
Dynamic Protocol Tuning Algorithms for
High Performance Data Transfers

Engin Arslan, Brandon Ross, and Tevfik Kosar

Department of Computer Science & Engineering
University at Buffalo (SUNY), Buffalo NY 14260, USA

{enginars,bwross,tkosar}@buffalo.edu

Abstract. Obtaining optimal data transfer performance is of utmost
importance to today’s data-intensive distributed applications and wide-
area data replication services. Doing so necessitates effectively utilizing
available network bandwidth and resources, yet in practice transfers sel-
dom reach the levels of utilization they potentially could. Tuning protocol
parameters such as pipelining, parallelism, and concurrency can signif-
icantly increase utilization and performance, however determining the
best settings for these parameters is a difficult problem, as network con-
ditions can vary greatly between sites and over time. In this paper, we
present four application-level algorithms for heuristically tuning proto-
col parameters for data transfers in wide-area networks. Our algorithms
dynamically tune the number of parallel data streams per file, the level
of control channel pipelining, and the number of concurrent file trans-
fers to fill network pipes. The presented algorithms are implemented as
a standalone service as well as being used in interaction with external
data scheduling tools such as Stork. The experimental results are very
promising, and our algorithms outperform existing solutions in this area.

Keywords: Application-level protocol tuning; throughput optimization;
wide-area networks; data-intensive applications; data replication.

1 Introduction

Despite the increasing availability of high-speed wide-area networks and the use
of modern data transfer protocols designed for high performance, file transfers in
practice often only attain fractions of theoretical maximum throughputs, leaving
networks underutilized and users unsatisfied. This fact is often due to a number
of confounding factors, such as underutilization of end-system CPU cores, low
disk I/O speeds, server implementations not taking advantage of parallel I/O
opportunities, traffic at inter-system routing nodes, and unsuitable system-level
tuning of networking protocols.

The effects of some of these factors can be mitigated to varying degrees
through the use of techniques such as command pipelining, transfer-level par-
allelism, and concurrent transfers using multiple control channels. The degree
to which these techniques are utilized, however, has the potential to negatively
impact the performance of the transfer and the network as a whole. Too little
use of one technique, and the network might be underutilized; too much, and the

2

network might be overburdened to the detriment of the transfer and other users.
Furthermore, the optimal level of usage for each technique varies depending on
network and end-system conditions, meaning no combination of parameters is
optimal for every scenario.

Dynamic optimization techniques provide a method for determining which
combination of parameters is “just right” for a given transfer. This paper pro-
poses optimization techniques that try to maximize transfer throughput by
choosing optimal parallelism, concurrency, and pipelining levels through file set
analysis and clustering. Our algorithms also re-provision idle control channels
dynamically to improve the performance of “slower” file clusters, ensuring that
resources are effectively utilized.

In this paper, we present four application-level algorithms for heuristically
tuning protocol parameters for data transfers in wide-area networks. Our al-
gorithms can tune the number of parallel data streams per file (for large file
optimization), the level of control and data channel pipelining (for small file
optimization), and the number of concurrent file transfers to fill network pipes
(a technique useful for all types of files) in an efficient manner. The developed
algorithms are implemented as a standalone service as well as being used in
interaction with external data scheduling tools such as Stork [10, 12]. The exper-
imental results are very promising, and our algorithms outperform other existing
solutions in this area.

2 Related Work

Liu et al. [14] developed a tool which optimizes multi-file transfers by opening
multiple GridFTP control channels. The tool increases the number of concur-
rent flows up to the point where transfer performance degrades. Their work
only focuses on concurrent file transfers, and other transfer parameters are not
considered.

Globus Online [1] offers fire-and-forget GridFTP file transfers as a service.
The developers mention that they set the pipelining, parallelism, and concur-
rency parameters to fixed values for three different file sizes (i.e. less than 50MB,
larger than 250MB, and in between). However, the tuning Globus Online per-
forms is non-adaptive; it does not change depending on network conditions and
transfer performance.

Other approaches aim to improve throughput by opening flows over multiple
paths between end-systems [17, 8], however there are cases where individual data
flows fail to achieve optimal throughput because of end-system bottlenecks. Sev-
eral others propose solutions that improve utilization of a single path by means
of parallel streams [2, 6, 16, 23], pipelining [5, 4, 3], and concurrent transfers [13,
11, 14]. Although using parallelism, pipelining, and concurrency may improve
throughput in certain cases, an optimization algorithm should also consider sys-
tem configuration, since end-systems may present factors (e.g., low disk I/O
speeds or over-tasked CPUs) which can introduce bottlenecks.

3

In our previous work [21], we proposed network-aware transfer optimization
by automatically detecting bottlenecks and improving throughput by utilizing
network and end-system parallelism.

We developed three highly-accurate models [24, 22, 9] which would require
as few as three sampling points to provide accurate predictions for the optimal
parallel stream number. These models have proved to be more accurate than
existing similar models [7, 16] which lack in predicting the parallel stream number
that gives the peak throughput. We have developed algorithms to determine the
best sampling size and the best sampling points for data transfers by using
bandwidth, Round-Trip Time (RTT), or Bandwidth-Delay Product (BDP) [20].

3 Dynamic Protocol Tuning

Different transfer parameters such as pipelining, parallelism, and concurrency
play a significant role in affecting achievable transfer throughput. However, set-
ting the optimal levels for these parameters is a challenging problem, and poorly-
tuned parameters can either cause underutilization of the network or overburden
the network and degrade the performance due to increased packet loss, end-
system overhead, and other factors.

Among these parameters, pipelining specifically targets the problem of
transferring a large numbers of small files. In most control channel-based transfer
protocols, an entire transfer must complete and be acknowledged before the next
transfer command is sent by the client. This may cause a delay of more than one
RTT between individual transfers. With pipelining, multiple transfer commands
can be queued up at the server, greatly reducing the delay between transfer
completion and the receipt of the next command. Parallelism sends different
portions of the same file over parallel data streams (typically TCP connections),
and can achieve high throughput by aggregating multiple streams and getting
an unfair share of the available bandwidth. Concurrency refers to sending mul-
tiple files simultaneously using parallel control channels, and is especially useful
for taking advantage of I/O concurrency in parallel disk systems.

The models developed in our previous work [21, 24, 22, 9] lay the foundations
of the dynamic protocol tuning algorithms presented in this paper, where we uti-
lize all three parameters in combination to heuristically determine near-optimal
network throughput.

In this paper, we present four dynamic protocol tuning algorithms:

1. The “Single-Chunk (SC)” approach, which divides the set of files into chunks
based on file size, and then transfers each chunk with its optimal parameters;

2. the “Multi-Chunk (MC)” approach which likewise creates chunks based
on the file size, but, rather than scheduling each chunk separately, it co-
schedules and runs small-file chunks and large-file chunks together in order
to balance and minimize the effect of poor performance of small file transfers;

3. the “Pro-Active Multi-Chunk (ProMC)” approach, which, instead of allo-
cating channels equally among chunks, considers chunk size and type, and
improves the performance if small chunks dominate the dataset; and

4

4. the “Max Fair MC (FairMC)” approach, which aims to make use of simulta-
neous chunk transfers but also tries to be fair in terms of network resource
usage by limiting the maximum number of simultaneous chunk transfers.

3.1 Single-Chunk (SC) Algorithm

Files with different sizes need different transfer parameters to obtain optimal
throughput. For example, pipelining and data channel reuse would mostly im-
prove the performance of small file transfers, whereas per-file parallelism would
be beneficial if the files are large. Optimal concurrency levels for different file
sizes would be different as well. Instead of using the same parameter combina-
tions for all files in a mixed dataset, we partition the dataset into chunks based
on file size and Bandwidth Delay Product (BDP), and use different parameter
combinations for each chunk.

As shown in Algorithm 1, we initially partition files into different chunks, then
we check if each chunk has a sufficient number of files using the mergePartitions
subroutine. We merge a chunk with another if it is deemed to be too small to be
treated separately. After partitioning files, we calculate the optimal parameter
combination for each chunk in findOptimalParameters. When calculating the
density of a chunk, we take the average file size of the chunk and find its density
in a similar way we do in mergePartitions.

Pipelining and concurrency are the most effective parameters at overcoming
poor network utilization for small file transfers, so it is especially important to
choose the best pipelining and concurrency values for such transfers. We set the
pipelining values by considering the BDP and average file size of each chunk
(lines 23, 27, 31 and 35); set the parallelism values by considering the BDP,
average file size, and the TCP buffer size (lines 24, 28, 32, and 36); and set the
concurrency values by considering the BDP, average file size, number of files in
each chunk, and the maximum concurrency level (lines 25, 29, 33, and 37) in
Algorithm 1.

As the average file size of a chunk increases, we decrease the pipelining value
since it does not further improve performance, and can even cause performance
degradation by poorly utilizing concurrent control channels. The method of se-
lecting parallelism prevents using unnecessarily large parallelism levels for small
files and insufficiently small parallelism levels for large files. Concurrency is set
to larger values for small files, whereas for large files it is limited to smaller val-
ues, as higher concurrency values might cause unfair usage of end-system and
network resources.

We tested our algorithms with concurrency levels up to 10. Although higher
concurrency levels could possibly further increase throughput, the testing was
performed on a shared testbed where it was against policy to open more than
10 file transfer connections at a time. Presumably many other shared network
environments implement similar policies. Furthermore, throughput gains were
found to experience diminishing returns as the concurrency level was increased.
These factors led us to limit the maximum concurrency level our algorithms
could reach to some safe fixed value – specifically 10.

5

Algorithm 1 — Partitioning Dataset and Setting Parameter Values
1: function partitionFiles(allFiles,BDP)
2: Chunk Small, Middle, Large, Huge
3: while allF iles.count() > 0 do
4: Filef = allF iles.pop()
5: if f.size < BDP

10 then

6: Small.add(f)
7: else if f.size < BDP

2 then

8: Middle.add(f)
9: else if f.size < BDP ∗ 20 then
10: Large.add(f)
11: else
12: Huge.add(f)
13: end if
14: end while
15: allChunks.add(Small,Middle,Large,Huge)
16: mergePartitions(allChunks)
17: return allChunks
18: end function

19: function findOptimalParameters(chunk,BDP,bufferSize,concurrency)
20: Density d = findDensityofPartition(chunk)
21: avgFileSize = findAverage(chunk)
22: if d == SMALL then

23: pipelining =
l

BDP
avgF ileSize

m
− 1

24: parallelism = Min(
l

BDP
bufferSize

m
,

l
avgF ileSize
bufferSize

m
) + 1

25: concurrency = Min(BDP
avgF ileSize , chunk.count(), concurrency)

26: else if d == MIDDLE then

27: pipelining =
l

BDP
avgF ileSize

m
28: parallelism = Min(

l
BDP

bufferSize

m
,

l
avgF ileSize
bufferSize

m
) + 1

29: concurrency = Min(BDP
avgF ileSize , chunk.count(), concurrency)

30: else if d == LARGE then

31: pipelining =
l

BDP
avgF ileSize

m
+ 1 . This chunk should have pipelining

32: parallelism = Min(
l

BDP
bufferSize

m
,

l
avgF ileSize
bufferSize

m
) + 2

33: concurrency = Min(2, chunk.count(), concurrency)
34: else if d == HUGE then

35: pipelining =
l

BDP
avgF ileSize

m
− 1 . Pipelining will be zero in most cases

36: parallelism = Min(
l

BDP
bufferSize

m
,

l
avgF ileSize
bufferSize

m
) + 2

37: concurrency = Min(2, chunk.count(), concurrency)
38: end ifreturn pipelining,parallelism,concurrency
39: end function

After deciding the best parameter combination for each chunk, the Single-
Chunk (SC) algorithm transfers each chunk one-by-one.

3.2 Multi-Chunk (MC) Algorithm

In the Multi-Chunk (MC) method, the focus is mainly on minimizing the effect
of small file chunks on the overall throughput. Based on the results obtained
from the SC approach, we deduced that even after choosing the best parameter
combination for each chunk, the throughput obtained during the transfer of
the small file chunks (called Small and Middle in Algorithm 1) is significantly
worse compared to large chunks (Large and Huge in Algorithm 1) due to the
high overhead of reading too many files from disk and underutilization of the

6

Algorithm 2 — Pro-Active Multi-Chunk (ProMC) Algorithm

1: function transfer(source,destination,BW,RTT,concurrency)
2: BDP = BW ∗ RTT
3: allF iles = fetchFilesFromServer()
4: chunks = partitionFiles(allF iles, BDP)
5: for i = 0; i < chunks.length; i + + do
6: if chunks[i] == SMALL then
7: weights[i] = 6 ∗ chunks[i].size
8: else if chunks[i] == MIDDLE then
9: weights[i] = 3 ∗ chunks[i].size
10: else if chunks[i] == LARGE then
11: weights[i] = 2 ∗ chunks[i].size
12: else if chunks[i] == HUGE then
13: weights[i] = 1 ∗ chunks[i].size
14: totalWeight = totalWeight + weights[i]
15: end if
16: end for
17: for i = 0; i < chunks.length; i + + do
18: weights[i] = weights[i]/totalWeight . Calculate proportional weight of each chunk
19: channelAllocation[i] = bconcurrency ∗ weights[i]c
20: end for
21: transferChunks(chunks) . Run chunks concurrently
22: end function

network pipe. Depending on the weight of small files relative to the total dataset
size, overall throughput can be much less than the throughput of large file chunk
transfers. Thus, we developed the MC method which aims to minimize the effect
of poor transfer throughput of a dataset dominated by small files.

The MC method distributes data channels among chunks using round-robin
in the order of Huge–Small–Large–Middle. The ordering of chunks provides bet-
ter chunk distribution if the number of channels is less than the number of
chunks. After channel distribution is completed, MC schedules chunks concur-
rently using the calculated concurrency level for each chunk.

The estimated completion time for each chunk is calculated every five seconds
by dividing the remaining data size by the throughput of the chunk (i.e. the sum
of the throughput for all channels for a given chunk). When the transfer of all
files in a chunk is completed, the channels of the chunk are scheduled for other
chunks based on their estimated completion time.

3.3 Pro-Active Multi-Chunk (ProMC) Algorithm

The way the MC approach distributes channels among chunks might be non-
optimal if the weights of chunks are different. For example, if we have a dataset
dominated by small files, then round-robin scheduling of channels may lead to
sub-optimal channel allocation. This can cause sub-optimal transfer throughput
since large chunks can be transferred more quickly than smaller chunks. The
Pro-Active Multi-Chunk (ProMC) approach concentrates on more effectively
distributing chunks among channels to improve the effectiveness of concurrency
between the small and large chunks.

Channel allocation in the ProMC approach is demonstrated in Algorithm 2.
ProMC also considers the type of a chunk when calculating its weight since the

7

Algorithm 3 — Max-Fair Multi-Chunk (FairMC) Algorithm

1: function transfer(BW,RTT,BufferSize)
2: BDP = BW*RTT
3: allFiles = fetchFilesFromServer()
4: chunks = partitionFiles(allFiles,BDP)
5: if chunks contains Huge&Large chunk c then
6: c.channels + + . Allocate a channel for huge&large chunk
7: concurrency −−
8: if chunks contains Small&Middle chunks then
9: allocateChannels(Small,Middle,concurrency); . If there exist Small&Middle chunks

then allocate rest of channels to them
10: else
11: allocateChannel(Large,Huge,1);
12: end if
13: else
14: allocateChannel(Small,Middle,concurrency) . If there is no large chunk, then distribute

given channels among Small&Middle chunks
15: end if
16: transferChunks(chunks) . Run chunks concurrently
17: end function

transfer time of a chunk heavily depends its file distribution. Another way of
achieving fairness among chunks in ProMC is dynamic channel allocation. It
calculates the transfer completion time of each chunk periodically (by default, it
is set to check every five seconds, similar to MC). If a chunk’s completion time
is calculated to be significantly less than another chunk’s completion time for
three consecutive periods, then a channel is taken over by the slow chunk from
the faster chunk. Since channel transfer from one chunk to another is a costly
operation, the threshold must be chosen carefully when comparing completion
time differences. Also, rather than deciding on channel allocation after each
period, ProMC waits three periods to make sure the estimated completion time
difference is not a temporary condition.

3.4 Max-Fair Multi-Chunk (FairMC) Algorithm

The idea behind the Max-Fair Multi-Chunk (FairMC) approach is to make use
of concurrent chunk transfers and to keep network and end-system utilization
at a fair level. FairMC first calculates how many channels are needed for each
chunk. Then, if small and large chunks exist, it opens only one channel for large
chunks and uses the rest of the available channels for small chunks as shown
in lines 5-9 of Algorithm 3. Otherwise, the channels are shared between small
or large chunks as shown in lines 11 and 14. The goal here is to achieve high
performance throughput without violating network fairness policies.

4 Performance Evaluation

We tested our experiments on XSEDE [18] and LONI [15] production-level high-
bandwidth networks. Although both of the networks have 10G network band-
width between sites, XSEDE provides higher throughput in end-to-end (disk-to-
disk) transfers despite the high RTT between its sites. This is mainly due to the
highly tuned and parallelized disk sub-systems at the XSEDE sites.

8

Specs XSEDE LONI
(Lonestar-Gordon) (Blacklight-Trestles) (Queenbee-Painter)

Bandwidth 10 Gbps 10Gbps 10 Gbps

RTT 60 ms 71 ms 10 ms

TCP Buffer Size 32 MB 32 MB 16 MB

BDP 75 MB 90 MB 9 MB
Table 1. Network specifications of test environments

On XSEDE, we tested our dynamic protocol tuning algorithms between two
different site pairs – Lonestar-Gordon and Blacklight-Trestles – with specifica-
tions given in Table 1. We also tested our algorithms using two different datasets
where file sizes range between 3MB and 20GB. The datasets differ in the pro-
portion of small files to the total dataset size. In the first one (referred to as
“mixed”), small files are almost 35-40% of the total dataset, whereas they make
up 55-65% of the second dataset (referred to as “small”). The purpose of using
two different datasets is to demonstrate how our algorithms perform when the
dataset is dominated by small or large files.

To analyze the effects of different parameters on the transfer of different file
sizes, we initially conducted experiments for each of the parameters separately,
as shown in Figure 1. We transferred each dataset, only changing one parameter
(i.e., pipelining, parallelism, or concurrency) at a time to observe the individ-
ual effect of each parameter. Then we introduced other parameters one-by-one.
These results show that concurrency is the most influential parameter for all
file sizes on both networks, with parallelism being the second most. For this
reason, we use concurrency as the pivot parameter in the comparison of differ-
ent algorithms in this section. In all of our algorithms, it is assumed that RTT,
bandwidth, and TCP buffer capacities are known beforehand. However, one can
easily obtain RTT and TCP buffer capacity with negligible overhead. Available
bandwidth can also be measured via bandwidth estimator tools (e.g. Iperf) with
the cost of a couple of seconds.

We compared the performance of our four dynamic protocol tuning algo-
rithms with Globus Online [1], PCP [19], and optimized globus-url-copy (GUC).
Globus Online is a well-known data transfer service which uses a heuristic ap-
proach for transfer optimizations. The heuristic they use is similar to our basic
Single-Chunk (SC) method in terms of dividing the dataset into chunks and run-
ning each chunk sequentially using different parameter sets. However, SC and
Globus Online differ in the way they divide the chunks and in choosing the pa-
rameter set for each chunk. PCP employs a similar divide-and-transfer approach
like SC and Globus Online using its own specific heuristic. For GUC, we set the
pipelining to 30, parallelism to 4, and changed concurrency to different values
(specifically, 2, 6, and 10) for different runs. We chose the pipelining and par-
allelism parameters in a way that they give close-to-best results based on our
prior observations.

Results for Globus Online transfers are shown for concurrency level two as
it always uses two channels for every chunk it creates. Although the PCP al-

9

 0

 500

 1000

 1500

 2000

 2500

 3000

 1 2 4 8 16 32 64

Th
ro

ug
hp

ut
 (M

bp
s)

Pipelining

(a) Pipelining (XSEDE)

1M
10M

100M
1G

10G

 0

 200

 400

 600

 800

 1000

 1200

 1 2 4 8 16 32 64

Th
ro

ug
hp

ut
 (M

bp
s)

Pipelining

(d) Pipelining (LONI)

1M
10M

100M
1G

 0

 500

 1000

 1500

 2000

 2500

 3000

 1 2 4 8 16 32 64

Th
ro

ug
hp

ut
 (M

bp
s)

Parallelism

(b) Parallelism with fixed pipelining (XSEDE)

1M
10M

100M
1G

10G

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1 2 4 8 16 32 64

Th
ro

ug
hp

ut
 (M

bp
s)

Parallelism

(e) Parallelism with fixed pipelining (LONI)

1M
10M

100M
1G

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 1 2 4 8

Th
ro

ug
hp

ut
 (M

bp
s)

Concurrency

(c) Concurrency with fixed parallelism&pipelining (XSEDE)

1M
10M

100M
1G

10G

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

 1 2 4 8 16 32

Th
ro

ug
hp

ut
 (M

bp
s)

Concurrency

(f) Concurrency with fixed parallelism&pipelining (LONI)

1M
10M

100M
1G

Fig. 1. Effect of combining parameters on throughput

gorithm does not use a statically defined concurrency level, we observed that it
generally choses a concurrency level between one and three; we set its perfor-
mance histogram on concurrency level two. When concurrency level is set to two
for all algorithms, almost all of our dynamic tuning algorithms perform better
than PCP, Globus Online, and GUC. As we increase the concurrency level (as
our dynamic algorithms do so), we can see significant performance improvement
for all algorithms. However, SC is unable to improve the performance after con-
currency level six while MC makes use of concurrency more effectively and its
performance continues to increase in proportion to the concurrency level.

FairMC also improves in performance as concurrency increases. However, it
does not perform as well as MC and ProMC, since it limits concurrency levels
for large files and aims for fairness in lieu of maximum performance. ProMC and
MC achieve similar performance in this case, since ProMC plays a significant
role when small files dominate the data set. ProMC and MC perform better

10

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

1 2 4 6 8 10

Th
ro

ug
hp

ut
 (M

bp
s)

Concurrency

(a) Gordon-Lonestar
Globus O.

SC
FairMC

MC
ProMC

GUC
PCP

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

1 2 4 6 8 10

Th
ro

ug
hp

ut
 (M

bp
s)

Concurrency

(b) Blacklight-Trestles
Globus O.

SC
FairMC

MC
ProMC

GUC
PCP

 0

 200

 400

 600

 800

 1000

 1200

1 2 4 6 8 10

Th
ro

ug
hp

ut
 (M

bp
s)

Concurrency

(c) LONI
SC

FairMC
MC

ProMC
GUC
PCP

Fig. 2. Disk-to-disk transfer performance comparison with the mixed dataset

than GUC for all concurrency levels, which is mostly due to the efficient channel
management of these two algorithms.

Figures 2(a) and 2(b) show the performance of optimization methods when
used between different site pairs on XSEDE for the same dataset. Since disk
read/write performance on Blacklight-Trestles is less than that on Gordon-
Lonestar, throughput values obtained between these hosts are relatively smaller.
GUC performance is very low compared to MC, since, when the pipelining is
set in the GUC transfer, it statically sets the pipelining level for each channel
to the number of transfer tasks. This means that it is possible for files to be
assigned to the channels unequally. For example, one channel can be assigned
to transfer the set of files contributing to the dominant portion of total dataset
size. This will cause inefficient usage of channels, since, even if some channels
finish their transfer tasks earlier, they will not be able to help others by sharing
the remaining tasks.

We observed that LONI end-system disk performance is much lower than on
XSEDE sites. This affected the results we obtained from LONI considerably as
shown in Figure 2(c). Although the increased concurrency contributed positively
to the throughput on LONI, the improvement is not as noticeable as it is on
XSEDE.

In Figure 3, we observe that ProMC performed better than MC for almost
all concurrency levels, as it allocates the channels to chunks more efficiently. It
also monitors each chunk’s performance and acts to re-allocate a channel from

11

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

1 2 4 6 8 10

Th
ro

ug
hp

ut
 (M

bp
s)

Concurrency

(a) Gordon-Lonestar
Globus O.

SC
FairMC

MC
ProMC

GUC
PCP

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000

1 2 4 6 8 10

Th
ro

ug
hp

ut
 (M

bp
s)

Concurrency

(b) Blacklight-Trestles
Globus O.

SC
FairMC

MC
ProMC

GUC
PCP

Fig. 3. Disk-to-disk performance comparison with the small file dominant dataset

one chunk to another to minimize the negative effect of small file transfers on
overall transfer performance.

5 Conclusions

We have presented four application-level algorithms for heuristically tuning pro-
tocol parameters for data transfers in wide-area networks. The parameters dy-
namically tuned by our algorithms (parallelism, pipelining, and concurrency
levels) have shown to be very important factors in determining the ultimate
throughput and network utilization obtained by many data transfer applica-
tions. Though determining the best combination for these parameter values is
not a trivial task, we have shown that our algorithms can choose parameter
combinations which yield demonstrably higher throughputs than those used in
unoptimized transfers or chosen by less sophisticated heuristics.

Our algorithms were designed to be client-side techniques and operate en-
tirely in user space, and thus special configurations at the server side or at the
kernel level are not necessary to take advantage of them. The algorithms can be
implemented as standalone transfer clients or as part of an optimization library
or service. We plan to include these (and future algorithms based thereupon)
in the Stork data scheduler [10, 12] as well as our new Cloud-hosted transfer
optimization suite, StorkCloud.

6 Acknowledgments

This project is in part sponsored by NSF under award numbers CNS-1131889
(CAREER), OCI-0926701 (STCI-Stork), and CCF-1115805 (CiC-Stork).

References

1. Allen, B., Bresnahan, J., Childers, L., Foster, I., Kandaswamy, G., Kettimuthu,
R., Kordas, J., Link, M., Martin, S., Pickett, K., Tuecke, S.: Software as a service
for data scientists. Communications of the ACM 55:2 (2012) 81–88

2. Altman, E., Barman, D.: Parallel tcp sockets: Simple model, throughput and
validation. In: Proceedings of IEEE INFOCOM. (2006)

12

3. Bresnahan, J., Link, M., Kettimuthu, R., Fraser, D., Foster, I.: Gridftp pipelining.
In: Proceedings of TeraGrid. (2007)

4. Farkas, K., Huang, P., Krishnamurthy, B., Zhang, Y., Padhye, J.: Impact of tcp
variants on http performance. Proceedings of High Speed Networking 2 (2002)

5. Freed, N.: SMTP service extension for command pipelining.
http://tools.ietf.org/html/rfc2920

6. Hacker, T.J., Noble, B.D., Athey, B.D.: Adaptive data block scheduling for parallel
tcp streams. In: Proceedings of HPDC. (2005)

7. Hacker, T.J., Noble, B.D., Atley, B.D.: The end-to-end performance effects of
parallel tcp sockets on a lossy wide area network. In: Proc. of IPDPS. (2002)

8. Khanna, G., Catalyurek, U., Kurc, T., Kettimuthu, R., Sadayappan, P., Foster, I.,
Saltz, J.: Using overlays for efficient data transfer over shared wide-area networks.
In: Proceedings of SC, Piscataway, NJ, USA (2008)

9. Kim, J., Yildirim, E., Kosar, T.: A highly-accurate and low-overhead prediction
model for transfer throughput optimization. In: Proceedings of ACM SC’12 DISCS
Workshop. (2012)

10. Kosar, T.: A new paradigm in data intensive computing: Stork and the data-aware
schedulers. In: Proceedings of IEEE HPDC’06 CLADE Workshop. (2006)

11. Kosar, T., Balman, M.: A new paradigm: Data-aware scheduling in grid computing.
Future Generation Computing Systems 25(4) (2009) 406–413

12. Kosar, T., Balman, M., Yildirim, E., Kulasekaran, S., Ross, B.: Stork data sched-
uler: Mitigating the data bottleneck in e-science. The Phil. Transactions of the
Royal Society A 369(3254-3267) (2011)

13. Kosar, T., Livny, M.: Stork: Making data placement a first class citizen in the grid.
In: Proceedings of ICDCS’04. (March 2004) 342–349

14. Liu, W., Tieman, B., Kettimuthu, R., Foster, I.: A data transfer framework for
large-scale science experiments. In: Proceedings of DIDC Workshop. (2010)

15. LONI: Louisiana optical network initiative (LONI). http://www.loni.org/
16. Lu, D., Qiao, Y., Dinda, P.A., Bustamante, F.E.: Modeling and taming parallel

tcp on the wide area network. In: Proceedings of IPDPS. (2005)
17. Raiciu, C., Pluntke, C., Barre, S., Greenhalgh, A., Wischik, D., Handley, M.: Data

center networking with multipath tcp. In: Proceedings of Hotnets-IX. (2010)
18. XSEDE: Extreme Science and Engineering Discovery Environment.

http://www.xsede.org/
19. Yildirim, E., Kim, J., Kosar, T.: How gridftp pipelining, parallelism and concur-

rency work: A guide for optimizing large dataset transfers. In: Proceedings of
Network-Aware Data Management Workshop (NDM 2012). (November 2012)

20. Yildirim, E., Kim, J., Kosar, T.: Optimizing the sample size for a cloud-hosted
data scheduling service. In: Proc. of IEEE/ACM CCGrid CCSA Workshop. (2012)

21. Yildirim, E., Kosar, T.: Network-aware end-to-end data throughput optimization.
In: Proceedings of Network-Aware Data Management Workshop (NDM 2011)

22. Yildirim, E., Yin, D., Kosar, T.: Prediction of optimal parallelism level in wide
area data transfers. IEEE TPDS 22(12) (2011)

23. Yildirim, E., Yin, D., Kosar, T.: Balancing tcp buffer vs parallel streams in appli-
cation level throughput optimization. In: Proceedings of DADC Workshop. (2009)

24. Yin, D., Yildirim, E., Kosar, T.: A data throughput prediction and optimization
service for widely distributed many-task computing. IEEE TPDS 22(6) (2011)

