GatorShare: A File System Framework for
High-Throughput Data Management

Jiangyan Xu and Renato Figueiredo
Advanced Computing and Information Systems Laboratory
University of Florida
jilangyan@ufl.edu, renato@acis.ufl.edu

ABSTRACT

Voluntary Computing systems or Desktop Grids (DGs) en-
able sharing of commodity computing resources across the
globe and have gained tremendous popularity among sci-
entific research communities. Data management is one of
the major challenges of adopting the Voluntary Comput-
ing paradigm for large data-intensive applications. To date,
middleware for supporting such applications either lacks an
efficient cooperative data distribution scheme or cannot eas-
ily accommodate existing data-intensive applications due to
the requirement for using middleware-specific APIs.

To address this challenge, in this paper we introduce Gator-
Share, a data management framework that offers a file sys-
tem interface and an extensible architecture designed to sup-
port multiple data transfer protocols, including BitTorrent,
based on which we implement a cooperative data distribu-
tion service for DGs. It eases the integration with Desktop
Grids and enables high-throughput data management for
unmodified data-intensive applications. To improve the per-
formance of BitTorrent in Desktop Grids, we have enhanced
BitTorrent by making it fully decentralized and capable of
supporting partial file downloading in an on-demand fash-
ion.

To justify this approach we present a quantitative evalua-
tion of the framework in terms of data distribution efficiency.
Experimental results show that the framework significantly
improves the data dissemination performance for unmod-
ified data-intensive applications compared to a traditional
client/server architecture.
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1. INTRODUCTION

In recent years a computing paradigm called Voluntary
Computing has emerged and gained considerable popular-
ity. Using Voluntary Computing systems, scientists around
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the world can collaborate and share computing resources
and data. This collaboration allows small and middle sized
organizations to conduct experiments without hefty invest-
ment on IT resources. In addition, by utilizing idle resources
which are otherwise wasted, this approach builds a more eco-
nomic distributed computing system.

The main contribution of this work is two-fold: 1) we
present GatorShare, a data management framework with
both a POSIX file system interface and a REST Web Service
interface; 2) we describe the implementation of a BitTorrent
service using this framework that provides efficient cooper-
ative data distribution. In this way we combine the bene-
fits of cooperative data distribution and file system interface
to provide high-throughput, efficient data distribution and
easy integration with existing unmodified applications. Un-
like many grid middleware frameworks, it has a simple and
identical setup process on each machine which requires no
special components. This enables auto-configuration capa-
bilities for clients to join and leave the network freely.

Furthermore, the GatorShare framework has the follow-
ing features: a) its file system interface allows intuitive in-
teraction with files and folders as if they were local; b)
it is an extensible framework that allows easy addition of
protocols and file system services by registering desired file
system structures and implementing service handlers. The
GatorShare BitTorrent service has the following features:
a) it supports tracker-less fully decentralized BitTorrent;
b) it provides an on-demand piece-level BitTorrent shar-
ing scheme. Issues with security and NATSs are not directly
addressed in GatorShare but it seamlessly integrates with
IPOP [25] virtual network to provide end-to-end security
and NAT traversal across the WAN.

2. BACKGROUND AND MOTIVATIONS

Voluntary Computing systems are also frequently referred
to as Desktop Grids or Public-Resource Computing systems
since they are often comprised of desktop systems and the
resources usually come as donations from the general pub-
lic. Throughout this paper, we use these terms interchange-
ably. In Voluntary Computing systems, organizations and
individuals contribute their computing resources to a pool
that other participants can access. A very popular Volun-
tary Computing platform is BOINC [15, 3]. In recent years,
projects based on BOINC system such as SETI@home [12,
16] have been very successful and assembled considerable
computing power. As of January 2010, SETI@home pro-
cesses data averaging about 730 TeraFLOPS [13].



2.1 Barrier to Entry in Voluntary Computing

One problem with many existing (e.g. BOINC-like) Vol-
untary Computing systems is that the collaboration is un-
der an asymmetric relationship, as pointed out by Ander-
son [15]. In such systems, not everyone who contributes
can easily use the resources because to use such systems
the users need to develop their applications with the system
APIs. Even though the goals of the BOINC system include
lowering the barrier of entry and minimizing development
effort, this might not be easy for ordinary users and/or for
large projects with non-trivial sized existing applications.

In another example, Fedak et al. [22] present a compre-
hensive framework for data management for Desktop Grids.
It uses metadata to tag data objects and provides multiple
transfer protocols, including FTP and BitTorrent to dissemi-
nate data. To use their framework, developers have to utilize
their specific APIs which may require extensive application
modification in some cases.

Grid Appliance. One approach to address the barrier of
entry and support unmodified applications in Desktop Grids
is the Grid Appliance [8, 31]. Grid Appliances are virtual ap-
pliances connected by an IPOP virtual network [25] to create
a self-configuring Desktop Grid that makes traditional, un-
modified applications available to all participants via Con-
dor [4]. The Grid Appliance forms the core infrastructure
of Archer [24, 1], a voluntary computing infrastructure for
computer architecture research. In Archer, computer archi-
tecture simulation software is installed on each Grid Ap-
pliance instance. Scientists can submit jobs and contribute
computing resources from any node in this DG. The intro-
duction of Grid Appliances and Archer not only simplifies
the deployment and usage of DGs but also opens up the
possibility for users to carry the experiment code and data
around and do research anywhere without being restricted
to a fixed location. As a result, users can enjoy the high
portability of DG nodes thanks to the auto-configuration,
virtual machines and virtual networking features.

However, being able to autonomically construct a pool of
virtualized resources is not enough for data-intensive appli-
cations using such systems. In Archer, data sharing between
peer nodes is achieved by a wide-area NF'S file system over
the encrypted tunnels provided by the virtual network. The
Archer NF'S setup self-configures read-only user file systems
by adding features including auto-mounting file system ex-
ports of a certain node by their host name. This approach is
sufficient for pools within a single site or sites connected by
high-speed Internet. However, with limited bandwidth, es-
pecially upload bandwidth which could as low as 512 Kbps,
in a typical residential network, it is prohibitively slow for
users to submit jobs with large input data to multiple work-
ers. A cooperative data distribution method is needed to
address this problem.

In typical Archer simulation applications, the data needed
to be distributed over the wide-area network are of the or-
der of GBs each. In some cases only a fraction of the data is
accessed while in others whole files are used. One example
is in full-system architecture simulators, such as VirtuTech
Simics, which boot simulated systems from disk images with
an entire O/S installation, but only touch a small fraction
of the data blocks during a given simulation. Under such
circumstances, even regular BitTorrent is inefficient because

it transfers the entire data. An on-demand partial data dis-
tribution method would be much helpful in this case.

2.2 Data Distribution Efficiency

How to provide fast, cost-efficient and reliable data dis-
tribution for DGs, especially when bandwidth is limited,
is still an unsolved problem. Moreover, the integration of
transfer techniques including BitTorrent with existing appli-
cations not targeted at such Voluntary Computing systems
remains a challenging task. There has been much research
on cooperative data distribution schemes. Shark [17] and
WheelF'S [29] are distributed file systems with a POSIX in-
terface and use cooperative data distribution protocol. Both
of the systems provide prototypes and not robust implemen-
tations. BitTorrent [21], in contrast, is proven to be robust
and scalable.

Researchers have conducted studies using BitTorrent-like
P2P methods to distribute data in DGs. Study results [30]
show that BitTorrent is a promising technique to facilitate
data distribution in scientific Grids for data-intensive appli-
cations, but modification may be necessary to suit certain
usage scenarios [20]. There are existing studies on the per-
formance of BitTorrent-like P2P transports as a means to
distribute data in scientific computing. As Al-Kiswany et
al. [14] conclude, such P2P data dissemination techniques
could bring unjustified overhead to over-provisioned net-
works but as user communities grow, P2P based mechanisms
will outperform techniques.

Chen et al. [20] take advantage of BitTorrent and FUSE [6]
to provision services as VMs in high-speed networks. They
leverage a Piece-On-Demand mechanism, which is similar
to ours, to give high priority to data chuncks requested by
applications via FUSE. Therefore, services in VMs can be
started prior to full distribution of VMs images. The scope
of [20] is in high-speed networks and enterprise environment
where dedicated deployment servers are used in the distri-
bution process. Moreover, they do not address or evaluate
the ease of deployment and auto-configuration issues.

Research projects on data management in conventional
Data Grids such as Stork [28] and Storage Resource Broker
(SRB) [18] take relevant approaches. Stork and SRB both
aim to bridge the heterogeneity of data resources by provid-
ing a uniform interface and handle different storage types
or transport protocols dynamically. Being in production for
years, these system are fully functional and reliable. They
have a full range of features and have been proven successful.
However, being targeted at conventional Data Grids where
centralized administration and manual setup is the norm,
they are not suitable for Desktop Grids where churn of par-
ticipants often happens. Our solution, on the other hand,
focuses on self-configuration that deals with this character-
istic of DGs.

The rest of this paper is organized as follows. In Section 3,
we introduce the concept and usage of GatorShare inter-
faces. In Section 4, we describe the architecture of Gator-
Share. Section 5 gives detailed description of how the com-
ponents in GatorShare work together to achieve the tasks.
In Section 6 we demonstrate the usage scenario for Gator-
Share integrated with Grid Appliances. In Section we give
the evaluation on the performance of GatorShare. Section 8
and 9 are future work and conclusions.

3. USING GATORSHARE



GatorShare provides data distribution functionalities via
a web service interface and a file system interface. We design
the file system interface as a lightweight client in terms of
computing and storage resource consumption that uses the
web service to provide a virtual file system in which users
can deal with remote data objects as local files. The web
service can also be used independently so that other clients
using HTTP protocol can be developed and one service can
serve multiple clients. This allows possible deployment of
one such data distribution web service per LAN. All ma-
chines in a LAN can access this one service either through
the virtual file system interface or a web browser, which re-
quires no installation of extra software, on each machine.
In this section we introduce the usage of both file system
and web service interfaces which we call GatorShare Client
(GSClient) and GatorShare Server (GSServer), respectively.

3.1 Data Distribution APIs

We first define the essential set of operations in an abstract
form. The abstract operations can be mapped to concrete
services such as BitTorrent, dictionary services that we have
developed in GatorShare so far.

service. STORE(uid, data) Store the data to the service
by the uid. This could be the publish operation in
BitTorrent or the put operation in a dictionary.

data service RETRIEVE(uid) Retrieve the data from the
service by the uid. This could be a download in Bit-
Torrent or a get in a dictionary.

GatorShare stores and retrieves data by unique identi-
fiers (UIDs). To make naming more user-friendly, UIDs
are composed of two elements: a namespace and a name
under that namespace. The two elements are concatenated
together to construct a UID. The purpose of the names-
pace is that it specifies a globally unique ID to a user (e.g.
jiangyan.ufl.edu) or a group (e.g. GA_Releases) to avoid
naming collisions. GatorShare itself does not manage the
assignment or collision control of the namespaces. It can
be configured as whatever makes sense in each deployment.
For example, in Grid Appliances, we configure the names-
pace to be the hostname of each node, which is derived from
its virtual IP. Currently we do not authenticate the owner
of a namespace either. Under a namespace, users can name
the data with local knowledge. Naming collision within a
namespace can be prevented through local mechanisms.

Using the APIs, clients can access services such as Bit-
Torrent and dictionary service in GatorShare. A dictionary
service is a map of keys and values. It can be implemented
with a plethora of underlying structures, such as Distributed
Hash Tables, cloud services, or even centralized databases.
Distributed Hash Table (DHT) is a type of P2P system that
provides reliable key-value pair storage and efficient lookup.
Previous work [26] describes the implementation of DHT in
Brunet [19], a P2P overlay we use as the backend of our vir-
tual network solution, IPOP. As the API is an abstraction
of all services of the same usage and we generally use DHT
in a production deployment for its reliability and decentral-
ization features, in this paper we use DHT to refer to this
type of dictionary service regardless of the concrete imple-
mentation when there is no confusion. The abstract APIs
apply to both web service and file system interface.

3.2 Data Distribution Web Service

GSServer exposes core data distribution operations as a
set of RESTful [23] web services. REST, or REpresenta-
tional State Transfer, is an architectural style of web service
design. RESTful architecture enables simple and scalable
implementations of web services which are built around the
concept of “resources”.

The APIs for the primarily used BitTorrent service in this
work are summarized in Table 1. The APIs in the table
follow the design principles of a RESTful web service archi-
tecture. We choose to use RESTful web service because the
concept of “resources” intuitively depicts the services pro-
vided by GSServer. By using the APIs, clients accomplish
data management tasks as if they were dealing with local
resources. For example, to manipulate the BitTorrent ser-
vice for a particular dataset, the client sees the service as a
resource identified by the namespace and name of the item
under the namespace. Then it either GETs it or POSTs it,
with optional parameters to tweak the behavior of such GET
or POST. In compliance with the RESTful web service con-
ventions, we use URL segments to represent the mandatory
arguments passed to the service, HI'TP verbs to represent
the nature of the operation, and URL parameters to repre-
sent service options.

3.3 Virtual File System

GatorShare’s virtual file system, like other FUSE based
systems, provides a means to access data-related (e.g. stor-
age, sharing, transfer) services through a file system based
interface. GatorShare defines an intuitive file system struc-
ture that users can comfortably use. The users perceive the
file system as a regular local file system and can access “files”
directly (e.g. cat command on a file reads it and prints the
content). The changes to the file system are propagated in
a way defined by the concrete file system service implemen-
tation.

Different file system services may have different seman-
tics. For instance, modifications to files are not published
in the BitTorrent file system but are put into the DHT in
the DHT file system. Also in a BitTorrent file system, the
data is published after the publisher creates a new file but
the data distribution happens on-demand only when a data
consumer reads the file on his/her machine. Figure 1 shows
the structure of the BitTorrent file system.

For example, the GatorShare file system can be mounted
as /mnt/gatorshare, which resembles a mounted network
file system. The file system is identical to both data pub-
lishers and consumers across all the nodes in the Desktop
Grid. This symmetry gives the feeling to users that both
publishers and consumers use the same, shared network file
system. Inside the mounted file system, path segments are
parsed and interpreted as parameters to services. The way
virtual paths are interpreted is similar to the handling of
patterns of the REST APIs of GSServer. In stead of using
HTTP verbs, we identify whether the operation is a read
or a write and take actions based on the path and the file
system “verb”.

In Figure 1 the example path, with segments concatenated
together, is /bittorrent/jiangyan.ufl.edu/Data.dat. Ad-
ditional parameters can be attached to file names. For exam-
ple, reading the path /bittorrent/jiangyan.ufl.edu/Data.
dat?od=true enables on-demand partial file download of
Data.dat. In this example we show a file system struc-



| # | Operation || URL Template | Verb | Req. P/L | Resp. P/L
1 Publish through BT /bt/{namespace}/{name} POST | None None
2 Download through BT /bt/{namespace}/{name} GET None (I;/;ett;info of the
3 “Peek” data availability /bt/{namespace}/{name}?peek=true GET None g/;(z;ainfo of the
4 Download part of a file || /bt/{namespace}/{name}7offset={offset}& GET None Content of the
through BT btr={bytesToRead} bytes read.

Table 1: RESTful APIs of BitTorrent Service on GSServer. Columns: Operation on the resource, URL of
the resource, Verb to use in HTTP requests, Payload of the request, Payload of the response. Operation #3
checks data availability without downloading it. Operation #3,4 together achieves On-Demand BitTorrent

downloading.

{root} {service}

0

,

{file
name}

bittofrent ~ {namespace}

)

Data.d
jiangyan.ufl.edu at

Figure 1: Virtual File System. The names enclosed
in braces indicate the path segments’ corresponding
parameters in the APIs defined in Section 3.1.

ture used by BitTorrent file system that resembles the URL
structure of REST APIs in Table 1. However, thanks to the
fact that in GatorShare framework services and file systems
are registered and dispatched using URL templates, the file
system structure is configurable.

Assuming the structure in Figure 1, from the user’s per-
spective, under the root folder mounted for GatorShare ser-
vice, he first enters the directory that corresponds to the
service he intends to use (bittorrent, in this case). Then he
enters next level, the namespace directory. The directory
contains all the data belonging to the namespace. The data
could be files or a directory of files. The name of the item
at the third level, whether for a file or a directory, is used
along with the namespace to globally identify the datum.
He can then read, create, modify files and directories in the
namespace directory.

Despite the difference in constructing the path and iden-
tifying the action, in our design the user manipulates the
data the same way using file system and web service: the
combination of path (URL) and action (verb) decides the
behavior. Reading a path downloads the data while writ-
ing/creating a path distributes it.

4. GATORSHARE ARCHITECTURE

In this section we describe the architecture and compo-
nents of GatorShare. We design GatorShare to be a generic
framework that can be used in various scenarios. In the

scope of Desktop Grids, though, the GatorShare BitTor-
rent implementation has a Peer-to-Peer (P2P) architecture.
On each node we have an identical setup (GSClient and
GSServer). GSClient interfaces with FUSE; FUSE performs
1/O operations on behalf of user applications, or simply,
users.

In a Desktop Grid, participants join a pool of peers. Each
node running GatorShare can both publish and consume
data. If allowed by the DG’s system functionality and pol-
icy, each of them can be a job submitter as well as a worker
through a batch system. Figure 2 shows the overall archi-
tecture of GatorShare BitTorrent.

User GSClient
App/ 1@ @
FUS i},
W
Publisher .
Submittef )

BitTorrent
Swarm

Consumer /
.-~ Worker

Consumer /

Worker
Figure 2: GatorShare BitTorrent High Level Archi-
tecture. This figure shows a decentralized architec-
ture with the exception of a possible batch system
master node (not shown).

GatorShare leverages three types of P2P overlays: BitTor-
rent swarm, DHT and IPOP overlay. GatorShare relies on
DHT to lookup related information (BitTorrent torrent files
and swarm information which traditionally are provided by
a tracker). GatorShare peers form a BitTorrent swarm and
collaboratively disseminate data across the Grid. Moreover,
GatorShare can optionally run on IPOP virtual network to
enable features such as NAT traversal and end-to-end secu-
rity across the WAN.




4.1 Components within a Node

Figure 3 shows the overall software component architec-
ture of GatorShare. There are two major GatorShare com-
ponents on each node: a file system client (GSClient) and a
server running data distribution services (GSServer).

GSServer implements the core logic for data distribution,
interfaces with BitTorrent, DHT and other essential services.
It manages a data store and torrent files associated with the
data. GSClient integrates with underlying file system and
fulfills file system operations requested by FUSE. GSClient
manages a shadow file system, which stores metadata asso-
ciated with files. We design the two components with the
goal that GSClient should be as lightweight as possible.

By separating functionalities into Client/Server, Gator-
Share can be easily extended. Also, multiple GSClients can
share one GSServer, which is preferable in some cases in-
side a single LAN, as described in Section 3.3. Thus, while
GatorShare is globally P2P, it has a Client/Server architec-
ture locally.

As Figure 3 shows, GSClient and GSServer have similar
architecture and they communicate with HTTP protocol.
Within each of them, there is an interface layer (Virtual
File System and REST API), which defines the functional-
ities and presents an abstract view of the underlying sys-
tem (resource accessible by file system and web interface).
The second layer are dispatchers that examine requests and
match them with registered services and then pass them
along. The bottom layer is where the services reside. Both
GSClient and GSServer have services that can be registered
to some criteria. Services are represented as tabs and can
be added and removed by configuration. In this paper we
primarily look at BitTorrent services. Note that Redirect
File System, Dictionary Service and BitTorrent Library are
services and library external to but dependent by BitTorrent
Service.

Subcomponents inside BitTorrent Service and BitTorrent
File System are described in Section 4.2 and 4.3. The re-
mainder of the section explains the components in details.

4.2 Distribution Service: BitTorrent

Distribution service provider (GSServer) provides the es-
sential services for data management in GatorShare. While
GSServer has a pluggable architecture for implementing new
services, in the effort to build a high-throughput DG system,
we focus on BitTorrent as the transport protocol.

GSServer allows publishing a file, downloading a whole
file and downloading part of a file through BitTorrent. In
a traditional BitTorrent downloading process, a user first
downloads a torrent file for the data from a web server. Bit-
Torrent client loads the torrent file and contacts a tracker
that manages information of the BitTorrent swarm associ-
ated with the torrent and gets a list of peers. BitTorrent
client then starts the downloading process by communicat-
ing with the peers and exchanging data pieces. The pub-
lishing process involves creating a torrent file for the data,
uploading it to a web server and informing downloaders the
URL for the torrent file.

In GatorShare we automate the process and modify the
way that torrent files, swarm information are managed. Tor-
rent files are stored in a dictionary service and thus are up-
loaded and retrieved by unique IDs. We implement GS-
Tracker, a proxy on each peer handles standard tracker re-
quests by putting and getting torrent metadata information

and torrent swarm information to and from the dictionary
service and eliminate the need for a centralized tracker.

Traditional BitTorrent applications do not support on-
demand partial file downloading scheme so we need to mod-
ify BitTorrent protocol to achieve that. In BitTorrent, data
chuncks are shared by the unit called pieces. The size of a
piece is decided by the creator of torrents and the size in-
formation is stored in torrent files. In our on-demand down-
loading scheme, we round the requested file part to pieces
and download whole pieces of a torrent. We implement a
Piece Information Service on each peer so that each peer
that has the whole data can serve requests for BitTorrent
pieces. The process is explained in detail in Section 5.3.

As shown in Figure 3, BitTorrent Manager provides func-
tionalities such as DownloadFile, PublishFile. BitTorrent
Piece Manager is responsible for managing requested pieces
for a torrent download. BitTorrent Library is the 3rd-party
BitTorrent library that we use to handle BitTorrent tasks.

GSServer maintains its own file system structure as a data
store to provide services such as BitTorrent publishing and
downloading. Size of the data store dominates the disk space
used by GatorShare on a computer.

4.3 File System Client

File system client (GSClient) uses FUSE to intercept user-
space file system calls. It is programmed using an event-
driven model. Whenever a file system operation is called,
the Fvent Dispatcher looks at the call and matches the path
and the operation with the registered file system services.
(e.g. The BitTorrent File System in Figure 3). If a match
is found, it fires an event and file system service handles
the event, communicates with GSServer, does necessary file
system operations and return control to FUSE.

GSClient manages a shadow file system and a metadata
file system that provide support for the virtual file system.
They both have the same structure as the virtual file system.
Redirect File System, shown in Figure 3, redirects all the
FUSE file system calls (e.g. mkdir) to the the two file system
except those intercepted by Event Dispatcher.

The difference between the two file systems is that when
FUSE writes a file, it is first written to the shadow file sys-
tem and then gets uploaded while when FUSE reads a file, it
first reads from metadata file system. All files in metadata
file system are virtual files that contains nothing but meta
information about the real files that reside in GSServer data
store. Based on information in the virtual file, GSClient can
fetch data from the real file.

The rationale behind this design is that 1) By separating
the physical file systems that reads and writes are redirected
to, there is no confusion about whether a file is a virtual file;
2) we store a bare minimum amount of data with GSClient
and since GSClient and GSServer are on the same host or
connected by a high-speed network, data bytes can be re-
quested and served on the fly once the file is downloaded.

S. DATA DISTRIBUTION PROCESS

In this section we describe the process of data distribu-
tion among GatorShare peers, specifically through BitTor-
rent, in detail. Distribution process starts with a file system
operation. In FUSE, a high-level read or write that users
observe takes multiple file system operations. Event Dis-
patcher processes some of them and simply redirects others
to the shadow file system. Specifically, it matches getattr
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Inside the “container” is a tabbed environment

where each service is represented as a tab. Components that this tab depends on but are not integral parts

of this tab have stipple patterns.

(getxattr), read and release operations with the patterns
that the BitTorrent file system registers. If the path is
matched, an event is fired and the BitTorrent Event Handler
takes the control.

We define the following events (in braces are the corre-
sponding FUSE operations) in GSClient event handlers and
the following description lists the actions to handle them.

ReleasedHandle (release): The file handle has been re-
leased and data has been written to the file. We upload
it if the file is newly created.

GettingPathStatus (getattr): This is when FUSE is re-
questing the status of the path. We check the dic-
tionary service to determine whether a file exists and
potentially download it if it is associated with a read
operation.

ReadingFile (read): The content of a file is requested and
we need to either return it from locally downloaded
file or download the requested bytes in the case of on-
demand downloading.

Because of the multiple stages in reading and writing files,
in GatorShare, a publish or download also takes multiple
steps. Before going into detailed explanation of the data
distribution process, we summarize what file system opera-
tions each BitTorrent operation involves.

Publish Data: write is redirected to the shadow direc-
tory; release publishes the file.

Download Entire File: getattr downloads the file, read
retrieves the content from the file.

Download File Part: getattr downloads metadata about
the file part, read downloads file part on-demand.

5.1 Publishing Data

A user creates(writes) a file under a namespace directory
(as shown in Figure 1) in order to publish it. When FUSE

'In the figures describing the data distribution process, we
use arrows to indicate both message and data flow directions.
We also annotate the data being transferred when it is not
clear from the context.

release /mnt/gs/bittorrent/
jiangyan.ufl.edu/Data.dat

BitTorrent
Swarm

FUSE

GSClient
3 —3 3

Handling release() call in Publishing

Figure 4:
Data '.

performs a write operation, GSClient first redirects the op-
eration to the shadow directory. After all the bytes have
been written, FUSE releases the file. The process of han-
dling release() is illustrated in Figure 4: 1) FUSE calls
release(); 2) the call triggers the ReleasedHandle event
in GSClient; 3) then this event is then handled by Bit-
TorrentFilesysFEventHandler, which stages in the data to
server data store. Depending on the relative locations of
the client and server, the “stage-in” could be using methods
such as local file move, symbolic link, or network copying;
4) Afterward, it sends an HTTP request “POST /bittor-
rent/jiangyan.ufl.edu/Data.dat” to GSServer through the
ServerProzy; 5) Upon receiving this request, GSServer gen-
erates the torrent file for the data, registers it with the GS-
Tracker which puts the data into the DHT; 6) it starts to
seed the data using the BitTorrent client.



5.2 Downloading Entire Data

To download data, the user application simply reads the
path under the GatorShare virtual file system. The pub-
lisher can send the path it uses to publish the data to other
nodes and they can use the same path to download it.

In GatorShare it is possible to have a file fully downloaded
before the read or alternatively, a user can read part of file
on-demand and GatorShare only downloads the part needed
to accomplish the read.

BitTorrent
Swarm

getattr /mnt/gs/bittorrent/
jiangyan.ufl.edu/Data.dat

Figure 5: Handling getattr() call in Full Data Re-
trieval.

When FUSE reads a file, it first tries to get the attributes
of the path. This is when the downloading process is initi-
ated. Figure 5 demonstrates the handling of getattr() call:
1) FUSE calls getattr operation; 2) it triggers GetPathSta-
tus event in GSClient; 3) ServerProxy sends “GET /bittor-
rent/jiangyan.ufl.edu/Data.dat” request for this path to
GSServer; 4) GSServer in turn queries the DHT about us-
ing a key derived from the namespace and item name. If
DHT indicates there is no such file available, GSServer re-
turns an error and GSClient forwards it to FUSE. If there is
such a file, DHT returns the torrent file; 5) GSServer parses
it; 6) BitTorrent starts to download data to the server data
store. No matter what tracker URL is provided in the tor-
rent file, BitTorrent client always queries local GS-Tracker
for swarm information. GSClient blocks while the down-
load is in process; 7) After successful download, GSServer
returns the meta file which contains the path to the data to
GSClient; 8) GSClient then places the meta file in the meta
directory and reports to FUSE that there is a file under such
path.

After GSClient returns path status to FUSE, FUSE then
reads the file, with offset and read length as parameters.
This triggers the ReadingFile event. GSClient reads the
meta file, uses the path in the meta data to locate the file
and read the bytes from it and then returns them to FUSE.

The GS-Tracker is installed on each peer. It acts as an
adapter between BitTorrent tracker clients and the DHT
which keeps track of the torrent swarm information. The
torrent creator in GatorShare specifies the local GS-Tracker

as the sole tracker in torrent files. Each request to the
tracker is translated into dictionary service operations.

5.3 Support for Partial Downloads

Users can embed the parameter od=true in file names to
request on-demand partial downloads. It takes a similar pro-
cess as full data downloading. The difference between them
is that the BitTorrent download process does not start when
FUSE requests the status of the path in the case of partial
downloads. When GSClient sees the od=true parameter in
the virtual path, it first peeks the availability of the file by
attaching the peek=true parameter in the HT'TP request to
GSServer. To fulfill the request, GSServer downloads the
torrent file and generates the meta info from the torrent
file without downloading the data. It adds an entry in the
meta info to indicate that this file is going to be downloaded
on-demand.

read /mnt/gs/bittorrent/
jilangyan.ufl.edu/
Data.dat&od=true

BitTorrent
Swarm

FUSE

GSClient
3.

<> Y

Figure 6: Handling read() in On-Demand Data Re-
trieval.

The handling of the subsequent read () operation is shown
in Figure 6: 1) FUSE makes read() call; 2) GSClient trig-
gers “ReadingFile” event, which has offset and bytesToRead
as properties; 3) same as handling full data downloading,
it reads the meta info and but in this case it sees the on-
demand indicator; 4) it then sends a request GET /bittor-
rent/jiangyan.ufl.edu/Data.dat?offset={offset}&btr=
{bytesToRead} to GSServer with the offset and bytesToRead
parameters; 5) GSServer then calculates the piece(s) need to
download for the offset and bytesToRead based on the piece
size stored in the torrent file and downloads the torrent file
for the piece; 6) It loads the torrent file and gets information
of the piece(s) and start the downloading process; 7) down-
loads are saved to server data store; 8) after successfully
downloading the pieces, it seeks the data chunk requested
and returns it to GSClient. GSClient now gives the bytes
back to FUSE.

The collaborative downloading process for data pieces are
like regular BitTorrent but we need some special steps to
bootstrap the sharing of pieces. We now describe the proto-
col for piece-level BitTorrent. In the current system we treat
torrent pieces as single-piece torrents. To enable data shar-



ing at a piece level, we implement a Piece Information Ser-
vice (PINS) on each peer. The publisher, along with other
peers that have the entire data, can bootstrap the sharing
process. When a downloader needs to download a piece on-
demand, it first checks the dictionary service whether there
is already a torrent for this piece: if yes, it starts the process
to download the piece with regular BitTorrent protocol; if
no, it asks a peer in the peer list for the full data to serve such
a piece by sending a request to the PINS on that peer. That
peer then reads the piece from the whole data and generates
a single-piece torrent for it and publishes it as a regular tor-
rent. The downloader then is notified with the availability
of the piece torrent so it can download the single-piece data
via regular BitTorrent.

5.4 Implementation

Our goal is to create a multiple-platform framework so we
strive to abstract the framework and make extending the

framework easy. In GSClient, we separate system-independent

logic from system dependent interfaces. We abstract the
common properties and actions of a virtual file system and
implement a FUSE-binding that works on Unix-like systems
with FUSE [6] or MacFUSE [9]. A Windows binding can be
implemented using Dokan [5].

With regard to GSServer, we use ASP.NET MVC [2] to
create a pluggable architecture for the web service. ASP.NET
MVC allows developers to simply specify a controller for
each service and register it with a certain URL template on
the web server. As a result, services other than BitTorrent
or DHT can be easily added in the future. GSServer can
be run on Mono XSP or with mod-mono on Apache HTTP
Server [10]. For the BitTorrent service, we use and extend
MonoTorrent [11], a C# BitTorrent library.

6. INTEGRATION WITH GRID APPLIANCE

In Section 3.3 we have showed the general usage of Gator-
Share’s file system interface. In this section we describe the
integration of GatorShare with Grid Appliance as a realis-
tic example to apply the collaborative high-throughput data
distribution to real Voluntary Computing environments. In
a Grid Appliance pool, scheduling is handled by Condor.
Jobs can be submitted from any node in the pool. Before
the implementation of GatorShare, jobs are submitted with
input data transported to workers via either a shared WAN
NF'S or direct transfer. Neither of such cases is efficient for
data-intensive applications. Job results are transferred back
by the same mechanisms.

6.1 Usage Scenario

We envision such a usage scenario that best demonstrates
the power of GatorShare with the Grid Appliance.

A researcher, Alice, works with a university lab. This
lab, along with other universities, has established a Grid
Appliance pool that comprises machines from several LAN
clusters across the US. She does experiments that run data-
intensive applications and usually has jobs with input data.
Machines within clusters and even across the clusters have
high-speed network connections. Her Internet service at
home has 10 Mbps downlink and 1 Mbps uplink. She of-
ten takes work home and wants to use the pool from the
residential network at home.

6.2 Working with Grid Appliance

To integrate GatorShare with Grid Appliances, it is in-
stalled on each node in the pool. It provides an alternative
data distribution method to users. GatorShare mounts a
virtual file system at /mnt/gs. For small input data and
non data-intensive applications, users can specify data dis-
semination method to be Condor file transfers or the Grid
Appliance NFS setup (/mnt/ganfs). For large input data
or data-intensive applications, users can specify /mnt/gs as
the shared file system.

To submit a Condor job using GatorShare system, she first
prepares the input data by creating them under /mnt/gs.
GatorShare publishes the data and starts to serve them us-
ing BitTorrent. Here the publishing process only involves
putting the related data information into DHT and starting
to seed the data on the publisher machine. No data dissem-
ination occurs at this point. Then she submits the Condor
job and references the input data in the job description file
as if the job were using a shared file system to transfer the
data.

Then Condor schedules to run the job on a number of
nodes. The downloading process starts when the daemon
process reads the GatorShare file system on worker nodes.
GatorShare processes on worker nodes independently query
the DHT to obtain information and download the input data
for the job. The publisher starts to transfer data after Bit-
Torrent clients on the workers discover it and request data
pieces. The collaboration happens gradually and workers
start trading data pieces with each other. Then the band-
width usage and load on the publisher gradually drop. Since
the output data are usually small, Alice specifies results to
transferred back via traditional methods after the job fin-
ishes.

7. EVALUATIONS

In this section we present the evaluation on functional-
ity and performance of GatorShare. In the experiments we
analyze the following performance metrics: a) latency of
data distribution with GatorShare from a data publisher
(job submitter) to a single downloader (worker) or multi-
ple downloaders; b) bandwidth usage on data publisher; c)
network overhead to accomplish the collaboratively down-
loading scheme.

The scalability of the platform as a whole has not been
evaluated but the distributed systems (i.e. DHT and Bit-
Torrent) we select to implement our service are well known
to scale well. Scalability evaluation of IPOP and Brunet,
which we use to provide additional functionalities, can be
found in [25, 19].

7.1 Experiment Setup

Our experiments are conducted on Amazon Elastic Cloud
(EC2) service. We deploy virtual machines of EC2 “small
instance” type (1.7GB RAM, 1 virtual core, 32-bit platform).
Each of the virtual machines has Ubuntu Linux operation
system 9.10 and Mono C# 2.6 installed.

In the experiment we deploy one VM as the master node,
which simulates the job submitter machine in a residential
network. To simulate the low-bandwidth residential net-
work environment, we use Linux’s traffic control (tc) tool
to throttle the bandwidth of the data publisher machine to
enforce the limit of 10 Mbps down-link and 1 Mbps up-link.
We deploy other VMs as worker nodes without throttling



to simulate the LAN environment or clusters connected by
high-speed Internet.

For the experiment we have implemented a dictionary web
service on Google App Engine [7], a hosting platform for
cloud services, to simulate the DHT. Google App Engine
provides reliable web server, data storage and monitoring
tools. The dictionary service we have developed exposes
dictionary operations as web services and GSServer commu-
nicates with it using HTTP protocol. Using such a platform
we can monitor dictionary operation requests and responses,
storage space for the metadata that GatorShare relies on.

7.2 Distribution Performance

In this experiment the master publishes data via either
BitTorrent or NFS. Workers run a simple job that reads
the input data from the FUSE file system of GatorShare
or the mounted NF'S file system and verifies the data using
mdbsum. We evaluate the distribution performance by mea-
suring the distribution time and the overhead of the network
transport.

We first show the distribution time between a single pub-
lisher /worker pair in Figure 7. To distinguish our modified
version of BitTorrent from the original BitTorrent, we refer
to our version as GS-BT. The result shows that under such
one-to-one scenario where no collaboration happens, the dis-
tribution delay is similar among GS-BT, NFS and the ideal
case.
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Figure 7: Distribution time between a single pub-
lisher /worker pair. The bandwidth on the publisher
node is limited to 1 Mbps. The ideal distribution
time (Ideal) is Data Size / Upload Speed of Publisher.

In Figure 8 we illustrate the scenario where one publisher
is distributing data to ten workers. Under such scenario,
each downloader gets an average of 0.1 Mbps, or 1/10 of the
1 Mbps, of the uploader bandwidth.

The result proves that (a) when an uploader is serving
multiple downloaders and the bandwidth of the uploader is
not abundant, GS-BT outperforms the ideal performance for
a non-collaborative distribution mechanism; (b) NFS does
not perform well when the shared bandwidth is scarce; and
(c) the performance of GS-BT approaches the ideal case for
collaborative distribution mechanisms. In the experiment,
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Figure 8: Distribution time between one publisher
and ten workers. Both axes use logarithmic scales
to show the linearity of growth. The bandwidth
on the publisher node is limited to 1 Mbps. The
ideal delay for collaborative distribution (Ideal Col-
lab) is Data Size / Upload Speed of Publisher. The
ideal delay for non-collaborative distribution (Ideal
Non-collab) is Data Size / (Upload Speed of Publisher
/ Number of downloaders).

we also find that the network traffic overhead of NFS is
several times more than the actual payload size while the
overhead of GS-BT is trivial.

7.3 On-Demand Partial Downloading Perfor-
mance

In this experiment we use the ten-worker setup same as
the whole data downloading experiment but the workers
read only 200 KB from the start of the file. We mea-
sure the metrics shown in Table 2. The results show that
our On-demand piece-level BitTorrent (OD-BT) implemen-
tation slightly outperforms NFS in terms of delay. How-
ever, the distribution time is highly unstable among work-
ers. Due to optimization of file system 1/O, the operating
system downloads more than 200 KB. This could reduce the
delay for future reads of the applications. In fact, in this ex-
periment, as a 100 MB data has the piece size of 256 KB in
our system, OD-BT already starts to download the second
piece when the measurements are taken. As we can see in
Table 2, the OD-BT downloads almost twice that of NFS
and its throughput is twice the number of NFS.

Even if the delay for such a small read does not differ-
entiate the performance of two protocols, the bandwidth
consumption on the publisher node could serve as a met-
ric for cost. We further look at the bandwidth consumption
on the publisher node. Figure 9 shows that the bandwidth
consumption decreases as peers start to collaborate in the
case of OD-BT. The result suggests that data publisher con-
sumes more bandwidth in the case of NFS. The time used
for querying the dictionary service hosted on Google App
Engine contributes to the startup delay of OD-BT.

7.4 Integration with Grid Appliance



Delay Delay RX Throughput
Transport Avg. Stdev. Avg. Avg.

(sec) (sec) (MB) (Mbps)
OD-BT 9.8 1.62 0.56 0.46
NFS 10.3 7.23 0.29 0.23

Table 2: Partial file distribution performance com-
parison between OD-BT and NFS for a read of 200
KB from a 100MB file. The columns are Trans-
port protocol, Average of distribution delay, Stan-
dard deviation of distribution delay, Average of data
received, Average of reception bandwidth.
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Figure 9: Comparison of Bandwidth Consumption
on the submitter between OD-BT and NFS for a
read of 200 KB from a 100MB file. RX and TX
stand for reception and transmission, respectively.

To evaluate GatorShare integrated with Grid Appliance,
we set up a Grid Appliance pool on EC2 with one job sub-
mitter, one server node running Condor Central Manager,
and ten worker nodes. Same as with previous experiments,
the job submitting node has only 1 Mbps up-link bandwidth.
The publisher submits a job that computes the MD5 hash
of the input data. The input data we use has the size of
100 MB. The submitter requests the pool to run the job ten
times. The job gets published to ten workers as there are
ten workers in total. The result matches the one in Figure 8.
The ten copies of the job are started on workers after 85 sec-
onds on average and terminated 952 seconds on average after
it is started.

8. FUTURE WORK

The GatorShare architecture presented in this paper pro-
vides a basis for the creation of distributed file systems for
Desktop Grids. Building upon this architecture, future work
will focus on providing support for important features that
include:

Caching: For datasets that are reused by applications, data
locality enabled by caching can greatly improve the perfor-
mance. Currently GSServer checks if requested data with
the same unique id has already been downloaded, it is re-

turned immediately. We plan to implement caching with a
configurable size on GSServer so that users can set a limit
on the disk space GatorShare can use and when the limit
is reached, cache eviction policies will be consulted to evict
old data to make space for new cache entries. In addition,
with caching on GSClient we can save communication be-
tween GSClient and GSServer if the same result is “fresh”
enough. The fact that we use ASP.NET to develop HTTP
web services helps us leverage existing tools and protocols
for HTTP caching. With caching enabled, GSClient can
save the communication with GSServer so that file system
operations on local cached content can be made faster.
Versioning: Some data, such as application binaries, are
evolving throughout the lifetime of a DG pool. When a
new version of application binaries come out, it needs to be
distributed to machines in the pool. Currently we do not
provide a native versioning mechanism and data associated
with a unique name is considered immutable. Users need to
explicitly put version number in file name and therefore two
versions of a file are two files with different names.
On-Demand BitTorrent: On-demand BitTorrent saves
the time and bandwidth for file to be fully downloaded when
only part of it is used. Currently we only support on-demand
piece-level BitTorrent download by users explicitly adding
parameters to virtual paths. We will investigate ways to
learn the usage patterns of certain data types and applica-
tions in order to autonomically control the means used to
retrieve data.

Full File Replication: With the cache size limit, old data
can be evicted so it is possible that a piece of data is removed
automatically from all nodes except the publisher. If the
data publisher then leaves the pool, the piece of data is lost.
Full file replication can prevent data loss caused by publisher
going offline. We plan to add this feature so that the data
publisher can choose to fully migrate some data to other
nodes.

Access Control: Currently access control is not addressed
in GatorShare. Even though by using IPOP, it is possible
to limit access to a machine by restricting connections to
authenticated peers, there is no finer-grained access control.
We are developing an intuitive and easy-to-use access control
scheme for distributed file systems and will integrate it with
GatorShare in the future.

Workflow: By applying workflow techniques, new customized
services can be easily added as a set of clearly defined and
reusable smaller tasks associated with the GatorShare file
system events. A similar implementation is introduced in
a Rule-Oriented Data System based on SRB, iRODS [27].
We are investigating methods to add the functionality to
GatorShare.

9. CONCLUSIONS

In this paper we have introduced GatorShare, a file sys-
tem based framework for high-throughput data management
in the Desktop Grid environment. The major contributions
of this work include that it tackles integration obstacles,
performance bottleneck of distribution over the Internet by
combining the file system interface and collaborative sharing
mechanism, i.e. BitTorrent. Furthermore, GatorShare does
not need centralized server or steps to set up dedicated com-
ponents, nor does it need applications to be modified to use
particular APIs. The same application is installed on each
node and users publish and download data just by launch-



ing the application. We have shown that our implementation
largely improves the data distribution performance for Desk-
top Grid environment when bandwidth is limited. With the
collaborative distribution solution provided to unmodified
applications, one can use Voluntary Computing pools from
work, home, or even on the go.
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