an instance of ROARS.

The decision to employ both a database and a cluster of
storage servers comes from the observation that while one
type of system meets the requirements of one of the com-
ponents of a scientific data repository, it is not adequate at
the other type. For instance, while it is possible to record

Query
Tool

Metadata
Server

Parrot
Appl

Group BGroup A
Storage Servers

Data
Access

Metadata
Lookup

Figure 2: ROARS Architecture

both the metadata and raw data in a database, the perfor-
mance would generally be poor and difficult to scale, espe-
cially to the level required for large scale distributed exper-
iments nor would it fit in with the work flow normally used
by research scientists. Moreover, the distinct advantage of
using a database, which is its transactional nature, is hardly
utilized in a scientific repository because the data is mostly
write-once-read-many, and thus rarely needs atomic updat-
ing. From our experience, during the lifetime of the repos-
itory, metadata may changed once or twice, while the raw
data stays untouched. Besides the scalability disadvantages,
keeping raw data in a database poses bigger challenges on
everyday maintenance and failure recovery. So, although, a
database would provide good metadata querying capabili-
ties, it would not be able to satisfy the requirement for large
scale data storage.

On the other hand, a distributed storage system, even
with a clever file naming scheme, is also not adequate for
scientific repositories. Such distributed storage systems pro-
vide scalable high performance I/O, but provide limited sup-
port for rich metadata operations, which generally devolve
into full dataset scans or searches using fragile and ad hoc
scripts. Although there are possible tricks and techniques
for improving metadata availability in the filesystem, these
all fall short of the efficiency required for a scientific repos-
itory. For instance, while it is possible to encode particular
attributes in the file name, it is still inflexible and ineffi-
cient, particularly for data that belong to many different
categories. Fast access to metadata remains nearly impos-
sible, because parsing thousands or millions filenames is the
same if not worse than writing a cumbersome script to parse
collections of metadata text files.

The hybrid design of ROARS takes the best aspects from
both databases and distributed filesystems and combines
them to provide rich metadata capabilities and robust scal-
able storage. To meet the storage requirement, ROARS
replicates the data objects along with their associated meta-
data across multiple storage nodes. Like in traditional dis-
tributed systems, this use of data replications allows for scal-
able streaming read access and fault tolerance. In order to
provide fast metadata query operations, the metadata in-
formation is persistently cached upon importing the data
objects into the repository in a traditional database server.
Queries and operations on the data objects access this cache
for fast and efficient storage operations and metadata oper-
ations.

Overall, this storage organization is similar to the one used
in the Google Fileystem [7], and Hadoop [8], where simple

recording
state
date
eye
subject

string
string

string
string
string

nd1R3204
validated
05/01/08
R
3330

Files Replicas

1289
1290
1291
1292

4051
4052
4053

state
creating
ok
suspect
deleting

host path
fs03
fs04
fs05
fs06

fileid

enrolled
enrolled
validated
unvalidated

checksum
b92891...
013987...
7f3f2d1...
5b9617...790K

801K

size replicaid
4050

fileid
1289
1290
1290
1291

800K
325K

L05/01/08
05/01/08
05/01/08
05/01/08 R

05/01/08 S330
S330
S330
S331
S331

null

R
null

null
null

null

smile

neutral

/2/5/1290.4052
/3/5/1291.4053

/0/5/1289.4050
/1/5/1290.4051

validated

1290.4051.jpg

1290.4051.meta

Storage Servers

state date eye emotion subject

1289
1290
1291
1292

1288
nd1R3205
nd1R3206
nd1R3207
nd1R3208

nd1R3204
fileid recordingid
Metadata

Figure 3: ROARS Metadata Structure

Data Nodes store raw data and a single Name Node main-
tains the metadata. Our architecture differs in a few impor-
tant ways however. First, rather than striping the data as
blocks across multiple Storage Nodes as done in Hadoop and
the Google Filesystem, ROARS store discrete whole data
files on the storage nodes. While this prevents us from be-
ing able to support extremely large file sizes, this is not an
important feature since most scientific data collections tend
to be many small files, rather than a few extremely large
ones. Moreover, the use of whole data files greatly simpli-
fies recovery and enables failure independence. Likewise,
the use of a database server as the metadata cache enables
us to provide sophisticated and efficient metadata queries.
While Google Filesystem and Hadoop are restricted to basic
filesystem type metadata, ROARS can handle queries that
work on constraints on domain-specific metadata informa-
tion, allowing researchers to search and organize their data
in terms familiar to their research focus.

3.1 Database Structure
In ROARS, the metadata is stored in three main database

tables: a metadata table, a file table and a replica table. The
metadata table obviously stores the domain-specific scien-
tific metadata. Each entry in this table can have one or more
pointers to a fileid in the file table. In the case where there
is only metadata and no corresponding raw data, the entry
would have a NULL fileid. The file table plays the same
role an inode table in a traditional Unix file system does
for ROARS and holds the essential information about raw
data files. Entries in the this table represent ROARS inodes,
and therefore have the following important file information:
fileid, size, checksum, and create time. ROARS utilizes
this information to not only keep track of files but also to
emulate traditional UNIX system calls such as stat. For
any given fileid, there can be multiple replica entries in
the replica table. This third table keeps track of where
the actual raw data files are stored. The structure of the
replica table is very straightforward and includes the follow-
ing fields: fileid, host, path, state, and lastcheck.

Figure 3 gives an example of the relationship between the
metadata, file, and replica tables. In this configuration, each
file is given an unique fileid in file table. In the replica ta-

ble, the fileid may occur multiple times, with each row
representing a separate replica location in the storage clus-
ter. Accessing a file then involves looking up the fileid,
finding the set of associated replica locations, and then se-
lecting a storage node.

As can be seen, this database organization provides both
the ability to query files based on domain specific metadata,
and the ability to provide scalable data distribution and
fault-tolerant operation through the use of replicas. Some of
the additional fields such as lastcheck, state, and checksum

are used by high level data access operations provided by
ROARS to maintain the integrity of the system and will be
discussed in later subsections.

3.2 Storage Nodes
ROARS utilizes an array of Storage Nodes running Chirp

[21] for replicating data. These Storage Nodes are usually
conventional machines with large local single disks organized
in a compute cluster. These Nodes are grouped together
based on locality into different Storage Groups, and given a
groupid. During an IMPORT, ROARS makes a conscious de-
cision to spread out replicas so that each Storage Group has
a least one replica, thus providing a static form of load bal-
ancing. By convention, if a data object was named X.jpg,
then the associated metadata file would be named X.meta

and both of these files are replicated across the Storage
Nodes in each of the Storage Groups.

By replicating the raw data across the network, ROARS
provides distributed applications scalable, high throughput
data access. Moreover, because each Storage Group has
at least one copy of the data file, distributed applications
can easily take advantage of data locality with ROARS. To
facilitate determining where a certain data object resides,
ROARS includes a LOCATE command that will find the clos-
est copy of the data for a requesting application. If the
application is running on the same Storage Node, then the
data is already on the local node, and so no data transfer is
needed.

3.3 Robustness
Due to the use of data object replication, ROARS is sta-

ble and has support for recovery mechanisms and fail-over.

By default, data is replicated across the Storage Nodes at
least three times. During a read operation, if a replica is not
reachable due to server outage or hardware failure, ROARS
will randomly try another available replica after a user spec-
ified timeout (normally 30 seconds). As mentioned earlier,
Storage Nodes are organized into groups based on their lo-
cality. When data is populated into the data repository,
ROARS intelligently places the data to ensure that there
is a replica in each server group. By spreading replicas to
multiple groups, a systematic failure of a Storage group only
has a minimal effect on ROARS operation and performance.
Similar to read operations, write operations performed dur-
ing IMPORT will randomly choose a server within a server
group to write data. If the server is not responsive, another
is chosen until the write is successful.

ROARS also ensures integrity of the data repository by
tracking and comparing checksums of replicas. As a data
file is ingested into ROARS, its checksum is calculated and
recorded as a part of the data object’s metadata. Read/write
requests can internally check to make sure the replica’s check-
sum matches the original data file. However, frequent check-
sum calls can reduce system performance, and so this in-
tegrity check is only performed during special data integrity
management operations such as AUDIT. This command will
scan the metadata database and perform checksums on the
data objects and ensure the current checksums match the
one recorded in the database. In the same process, the
AUDIT command will also check the status of the Storage
Nodes and perform any maintenance as necessary. Because
of this ROARS gives integrity checking a broader meaning
since it maintains integrity of the system as a whole, not
simply single replicas.

ROARS’ robust design also enables transparent and incre-
mental management. Whenever a Storage Node needs to be
taken offline or decommissioned, invoking REMOVE will delete
all entries associated with that node from the replica table
and update the metadata database in a transactional man-
ner. To add new Storage Nodes, an ADD_NODE followed by
MIGRATE will spawn the creation of replicas on the new Stor-
age Nodes. ROARS takes advantage of the atomic trans-
actions of the database server to manage these operations.
Because of this use of the database as a transaction manager,
these operations can be performed transparently and incre-
mentally. For instance, an AUDIT can be schedule to run for
only a few minutes at a time or during off peak hours. Even
if it does not complete, due to the use of the database as a
transactional log, it can continue where it left off the next
time it is run. The same goes for operations such as MIGRATE
or REMOVE. These commands can be paused, rescheduled, and
restarted with out affecting the integrity of the system and
without having to shutdown the whole repository.

This robustness further extends to the ability to provide
failure independence. Since the data is stored as complete
data files rather than striped across multiple Storage Nodes,
the integrity of the data files is never effected by a sudden
lost of data servers. Additionally, failure of one server does
not affect the performance or behavior of the other Storage
Nodes. Because the metadata is stored along side the data
file replicas, ROARS is also capable of recovering from the
lost of the Database Node which only serves as a persis-
tent metadata cache. To perform this recovery, a parallel
scan can be performed on the Storage Nodes to reconstruct
the metadata cache. This is in contrast to systems such as

Hadoop and Google Filesystem which take special care to
replicate all of the state of the Name Node. In the case of a
lost of the Name Node in this system, the layout and orga-
nization of the data can be completely lost since the data is
striped across multiple servers. ROARS avoids this problem
by storing complete discrete data files, and maintaining the
metadata log next to these replicas on the Storage Nodes.
This enables ROARS to robustly provide failure indepen-
dence and a simple means of recovery.

4. EVALUATION
To evaluate the performance and operational characteris-

tics of ROARS, we deployed a traditional network filesystem,
Hadoop, and ROARS on a testbed cluster consisting of 32
data nodes and 1 separate head node. Each of these storage
nodes is a commodity dual-core Intel 2.4 GHz machine, with
4GB of RAM and 750GB of disk, all connected via a single
Gigabit Ethernet switch.

The traditional network filesystem was a single Chirp file
server on one of the data nodes. For Hadoop, we configured
the Hadoop Distributed Filesystem (HDFS) to use the 32
storage nodes as the HDFS Datanodes and the separate head
node as the HDFS Namenode. We kept the usual Hadoop
defaults such as employing a 64 MB block size for HDFS.
Our ROARS configuration consisted of a dedicated meta-
data server running MySQL on the head server and 32 Chirp
servers on the same data nodes as the Hadoop cluster. To
provide our test software access to these storage systems, we
utilized Parrot as a filesystem adaptor.

The following experimental results test the performance
of ROARS and demonstrate its capabilities while perform-
ing a variety of storage system activities such as import-
ing data, exporting materialized views, and migrating repli-
cas. These experiments also include micro-benchmarks of
traditional filesystem operations to determine the latency
of common system calls, and concurrent access benchmarks
that demonstrate how well the system scales. For these lat-
ter performance tests, we compare ROARS’s performance
to that of the traditional network server and Hadoop, which
is an often cited alternative to distributed data archiving.
At the end, we include operational results that demonstrate
the data management capabilities of ROARS.

4.1 Data Import
Before performing any data access experiments, we first

tested the performance of importing large datasets into both
Hadoop and ROARS. For this data import experiment, we
divided our test into several sets of files. Each set consists
of number of fixed size files, ranging from 1KB to 1GB. To
perform the experiment, we imported the data from a local
disk to the distributed systems. In the case of Hadoop this
simply involved copy the data from the local machine to
HDFS. For ROARS, we used the IMPORT operation.

Figure 4 shows the data import performance for Hadoop
and ROARS for several sets of data. The graph shows the
throughput as the file sizes increase. For the small file
dataset, ROARS data mirroring outperforms HDFS strip-
ing, while for the larger file dataset, Hadoop is faster than
ROARS. In either case, both ROARS and Hadoop import
larger files faster than they do smaller files.

The differences in performance between ROARS and Hadoop
are due to the way importing and storing replicas works in
both systems. In the case of Hadoop, a replica creation in-

 0
 5

 10
 15
 20
 25
 30
 35

1KB
8KB

64KB
512KB

1MB
8MB

64MB
128MB

256MB
512MB

1GB

Th
ro

ug
hp

ut
(M

B)

File size

ROARS mirroring
HDFS striping

Figure 4: Import Performance.

 0.001
 0.01

 0.1
 1

 10
 100

 1000
 10000

 100000
 1e+06

 10 100 1000

Ru
n-

Ti
m

e
(S

ec
on

ds
)

Number of records (x1000)

Grep (HDFS)
MapReduce

MYSQL
MYSQL(with index)

Figure 5: Query Performance.

volves a complex set of transactions that setup a dataflow
pipeline between the replication nodes of a single block.
This overhead is probably the reason why Hadoop is slightly
slower for smaller files. For larger files, however, this data
pipeline enables higher overall system bandwidth usage and
thus leads to better performance than ROARS which does
not perform any data pipelining. Rather, it merely copies
the data file to each of the replicas in sequential order. This
import and replica creation overhead also explains why large
file import is faster than small file importation. In ROARS,
each imported file needs 9 database transactions which can
be costly when importing small files, where the time spent
transferring data is overwhelmed by database transaction
execution time. With the larger files, there is less time lost
to setting up the connections and transactions, and more
time spent on transferring the data to the Storage Nodes.

4.2 Metadata Query
In this benchmark, we studied the cost of performing a

metadata query. As previously noted, one of the advantages
of ROARS over distributed systems such as Hadoop is that
it provides a means of quickly searching and manipulating
the metadata in the repository. For this experiment, we
created multiple metadata databases of increasing size and
performed a query that looks for objects of a particular type.

As a baseline reference, we performed a custom grep of the
database records on a single node accessing HDFS, which is
normally what happens in rudimentary scientific data collec-
tions. For Hadoop, we stored all the metadata in a single file,
and queried the metadata by executing the custom script us-
ing MapReduce [5]. For ROARS, we queried the metadata

 0

 2

 4

 6

 8

 10

stat open read close

La
te

nc
y

(M
illi

se
co

nd
s)

Micro-Operations

Traditional
HDFS

ROARS (Cached)
ROARS (Uncached)

Figure 6: Microbenchmark.

using QUERY which internally uses the MySQL execution en-
gine. We did this with indexing on and off to examine its
effect on performance.

Figure 5 clearly shows that ROARS takes full advantage of
the database query capabilities properly and is much faster
than either MapReduce or standard grepping. Evidently,
as the metadata database increases in size, the grep per-
formance degrades quickly. The same is true for the QUERY

operation. Hadoop, however, mostly retains a steady run-
ning time, regardless of the size of the database. This is
because the MapReduce version was able to take advan-
tage of multiple compute nodes and thus scale up its per-
formance. Unfortunately, due to the overhead incurred in
setting up the computation and organizing the MapReduce
execution, the Hadoop query had a high startup cost and
thus was slower than the MySQL. Futhermore, the stan-
dard grep and MySQL queries were performed on a single
node, and thus did not benefit from scaling. That said, the
ROARS query was still faster than Hadoop, even when the
database reached 2,699,488 data objects.

4.3 Microbenchmark
As mentioned earlier, ROARS does not directly support

traditional system calls such as stat, open, read, and close.
Rather, ROARS provides these operations to external ap-
plications through a Parrot ROARS service which emulates
these system calls. Since Hadoop also does not provide a
native filesystem interface, we also implemented a Parrot
HDFS service. To test the latency of these common filesys-
tem functions, we performed a series of stats, opens, reads,
and closes on a single file on the traditional file server,
HDFS, and ROARS. For ROARS we provide the results for
a version with SQL query caching and one without this small
optimization.

Figure 6 shows the latency of the micro-operations on a
traditional network file server, HDFS, and ROARS. As can
be seen, ROARS provides comparable latency to the tradi-
tional network server, and in the case of stat, open, and
read, lower latency than HDFS. Since all file access went
through the Parrot storage adapter, there was some over-
head for each system call. However, since all of the storage
systems were accessed though the same Parrot adapter, this
additional overhead is same for all of the systems and thus
does not affect the relative latencies.

These results show that while using a SQL database as a
persistent metadata cache does incur an overhead cost that
increases the latency of these filesystem micro-operations,

 0
 100
 200
 300
 400
 500
 600
 700
 800

 5 10 15 20 25 30

Ag
gr

eg
at

e
Th

ro
ug

hp
ut

 (M
B/

s)

Concurrent Clients

Traditional
HDFS

ROARS

(a) Concurrent Access Performance (10K x
320KB)

 0
 200
 400
 600
 800

 1000
 1200
 1400

 5 10 15 20 25 30

Ag
gr

eg
at

e
Th

ro
ug

hp
ut

 (M
B/

s)

Concurrent Clients

Traditional
HDFS

ROARS

(b) Concurrent Access Performance (1K x 5MB)

Figure 7: Concurrent Access.

the latencies provided by the ROARS system remain com-
parable to HDFS. Moreover, this additional overhead can be
slightly mitigated by caching the SQL queries on the client
side as shown in the graph. With this small optimization,
operations such as stat and open are significantly faster
with ROARS than with HDFS. Even without this caching,
though, ROARS still provides lower latency than HDFS.

4.4 Concurrent Access
To determine the scalability of ROARS in comparison to

a traditional file server and HDFS, we exported two different
datasets to each of the systems and performed a test that
read all of the data in each set. In the case of ROARS, we
used a materialized view with symbolic links to take advan-
tage of the data replication features of the system, while for
the traditional filesystem and HDFS, we exported the data
directory to each of those systems. We ran our test program
using Condor [22] with 1 - 32 concurrent readers.

Figure 7 shows the performance results of all three systems
for both datasets. In Figure 7(a), the clients read 10,000
320KB files, while in Figure 7(b) 1,000 5MB files were read.
In both graphs, the overall aggregate throughput for both
HDFS and ROARS increases with an increasing number of
concurrent clients, while the traditional file server levels off
after around 8 clients. This is because the single file server is
limited to a maximum upload rate of about 120MB/s, which
it reaches after 8 concurrent readers. ROARS and HDFS,
however, use replicas to enable reading from multiple ma-
chines, and thus scale with the number of readers. As with
the case of importing data, these read tests also show that
accessing larger files is much more efficient in both ROARS
and HDFS than working on smaller files.

While both ROARS and HDFS achieve improved aggre-
gate performance over the traditional file server, ROARS
outperforms HDFS by a factor of 2. In the case of the small
files, ROARS was able to achieve an aggregate throughput
of 526.66 MB/s, while HDFS only reached 245.23 MB/s. For
the larger test, ROARS hit 1030.94 MBS/s and HDFS man-
aged 581.88 MB/s. There are a couple possible reasons for
this difference. First, ROARS has less overhead in setting
up the data transfers than HDFS as indicated in the micro-
operations benchmarks. Such overhead limits the number
of concurrent data transfers and thus aggregate throughput.

Iris Face Iris Face
Still Still Video Video

Method (300KB) (1MB) (5MB) (50MB)
Local 10 18 106 187

Remote x2 80 45 150 134
Remote x4 23 26 57 79
Remote x8 22 16 58 70

Remote x16 12 12 18 33
Remote x32 12 17 16 17

Figure 8: Transcoding in Active Storage

Another cause for the performance difference is the behav-
ior of the Storage Nodes. In HDFS, each block is check-
summed and there is some additional overhead to maintain
data integrity, while in ROARS, data integrity is only en-
forced during high level operations such as IMPORT, MIGRATE,
and AUDIT. Since the Storage Nodes in ROARS are simple
network file servers, no checksumming is performed during
a read operation, while in HDFS data integrity is enforced
throughout, even during reads.

4.5 Active Storage
ROARS is also capable of executing programs internally,

co-locating the computation with the data that it requires.
This technique is known as active storage [12]. In ROARS,
an active storage job is dispatch to a specific file server con-
taining the input files, where it is run in an identity box [20]
to prevent it from harming the archive.

Active storage is frequently used in ROARS to provide
transcoding from one data format to another. For example,
a large MPEG format animation might be converted down
to a 10-frame low resolution GIF animation to use as a pre-
view image on a web site. A given web page might show tens
or hundreds of thumbnails that must be transcoded and dis-
played simultaneously. With active storage, we can harness
the parallelism of the cluster to deliver the result faster.

Figure 8 shows the performance of transcoding various
kinds of images using the active storage facilites of ROARS.
Each line shows the turnaround time (in seconds) to con-
vert 50 images of the given type. The ‘Local’ line shows the
time to complete the conversions sequentially using ROARS

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

4KB
64K

256KB
1MB

16MB
64MB

256MB
512MB

1GB
2GB

Ti
m

e
el

ap
se

(s
)

File size

ROARS
HDFS

Figure 9: Cost of Calculating Checksum.

as an ordinary file system. The ‘Remote’ lines show the
turnaround time using the indicated number of active stor-
age servers. As can be seen the active storage facility does
not help when applied to small still images, but offers a
significant speedup when applied to large videos with signif-
icant processing cost.

4.6 Integrity Check & Recovery
In ROARS, the AUDIT command is used to perform an

integrity check. As we have mentioned, the file table keeps
records of a data file’s size, checksum, and the last checked
date. AUDIT uses this information to detect suspect replicas
and replace them. At the lowest level, AUDIT checks the
size of the replicas to make sure it is the same as the file
table entries indicate. This type of check is not expensive
to perform, but it is also not reliable. A replica could have
a number of bytes modified, but remains the same size. A
better way to check a replica’s integrity is to compute the
checksum of the replica, and compare it to the value in file
table. This is expensive because the process will need to
read in the whole replica to compute the checksum.

Figure 9 shows the cost of computing checksums in both
ROARS and HDFS. As file size increases, the time required
to perform a checksum also increases for both systems. How-
ever, when the file size is bigger than a HDFS block size
(64MB), ROARS begins to outperform HDFS because the
latter incurs additional overhead in selecting a new block
and setting up a new transaction. Moreover, ROARS lets
Storage Nodes perform checksum remotely where the data
file is stored while for HDFS this data must be streamed
locally before an operation can be performed.

When a replica is deemed to be suspect, ROARS will
spawn a new replica and delete the suspect copy. ROARS
does this by making a copy of a good replica. There are
two ways to do this. The first way is to read the good re-
lica to a local machine and then copy it to a Storage Node
(first party put). Another way is to tell the Storage Node
where the good copy is located and then perform the trans-
fer on the user’s behalf (third party put). The latter would
requires 2 extra file server operations on the target Storage
Nodes.

4.7 Dynamic Data Migration
ROARS is highly flexible data management system where

users can transparently and incrementally add and remove
Storages Nodes without shutting down a running system.
The system provides operations to add new Storage Nodes
(ADD_NODE), migrate data to new Storage Nodes (MIGRATE),

and remove data from old unreliable Nodes (REMOVE_NODE).
To demonstrate the fault tolerance and fail over features of
ROARS, we set up a migration experiment as follows. We
added 16 new Storage Nodes to our current system, and we
started a MIGRATE process to spawn new replicas. Starting
with 30 active Storage Nodes, we intentionally turned off
a number of Storage Nodes during MIGRATE process. After
some time, we turn some Storage Nodes back on, leaving the
others inactive.

By dropping Storage Nodes from the system, we wanted
to ensure that ROARS still could be functional even when
hardware failure occurs. Figure 10 demonstrates that ROARS
remained operational during the MIGRATE process. As ex-
pected, the performance throughput takes a dip as number
of active Storage Nodes decreases. The decrease in perfor-
mance is because when ROARS contacts an inactive Storage
Node, it would fail to obtain the necessary replica for copy-
ing. Within a global timeout, ROARS will retry to connect
to the same Storage Node and then move on to the next
available Node. As Nodes remain inactive, the ROARS con-
tinues to endure more and more timeouts. That leads to the
decrease of system throughput.

Although, throughput performance decreases slightly when
there are only two inactive Storage Nodes, throughput takes
a more significant hit when there is a larger number of in-
active Storage Nodes. There are ways to reduce this nega-
tive effect on performance. First, ROARS can dynamically
shorten the global timeout, effectively cutting down retry
time. Or better yet, ROARS can detect inactive Storage
Nodes after a number of failed attempts, and blacklist them,
thus avoiding picking replicas from inactive Nodes in the fu-
ture.

5. RELATED WORK
Our goal was to construct a scientific data repository that

required both scalable fault-tolerant data storage, and effi-
cient querying of the rich domain-specific metadata. Unfor-
tunately, traditional filesystems and databases fail to meet
both of these requirements. While most distributed filesys-
tems provide robust scalable data archiving, they fail to
adequately provide for efficient rich metadata operations.
In contrast, database systems provide efficient querying ca-
pabilities, but fail to match the work flow of scientific re-
searchers.

5.1 Filesystems
In order to facilitate sharing of the scientific data, scien-

tific researchers usually employ various network filesystems
such as NFS [13] or AFS [9] to provide data distribution
and concurrent access. To get scalable and fault tolerant
data storage, scientists may look into distributed storage
systems such as Ceph [25] or Hadoop [8]. Most of the data
in these filesystems are organized into sets of directories and
files along with associated metadata. Since some of these
filesystems such as Ceph and Hadoop perform automatic
data replication, they not only provide fault-tolerant data
access but also the ability to scale the system. Therefore, in
regards to the need for a scalable, fault-tolerant data stor-
age, current distributed storage systems adequately meet
this requirement.

Where filesystems still fail, however, is in providing an
efficient means of performing rich metadata queries. Since
filesystems do not provide a direct means to perform these

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

 0 5 10 15 20
 0

 20

 40

 60

 80

 100

Da
ta

 T
ra

ns
fe

rre
d

(G
B)

O
nl

in
e

St
or

ag
e

No
de

s
(#

)
O

ve
ra

ll T
hr

ou
gh

pu
t (

M
B/

s)

Elapsed Time (hours)

 Switch-off
10 Storage Nodes

 Switch-on
8 Storage Nodes

GBs Transfered
Active Servers

Throughput

Figure 10: Dynamic Data Migration

metadata operations, export processes usually involve a com-
plex set of ad hoc scripts which tend to be error prone, in-
flexible, and unreliable. More importantly, these manual
searches through the data repository are also time consum-
ing since all of the metadata in the repository must be an-
alyzed for each export. Although some distributed systems
such as Hadoop provide programming tools such as MapRe-
duce [5] to facilitate searching through large datasets in a
reliable and scalable manner, these full repository searches
are still costly and time consuming since each experimental
run will have to scan the repository and extract the partic-
ular data files required by the user. Moreover, even with
the presence of these programming tools it is still not pos-
sible to dynamically organize and group subsets of the data
repository based on the metadata in a persistent manner,
making it difficult to export reusable snapshots of particu-
lar datasets.

5.2 Databases
The other common approach to managing scientific data

is to go the route of projects such as the Sloan Digital Sky
Survey [18]. That is, rather than opt for a “flat file” data
access pattern used in filesystems, the scientific data is col-
lected and organized directly in a large distributed database
such as MonetDB [10] or Vertica [23]. Besides providing effi-
cient query capabilities, such systems also provide advanced
data analysis tools to examine and probe the data. How-
ever, these systems remain undesirable to many scientific
researchers.

The first problem with database systems is that in order to
use them the data must be organized in a highly structured
explicit schema. From our experience, it is rarely the case
that the scientific researchers know the exact nature of their
data a priori or what attributes are relevant or necessary.
Because scientific data tends to be semi-structured rather
than highly structured, this requirement of a full explicit
schema imposes a barrier to the adoption of database sys-
tems and explains why most research groups opt for filesys-
tem based storage systems which fit their organic and evolv-
ing method of data collection.

Most importantly, database systems are not ideal for sci-
entific data repositories because they do not fit into the work
flow commonly used by scientific researchers. In projects

such as the Sloan Digital Sky Survey and Sequoia 2000 [17],
the scientific data is directly stored in database tables and
the database system is used as an data processing and anal-
ysis engine to query and search through the data. For sci-
entific projects such as these, the recent work outlined by
Stonebraker et. al [16] is a more suitable storage system for
these high-structured scientific repositories.

In most fields of scientific research, however, it is not fea-
sible or realistic to put the raw scientific data directly into
the database and use the database as an execution engine.
Rather, in fields such as biological computing, for instance,
genome sequence data is generally stored in large flat files
and analyzed using highly optimized tools such as BLAST
[1] on distributed systems such as Condor [22]. Although
it may be possible to stuff the genome data in a high-end
database and use the database engine to execute BLAST as
a UDF (user defined function), this goes against the common
practices of most researchers and diverts from their normal
workflow. Therefore, using a database as a scientific data
repository moves the scientists away from their domains of
expertise and their familiar tools to the realm of database
optimization and management, which is not desirable for
many scientific researchers.

Because of these limitations, traditional distributed filesys-
tems and databases are not desirable for scientific data repos-
itories which require both large scalable storage and effi-
cient rich metadata operations. Although distributed sys-
tems provide robust and scalable data storage, they do not
provide direct metadata querying capabilities. In contrast,
databases do provide the necessary metadata querying capa-
bilities, but fail to fit into the work flow of research scientists.

The purpose of ROARS is to address these shortcomings
by constructing a hybrid system that leverages the strengths
of both distributed filesystems and relational databases to
provide fault-tolerant scalable data storage and efficient rich
metadata manipulation. This hybrid design is similar to
SDM [11] which also utilizes database together with a file
system. The design of SDM highly optimizes for n-dimensional
arrays type data. Moreover, SDM uses multiple disks sup-
port high throughput I/O for MPI [6], while ROARS uses
a distributed active storage cluster. Another example of
a filesystem-database combination is HEDC [15]. HEDC
is implemented on a single large enterprise-class machine

rather than an array of Storage Nodes. iRODS [24] and its
predecessor the Storage Resource Broker [3] supports tagged
searchable metadata implemented as a vertical schema. ROARS
manages metadata with horizontal schema pointing to files
and replicas which allows for the full expressiveness of SQL
to be applied.

6. CONCLUSION
We have described the overall design and implementation

of ROARS, a archival system for scientific data with support
for rich metadata operations. ROARS couples a database
server and an array of Storage Nodes to provide users the
ability to search data quickly, and to store large amounts
of data while enabling high performance throughput for dis-
tributed applications. Through our experiments, ROARS
has demonstrated the ability to scale up and perform as
well as HDFS in most cases, and provide unique features
such as transparent, incremental operation and failure inde-
pendence.

Currently ROARS is used as the backend storage of BX-
Grid [4], a biometrics data repository. At the time of writ-
ing, BXGrid has 265,927 recordings for a total of 5.1TB of
data spread across 40 Storage Nodes and has been used in
production for 16 months.

7. ACKNOWLEDGEMENTS
This work was supported by National Science Foundation

grants CCF-06-21434, CNS-06-43229, and CNS-01-30839.
This work is also supported by the Federal Bureau of In-
vestigation, the Central Intelligence Agency, the Intelligence
Advanced Research Projects Activity, the Biometrics Task
Force, and the Technical Support Working Group through
US Army contract W91CRB-08-C-0093.

8. REFERENCES
[1] S. Altschul, W. Gish, W. Miller, E. Myers, and

D. Lipman. Basic local alignment search tool. Journal
of Molecular Biology, 3(215):403–410, Oct 1990.

[2] Amazon Simple Storage Service (Amazon S3).
http://aws.amazon.com/s3/, 2009.

[3] C. Baru, R. Moore, A. Rajasekar, and M. Wan. The
SDSC storage resource broker. In Proceedings of
CASCON, Toronto, Canada, 1998.

[4] H. Bui, M. Kelly, C. Lyon, M. Pasquier, D. Thomas,
P. Flynn, and D. Thain. Experience with BXGrid: A
Data Repository and Computing Grid for Biometrics
Research. Journal of Cluster Computing, 12(4):373,
2009.

[5] J. Dean and S. Ghemawat. Mapreduce: Simplified
data processing on large clusters. In Operating
Systems Design and Implementation, 2004.

[6] J. J. Dongarra and D. W. Walker. MPI: A standard
message passing interface. Supercomputer, pages
56–68, January 1996.

[7] S. Ghemawat, H. Gobioff, and S. Leung. The Google
filesystem. In ACM Symposium on Operating Systems
Principles, 2003.

[8] Hadoop. http://hadoop.apache.org/, 2007.

[9] J. Howard, M. Kazar, S. Menees, D. Nichols,
M. Satyanarayanan, R. Sidebotham, and M. West.
Scale and performance in a distributed file system.

ACM Trans. on Comp. Sys., 6(1):51–81, February
1988.

[10] M. Ivanova, N. Nes, R. Goncalves, and M. Kersten.
Monetdb/sql meets skyserver: the challenges of a
scientific database. Scientific and Statistical Database
Management, International Conference on, 0:13, 2007.

[11] J. No, R. Thakur, and A. Choudhary:. Integrating
parallel file i/o and database support for
high-performance scientific data management. In IEEE
High Performance Networking and Computing, 2000.

[12] E. Riedel, G. A. Gibson, and C. Faloutsos. Active
storage for large scale data mining and multimedia. In
Very Large Databases (VLDB), 1998.

[13] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and
B. Lyon. Design and implementation of the Sun
network filesystem. In USENIX Summer Technical
Conference, pages 119–130, 1985.

[14] R. Searcs, C. V. Ingen, and J. Gray. To blob or not to
blob: Large object storage in a database or a
filesystem. Technical Report MSR-TR-2006-45,
Microsoft Research, April 2006.

[15] E. Stolte, C. von Praun, G.Alonso, and T. Gross.
Scientific data repositories . designing for a moving
target. In SIGMOD, 2003.

[16] M. Stonebraker, J. Becla, D. J. DeWitt, K.-T. Lim,
D. Maier, O. Ratzesberger, and S. B. Zdonik.
Requirements for science data bases and scidb. In
CIDR. www.crdrdb.org, 2009.

[17] M. Stonebraker, J. F. T, and J. Dozier. An overview
of the sequoia 2000 project. In In Proceedings of the
Third International Symposium on Large Spatial
Databases, pages 397–412, 1992.

[18] A. S. Szalay, P. Z. Kunszt, A. Thakar, J. Gray, and
D. R. Slutz. Designing and mining multi-terabyte
astronomy archives: The sloan digital sky survey. In
SIGMOD Conference, 2000.

[19] O. Tatebe, N. Soda, Y. Morita, S. Matsuoka, and
S. Sekiguchi. Gfarm v2: A grid file system that
supports high-performance distributed and parallel
data computing. In Computing in High Energy
Physics (CHEP), September 2004.

[20] D. Thain. Identity Boxing: A New Technique for
Consistent Global Identity. In IEEE/ACM
Supercomputing, pages 51–61, 2005.

[21] D. Thain, C. Moretti, and J. Hemmes. Chirp: A
Practical Global Filesystem for Cluster and Grid
Computing. Journal of Grid Computing, 7(1):51–72,
2009.

[22] D. Thain, T. Tannenbaum, and M. Livny. Condor and
the grid. In F. Berman, G. Fox, and T. Hey, editors,
Grid Computing: Making the Global Infrastructure a
Reality. John Wiley, 2003.

[23] Vertica. http://www.vertica.com/, 2009.

[24] M. Wan, R. Moore, and W. Schroeder. A prototype
rule-based distributed data management system
rajasekar. In HPDC Workshop on Next Generation
Distributed Data Management, May 2006.

[25] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long,
and C. Maltzahn. Ceph: A scalable, high-performance
distributed file system. In USENIX Operating Systems
Design and Implementation, 2006.

