
Clause-Iteration with Map-Reduce to

Scalably Query Data Graphs:

The SHARD Triple-Store

Kurt Rohloff

krohloff@bbn.com

@avometric

Rick Schantz

schantz@bbn.com

Many thanks to:

Prakash Manghwani, Mike Dean,

Ian Emmons, Gail Mitchell, Doug Reid,

Chris Kappler from BBN

Hanspeter Pfister from Harvard SEAS

Phil Zeyliger from Cloudera

Outline

• Challenge Problem: Scalably Query Graph Data

• Large-Scale Computing and MapReduce

• SHARD

• Design Insights

2 krohloff@bbn.com

A Preface

SHARD is a cloud based graph store.

• High-performance scalable query processing.

SHARD released open-source.

• BSD license.

More information and code at:

– My webpage

– Sourceforge (SHARD-3store)

• Use svn to get code:
svn co https://shard-3store.svn.sourceforge.net/svnroot/shard-

3store shard-3store

– Don’t worry - this command is on SourceForge!
3

krohloff@bbn.com

4

Scalable Graph Data Querying

• Emerging commercially
– Use by NYTimes, BBC, Pharma, …
– Numerous startups.
– Oracle, MySQL have SemWeb support.

• Government use…

• See the SemWeb.

krohloff@bbn.com

SPARQL-like Queries

SPARQL Query to find all people who own a car

made in Detroit:

SELECT ?person

WHERE {

 ?person :owns ?car .

 ?car a :Car .

 ?car :madeIn :Detroit .

 }

?person ?car
owns

madeIn Detroit

Car a

5
krohloff@bbn.com

Answering Queries

Kurt car0 Ford

owns
madeBy

madeIn

Detroit

livesIn

Cambridge

a
a

City

Car

a

?person ?car
owns

madeIn

Detroit

Car a

6 krohloff@bbn.com

Variables bindings:

?person to Kurt

?car to car0

Design Considerations

• Scalable – web-scale?

• High Assurance.

• Cost Effective – commodity hardware?

• Modular inferred data separation.

• Robustness.

• Considerations as endless as applications.

7 krohloff@bbn.com

Scale Limitations!

• Triple-Store Study:

– “An Evaluation of Triple-Store Technologies for

Large Data Stores”, SSWS '07 (Part of OTM).

• What about cloud computing?

– Economic scalability…

8 krohloff@bbn.com

General Programming for Scalable

Cloud Computing

From Experience:

• Inherently multi-threaded.

• Toolsets still young.

– Not many debugging tools.

• Mental models are different...

– Learn an algorithm, adapt it to choosen framework.

– Ex: try to fit problem into PageRank design pattern.
• (This isn’t what we do, but this approach seems common.)

9 krohloff@bbn.com

Scalable Distributed System

(Cloud) Design Concept

• We use maturing MapReduce framework in

Hadoop to bulk process graph edges.

• This provides services layer to scale our graph

query processing techniques.

• Innovation:

– Iterative clause-based construction of queries.

– Join partial query responses over multiple Map-Reduce

jobs using flagged keys.
10

Abstraction of parallelization enables

much easier scaling.

krohloff@bbn.com

SHARD Triple-Store Built on Hadoop

Prioritized goals:

•Commodity hardware, ONLY

•Web scalable

•Robust

What is good:

Design Considerations:

•Large query responses

•Complex queries

Clause Iteration Query Response

Construction

Source Data

s o
p

s o
p

s o
p

s o
p

s o
p

s o
p

?person ?car
owns

madeIn

Detroit

Car a

?person ?car

owns

1st clause
results

s o
p

s o
p

s o
p

s o
p

2nd clause
results

s o
p

s o
p

o
p

o
p

?person ?car
owns

Car
a

2nd clause
results

s o
p

s o
p

o
p

o
p

o p

o
p 12 krohloff@bbn.com

1st Partial Query Match By Clause

krohloff@bbn.com 13

In first Map Step, first query clause is used

to find partial query matches that satisfy first clause

• Keys are variable bindings

• Values are set to null

Source data:
John owns dog0

Kurt livesIn Cambridge

Kurt owns car0

dog0 a Dog

car0 a Car

…

1st Map Key-Val

Output:
{John dog0} - null

{Kurt car0} - null

…

?person :owns ?car .

In first Reduce Step, repeated partial matches are removed

2nd Clause Map – New Bindings

krohloff@bbn.com 14

Map partial query matches from 2nd query clause.

• Keys are variable bindings previously observed.

• Values are set to new variable bindings.

Map matches from previous clause for reordering.

• Keys are variable bindings common with current clause

• Values are previous non-common bindings

Source data:
John owns dog0

Kurt livesIn Cambridge

Kurt owns car0

dog0 a Dog

car0 a Car

…

2nd Map Key-Val

Output:
{car0} – null

…

{dog0} – {John}

{car0} – {Kurt}

…

?car a Car .

1st Map Key-Val

Output:
{John dog0} - null

{Kurt car0} - null

…

2nd Clause Reduce – Join

krohloff@bbn.com 15

Reduce joins partial mappings on common variable

bindings with flagged keys.

2nd Map Key-Val

Output:
{car0} – null

…

{dog0} – {John}

{car0} – {Kurt}

…

Reduce

2nd Reduce Key-

Val Output:
{car0} – {Kurt}

…

Process continues over all query clauses.

HDFS Graph Storage

Kurt car0 Ford

owns
madeBy

madeIn

Detroit

livesIn

Cambridge

a
a

City

Car

a

16

Graphs saved as flat-file in HDFS:

(Portions of file saved on each data node.)

Kurt owns car0 livesIn Cambridge

Car0 a Car madeBy Ford madeIn Detroit

Cambridge a City

Detroit a City krohloff@bbn.com

HDFS data partitioning

17

Client Name Node

Node 2 Node 1

Node 4 Node 3
Cannon Right

Cannon Left

Cannon Behind

Local Cloud

Cannon Right

Cannon Left

Cannon Behind

Cannon Right

Cannon Left

Cannon Behind

Cannon Right

Cannon Left

Cannon Behind

krohloff@bbn.com

• Hash Partitioning by Default.

• Neighborhood partitioning would probably provide better performance.

• R&D opportunity!

Query Processing Implementation

• BBN-developed query processor.

– Starting integration with “standard” interfaces

• Jena, Sesame.

• SHARD supports “most” of SPARQL.

– Like most commercial triple-stores.

• Large performance improvements possible with

improved query reordering.

18 krohloff@bbn.com

Data Persistence Advice from SHARD

• Down to “bare metal” in HDFS for large-scale

efficiency.

– No Berkeley DB, no C-stores, …. Nothing.

• Simple data storage as flat files.

– Lists of (predicate, object) pairs for every subject by line.

– Ex: Kurt owns car0 livesin Cambridge

• Simple often really is better…

19 krohloff@bbn.com

Test Data

• Deployed code on Amazon EC2 cloud.

– 19 XL nodes.

• LUBM (Lehigh Univ. BenchMark)

– Artificial data on students, professors,

courses, etc… at universities.

• 800 million edge graph.

– 6000 LUBM university dataset.

• In general, performed comparably to

“industrial” monolithic triple-stores.

20 krohloff@bbn.com

Performance Comparison

Query Type SHARD Parliament+Sesame Parliament+Jena

Simple Query, Small
Response: Triple
Lookup (Query 1)

404 sec.

(approx 0.1 hr.)
0.1hr 0.001hr

Triangular Query
(Query 9)

740 sec.

(approx 0.2 hr.)
1hr 1hr

Simple Query, Large
Response:
(Query 14)

118 sec.

(approx 0.03 hr.)

1hr 5hr

krohloff@bbn.com 21

s o
p

o

s o

s o
p

Insight from Query Performance

• SHARD is not optimal for edge look-ups.

– This could be expected – SHARD (and MapReduce

implementations) have no real indexing support.

• SHARD does well where large portions of

dataset need to be processed.

– Ex:

• Multiple join operations

• Return large datasets

– This behavior is an artifact of parallel searching and

joining operation native to Clause-Iteration.

22 krohloff@bbn.com

Design Insights

• Abstraction is a big win.

– Surprisingly economical for development.

• Lack of indexing limits look-up capabilities.

– This may not be so bad for some applications

– Index will also need to be continually updated as data

added.

23 krohloff@bbn.com

Design Insights – Data Partitioning

• Data linking may be a big win to reduce join

overhead and reduce need for iterations over

clauses.

– A first step would be advanced data partitioning.

– Done some in Cloud9, but still wide open for even

basic R&D implementations.

• Advanced data partitioning would also minimize

overhead of moving intermediate results

between compute nodes.

– This seemed to be biggest bottleneck.

 krohloff@bbn.com 24

Design Insights – Query Processing

• Query pre-processing may also be a big win.

– Could also greatly reduce amount of data carried

between nodes during join operations.

• Subject-Iteration may be an alternative

approach for queries with strongly connected

source nodes.

– Iterate over query subject rather than clauses.

25 krohloff@bbn.com

Thanks!

Questions?

Kurt Rohloff

krohloff@bbn.com

@avometric

