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ABSTRACT   

 

 

Given the aftermaths of Hurricane Katrina in New Orleans and the surrounding parishes, the need to predict 

tropical storms and hurricanes has increased multifold. Accurate predictions may assist decision makers to 

implement appropriate evacuation plans necessary for the wellbeing of citizens. Coastal modeling is a key tool 

used to foresee hurricanes, storm surge, and flooding. Of the many models implemented, ADCIRC, a project of 

the University of North Carolina, seems to hold much promise. Our objectives in this study were multifold. First, 

we ascertained the current limitations of the ADCIRC model. We achieved this goal through a variety of means 

including ADCIRC benchmarks on single and multiple clusters as well as a gprof profile of ADCIRC on a single 

cluster. Then, based on the information obtained from these efforts, we suggested appropriate improvements to 

optimize ADCIRC. With the achievement of these objectives, we hope ADCIRC will become a vital tool in 

developing accurate evacuation plans under duress that will aid in saving a countless number of lives. 
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INTRODUCTION 

In areas where hurricanes, storm surges, and flooding occur 

frequently, developing appropriate evacuation plans is a must. 

Coastal modeling allows for the study of the complex coastal 

systems. Consequently, scientists can then utilize these models as 

aids in predicting hurricanes, storm surges, and flooding. A 

number of models have been implemented in this spirit [LYNCH et 

al., 1996, LUETTICH et al., 1992]. Following these models, it may 

very well be possible to take preventive measures to minimize the 

loss in event of a hurricane, storm surge, and flooding. 

Developed at the University of North Carolina, ADCIRC 

(ADvanced Multi-Dimensional CIRCulation Model for Shelves, 

Coasts and Estuaries) is a multi-dimensional, depth integrated, 

barotropic time-dependent long wave, finite element-based 

hydrodynamic circulation code. It can be run either as a two-

dimensional depth integrated (2DDI) model or as a three-

dimensional (3D) model. ADCIRC-2DDI solves the vertically-

integrated momentum equations to determine the depth-averaged 

velocity. 3D versions of ADCIRC solve the velocity components 

in the coordinate direction, x, y, and z over generalized stretched 

vertical coordinate system by utilizing the shallow water form of 

the moment equation. In either case, elevation is attained from the 

solution of the depth-integrated continuity equation in GWCE 

form. Velocity is attained from the solution of either momentum 

equations. All nonlinear terms have been kept in these equations.  

The purpose of ADCIRC is to solve time dependent, free 

surface circulation and transport problems in two and three 

dimensions. These problems are handled using computer programs 

that make use of the finite element method in space while 

allowing the use of highly flexible unstructured grids [LUETTICH et 

al., 1992]. 

 

 

According to [LUETTICH et al., 1992], ADCIRC application 

consists of : 

    • modeling tides and wind driven circulation 

    • analysis of hurricane storm surge and flooding 

    • dredging feasibility and material disposal studies 

    • larval transport studies 

    • near shore marine operations 

 

The ADCIRC model has included several applications in 

significant areas. Currently, ADCIRC can only be executed on a 

tightly coupled cluster. Our major goal in this paper is ascertain 

the current limitations of this model, and then suggest possible 

improvements and optimize ADCIRC.  

The outline of the article is as follows. First, we provide details 

on related work. Then, we briefly introduce the ADCIRC model 

theory. We then touch upon advantages and disadvantages of this 

model. Afterwards, we present the ADCIRC benchmark results on 

a single high-performance compute cluster, the gprof profile for 

ADCIRC on that cluster, and initial benchmark results for 

ADCIRC on multiple clusters. Finally, we conclude with a 

discussion of current system status and future plans. 

 

                                 RELATED WORK 

There are a variety of fields of work related to ADCIRC. For 

our purposes, though, we examine the literature on decoupling 

tightly coupled applications that allow single cluster applications 

to be run on multiple clusters. Given that multiple clusters exist 

these days, being able to run ADCIRC on multiple clusters where 

communication does not overcome computation will allow for a 

better performance of ADCIRC. One effort in decoupling a tightly 

coupled application can be found in [BARNARD et al., 1999]. In 

this case the authors implemented a computational fluid dynamic 
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(CFD) algorithm, OVERFLOW, into a distributive algorithm to be 

executed on the Information Power Grid. OVERFLOW is heavily 

used by NASA, and a time is coming where the resources of a 

single supercomputer would not suffice for the purposes of 

NASA. To achieve this goal of executing OVERFLOW on 

multiple clusters, significant work was performed. First, the 

authors had a framework in which the distributed algorithm can be 

applied via Globus and the Information Power Grid. More 

interesting for our purposes, though, is the manner in which the 

tightly coupled iterative solver was slightly modified to allow for 

the implementation of OVERFLOW in a multiple cluster 

environment. 

This modified algorithm’s property can be summed up in three 

major points. First, one needs to briefly illustrate traditional 

parallel flow solvers. These traditional solvers synchronize and 

communicate boundary values for a particular timestep N. After 

the synchronization, the values are used to compute the boundary 

values for timestep N + 1 using the current values of N.  

In the modified approach, nodes asynchronously communicate 

the boundary values for a timestep N. In the meantime, the N + 1 

timestep is computed using the N – 1 timestep boundary values. 

This procedure allows for hiding the communication latency 

associated with processes running on multiple clusters. However, 

a drawback is that convergence to a solution takes much longer to 

occur. Another approach found in [MECHOSO et al., 1999] involves 

modularizing the tightly coupled application into different 

components that may then be run independently of each other. In 

[MECHOSO et al., 1999], the tightly coupled application was split 

into three components. Two of the components relied on data 

provided by the third and did not need to interact with one 

another. As a result, these two components can be implemented in 

parallel to achieve a significant speedup. 

        Also, in [MESRI et al, 2005] work has been done on a new 

graph/mesh partitioner called MeshMigration. This work would 

no doubt prove valuable to applications such as ADCIRC and 

other mesh based applications. Whereas applications such as 

Metis, Chaco, and Jostle have long existed and been used for 

portioning meshes, these applications make a very limiting 

assumption that all resources found in the computing environment 

are uniform. This limitation makes adapting a Metis-heavy 

application, such as ADCIRC,  to a multicluster/grid environment 

challenging. 

       MeshMigration was developed to work in a heterogeneous 

environment. However, one must ask how significant were load 

balancing strategies in obtaining the results seen in [MESRI et al, 

2005]. As for now, though, Metis remains the partitioner for 

ADCIRC as well as many other applications. 

 ADCIRC MODEL: THEORETICAL ASPECTS 

ADCIRC is a highly developed computer program to solve the 

equations of moving fluid on a rotating earth. The related 

equations were formulated by using the traditional hydrostatic 

pressure and Boussinesq approximations and have been 

discretized in space using the finite element (FE) method and in 

time using the finite difference (FD) method. 

ADCIRC is generally run either as a two dimensional depth 

integrated (2DDI) model or as a three dimensional (3D) model. It 

can be run in either Cartesian or spherical coordinate systems, 

respectively. Elevation (needed in both cases) is obtained by 

solving the depth-integrated continuity equation in GWCE 

(Generalized Wave-Continuity Equation) form. Velocity is 

obtained by solving either the 2DDI or 3D momentum equations. 

The GWCE is solved by using a consistent or a lumped mass 

matrix (via a compiler flag) and an implicit or explicit time 

stepping scheme (via variable time weighting coefficients). In case 

of a lumped, fully explicit formulation no matrix solver is 

necessary. For all other cases, the GWCE is solved by using the 

Jacobi preconditioned iterative solver from the ITPACKV 2D 

package. The 2DDI momentum equations require no matrix solver 

as they are lumped. In 3D, vertical diffusion is treated implicitly 

and the vertical mass matrix is not lumped. So, a solution of a 

complex, tri-diagonal matrix problem is required over the vertical 

at every horizontal node [LUETTICH et al., 2004]. 

ADCIRC’s algorithmic design criteria have a very low 

numerical damping model that allows model parameters to be 

based on physically relevant values. The algorithm should be 

consistent with the governing equations. It should also be at least 

second order accurate and also robust in nature. 

Furthermore, ADCIRC has been optimized by unrolling loops 

for enhanced performance on multiple computer architectures. 

ADCIRC includes MPI library calls to allow it to operate at high 

efficiency (typically more than 90 percent) on parallel computer 

architectures. 

In a single processor or parallel environment (high performance 

machines), ADCIRC runs efficiently to solve large unstructured 

grids. ADCIRC’s speed up is linear when executed on up to 256 

processors for a mid-sized mesh [ADCIRC 2006]. However, when 

one exceeds 256 processors, the communication overhead starts to 

dominate over the computational efficiency. For larger meshes, 

ADCIRC can easily scale up to 1000 processors.  

ADCIRC is appropriate for tidal prediction because of its 

computational efficiency partly because of implementing the finite 

element method and the use of an iterative sparse matrix solver. 

Simulations that extend from months to a year can be completed 

and employ 30-second time-step increments expediently and also 

without unreasonable storage requirements. For example, a model 

of the western North Atlantic Ocean containing 36,185 points 

completed a 250-day simulation of the tides after using only 103 

hours of CPU on a CRAY SV1 (single-processor speed of 500 

MHz). As such, real-time forecasting (e.g. 48 hour forecasts) is 

well within reach of the ADCIRC model [BLAIN et al., 2002]. 

Usually, input for the ADCIRC program is a 2D unstructured 

mesh, values of wind and pressure. For the Louisiana coast it uses 

314 nodes and works with 85% efficiency. It has a 100m 

resolution and in deep ocean the resolution is 50 km. In a 128 

node supercomputer, it takes 1 hr of run-time to produce 1 day’s 

forecast. It is run for dozens of simulations varying its inputs, path 

and strength. 

      Implementing ADCIRC efficiently on multiple clusters 

requires a sound knowledge of the ADCIRC source code. The 

ADCIRC source code has four main directories, namely prep, 

metis, src and work. 

The directory “prep” contains the code to control domain 

decomposition for a parallel run. The important files in this 

directory are: “adcprep.f”- controls domain decomposition, 

“prep.f”- consists of subroutines to create input files after domain 

decomposition, “adcpost.f”- controls the merging of sub-domain 

output into full-domain files, “post.f”- merges each type of output 

file. 

The directory “metis” consists of third party code written in C 

that is used during domain decomposition. 

The directory “src” consists of all the code required to run 

ADCIRC. One important file in this directory is “adcirc.f”, which 

is the top-level driver code. 
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In the directory “work” executables are built. It also contains 

makefiles and build-supporting files. 

     Prior to our work, no one has yet to run ADCIRC on multiple 

clusters. It may prove quite prudent during times of crisis to 

shorten the run-time for forecasting. This golden objective, 

though, can only be reached if one is able to ensure that 

communication overhead does not overwhelm the computational 

efficiency. To run ADCIRC on multiple clusters, we used 

MPICH-G2. MPICH-G2 allows for the joining multiple machines 

of homogeneous or heterogeneous architectures to run MPI 

applications.  

To use MPICH-G2, we configured the special MPICH-G2 

(Globus) on MPICH-GM (Myrinet) where MPICH-G2 is in the 

path before other MPICH-based implementations in Intel 

compilers. Then, the code was compiled with the MPICH-G2/Intel 

mpif90, and then a "machines" file was created that specifies the 

CPUs to be used. After that the binary had to be transferred to the 

other clusters needed for a Globus run placed in the same 

directory. Finally, we created a Globus "RSL" file based on the 

"machines" file. We will present our results in the “Initial 

Benchmarks for Multiple Clusters” section. 

 

PERFORMANCE OF ADCIRC: ADVANTAGES 

AND DISADVANTAGES 

Utilized heavily by the U.S. Army Corps of Engineers and U.S. 

Navy, ADCIRC has also been adopted by the national Ocean 

Service for U.S. East coast. It has been certified by FEMA for 

national Flood Insurance Program. Several other state offices have 

also adopted ADCIRC. 

There are certain inherent advantages of the ADCIRC model. 

First, ADCIRC possesses a large domain. It has flexible and 

variable range of element areas with resolution control. 

ADCIRC’s finite element method based solution strategy allows 

for a very large number of discrete points to be placed in a highly 

flexible and unstructured manner. It also has high resolution in 

coastal regions and low resolution in deep ocean. The coastlines 

are well defined with proper knowledge of the mainland, island 

and other structures- such as channels inside the mainland. Any 

errors in providing dynamically correct boundary conditions are 

more readily absorbed in the computation [WESTERINK et al., 

2003]. 

The advantage of using ADCIRC over other storm surge 

models, such as SLOSH, is that input conditions can include all or 

part of wind stress, tides, wave stress, and river discharge to make 

the model output more accurate [FITZPATRICK et al., 2006]. 

From the computational perspective, the code is highly efficient 

and very large domains are possible. Loop-level optimization has 

been done. ADCIRC is available in single thread and parallel 

versions that yield the same answers to machine precision. It is 

capable of domain decomposition and uses distributed memory 

and has MPI based communication. Furthermore, ADCIRC is 

being constantly updated. Most areas of update relate to Civil 

engineering and Geo-physical aspects. Also, work on a new h-p 

adaptive Discontinuous Galerkin (DG) based algorithm in place of 

Continuous Galerkin (CG) based algorithm is currently underway. 

The resolution of coastal regions can also be increased to 50m for 

better performance. 

There are a few areas of ADCIRC that need attention. The 

matter in which I/O, for example, affects model performance and 

usability is not ideal. Each sub-problem of a parallel ADCIRC 

simulation writes its own output files that must be globalized in a 

post processing step. This in and of itself does not affect 

performance, but it does present a user with an additional step 

when running ADCIRC in parallel. What does affect performance, 

however, is that each output file must be written sequentially.  The 

writing of each output file blocks the progression of the 

simulation, so when one wants to output from the model, he must 

strike a balance between the run time and the output 

frequency/period.  Current efforts are under way to provide the 

writing of global output files at run time, but the output scheme 

will nevertheless remain obstructive. 

Also, in the event of restarting ADCIRC, file reading proves to 

be quite cumbersome. For a forecast system setup, file reading 

needs a significant overhaul to increase the efficiency of the setup. 

Currently, if ADCIRC was being run in a forecasting setup, one 

should only need to "cold start" ADCIRC once.  If one was 

forcing the forecast model with wind (fort.22), for example, all 

subsequent simulations could then be "hot started" as each new set 

of wind forecasts are made available. 

ADCIRC, however, requires that the wind forcing data file 

contains all the data from the very beginning (cold start) of the 

simulation.  This causes the input file to grow for each subsequent 

simulation.  This situation should be easily rectifiable because for 

each time step, ADCIRC only requires forcing data for the current 

and previous time steps. 

Recently, ADCIRC has been given the ability to generate 

analytical winds internally using a hurricane track file consisting 

of a series of central pressure and coordinates. This makes 

ADCIRC quite beneficial when used to predict storm surges for 

impending hurricanes. However, ADCIRC is somewhat limited in 

the context of a daily forecast system during non-tropical 

situations. 

 Second, the Jacobi solver is neither parallelized plus it takes 

more time to converge compared to other solvers. Given that a 

parallelized version of the Jacobi solver exists, implementing this 

parallelized version should yield markedly improved results. Also, 

the SOR (Successive Over Relaxation) method converges faster 

than the Jacobi method, and a parallelized version for the SOR 

method exists as well. 

Finally, ADCIRC lacks a comprehensive flow diagram and the 

parallelization of ADCIRC occurred a while back. While 

ADCIRC makes use of Fortran 90, the latest and newest methods 

found in MPI need to be exploited for maximum performance. To 

know effectively how to alter the MPI, one needs to know the 

number of nodes where communication overhead is greater than 

computation. 

 

BENCMARK RESULTS FOR SINGLE 

CLUSTERS 

To obtain a better feel for ADCIRC, several benchmarks using 

a different amount of processors were conducted. Benchmarking 

was performed on SuperMike, a 512 X2 cluster located at 

Louisiana State University. Each node is 3.06GHz  Intel Pentium 

IV Xeon processor with 2GB memory per processor. The mesh 

sizes used in this experiment were 200K and 1000K. We ran 

ADCIRC on 2, 4, 8, 16, 32, 64, 96, 128, and 256 processors. The 

wall clock time decreased linearly as the number of CPUs was 

doubled. This indicates that the time required to complete an 

ADCIRC simulation decreases linearly as the number of 

processors increases. The results of these benchmarks are shown 

in Figure 1. 

Another experiment was performed on the BlueGene/L 

computer which is an IBM BGL architecture with 1024 x 700MHz 

PPC440 processors located at Argonne National Laboratory. The 
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mesh size used in this experiment was 1000K. ADCIRC was run 

on 2, 4, 8, 16, 32, 64, 128, 256, 512, and 1024 processors. The 

results of this experiment are shown in Figure 2. 

These benchmark results show that ADCIRC can easily scale 

up to 512 processors for a mesh of size 1000K and up to 96 

processors for a smaller mesh, which was 200K. The largest mesh 

that the ADCIRC team has been working on has 2.5 million 

nodes, which can easily scale up to more than a thousand 

processors.  

While not practical, these results may initially indicate that 

running ADCIRC on two different clusters with twice the number 

of nodes for a single cluster may yield better results. For example, 

running ADCIRC with a 1000k mesh size on two different 

clusters using 128 nodes should yield a markedly improved 

performance as opposed to running ADCIRC on 128 nodes on a 

single cluster. 

 
Figure 1: ADCIRC scaling on SuperMike cluster 

 

 
Figure 2: ADCIRC scaling on BluGene/L 

 

 

GPROF RESULTS 

The complexity and enormity of ADCIRC, inserting timing 

routines before the major routines would have proven inefficient 

as well as complex. We have conducted a variety of flat profiles 

for a 200k grid as well as the 1000k grid. We wish to focus on the 

gprof profiles of the 1000k grid. For columns that have the N/A 

categorization, the functions were not profiled by gprof. 

     From these tables one is able to discern a variety of interesting 

characteristics concerning ADCIRC. First, procedures such as 

hotstart_ and coldstart_ that deal with the initialization of 

ADCIRC seem to scale quite well. In the 4 and 32 processor 

scenario, these routines consumed the most time in ADCIRC. 

After the increase to 64 and 256 processors, these routines account 

for far less time of the total time spent by ADCIRC. 

On the other hand, one notices procedures that were never 

“significant” consuming major time in the 64 and 256 processors’ 

cases. For example, one can take itpackv_mp_ymasx2_ which 

represents a single Jacobi iteration that is found in itpackv.F. The 

Jacobi iterations account for more of the time spent by ADCIRC 

as the number of processors increases dramatically. Apparently, it 

is safe to assume that the Jacobi solver does not scale well 

linearly, and in this case, it may be due to the communication 

latency overwhelming the computational efficiency.  

 

 

 

Table 2:      Flat Profile 1000k Grid using 32 Processors 

 

Routine Time 

Spent (s) 

# of Calls % of Run 

Time 

hotstart_ 6.96 5 17.97 

coldstart_ 5.95 6,938,695 15.36 

for_inquire 5.34 N/A 13.79 

write_output_2d_ 3.42 N/A 8.83 

read_input 1.76 93,689 4.54 

for__open_proc 1.65 N/A 4.26 

timestep__ 1.58 274 4.08 

Table 1:   Flat Profile 1000k Grid using 4 Processors 

Routine Time 

Spent (s) 

# of Calls % of Run 

Time 

hotstart_ 6.98 5 18.54 

for_inquire 5.06 N/A 13.44 

coldstart_ 4.89 6,913,252 12.99 

write_output_2d_ 3.91 N/A 10.39 

read_input_ 1.99 12,407 5.29 

timestep_ 1.99 54 5.29 

for__open_proc 1.62 N/A 4.30 
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    Finally, there are routines that always play a major role in 

ADCIRC as far as time spent is concerned. An example is the 

timestep_ routine found in timestep.F.  One particular subroutine 

that shows major prominence later on, gwce_new_, is a subroutine 

found in the timestep_ module.  

From these tables, one is thus able to discern that hiding the 

communication latency in ADCIRC will prove to be a major 

benefit. By hiding the communication latency via a process found 

in [BARNARD et al., 1999], one should be able to enjoy the 

computational superiority of multiple clusters whilst avoiding the 

communication latency associated with multiple clusters. 

BENCHMARK RESULTS FOR MULTIPLE 

CLUSTERS 

For our initial ADCIRC runs on multiple clusters, we have used 

two LONI clusters. One cluster, Zeke, is located at the University 

of Lafayette in Lafayette, Louisiana. The other cluster used, 

Ducky, is located at Tulane University in New Orleans, Louisiana. 

These clusters are connected via a 10 Gbps network. Each LONI 

cluster is a 14 8-way IBM Power5 1.9GHz system running 

AIX5.3. Thus far, no changes have been made to the ADCIRC 

code. The major change was modifying the makefile to use the 

MPICH-G2 Fortran compiler. Our initial ADCIRC test runs make 

use of both 200k and 1000k mesh sizes on varying numbers of 

processors evenly divided between the two clusters. 

     As observed from our data, the various runs indicate the 

plausibility of running ADCIRC on multiple clusters. However, in 

the case of the 200k mesh, ADCIRC begins to scale poorly which 

was seen previously in single clusters as the number of processors 

increases. At this critical stage, it appears that the communication 

overhead overwhelms the computation benefit derived from the 

extra processors. Fruthermore, as seen in the 1000k mesh 

ADCIRC runs, a larger dataset allows for larger scalability. More 

testing is nevertheless needed as the 64 processor run (32+32) for 

the 1000k mesh appears to be an outlier. 

    Given the current results, an unmodified ADCIRC does not 

jusify the resource usage. In the case of the 200k mesh ADCIRC 

run, we provided eight times the resources over a single cluster to 

obtain an improvement of only three minutes. More work is 

needed to hide the communication latency of ADCIRC, which 

may entail modifying the source code and even some parts of the 

model itself.  

CONCLUSIONS 

     In this study, we have analyzed one of the most widely used 

storm surge models, ADCIRC, in order to provide a set of 

guidelines on how its performance could be improved for faster 

storm surge forecasts. Our study resulted in severeal possible areas 

of improvement such as I/O,  the solver used, parallelization 

technique, and distributing the application to multiple clusters. An 

enhanced version of ADCIRC will allow more “crunch-time” 

computations where a hurricane may be only 72 hours off shore. 

With such data at hand, catastrophes that occurred during 

Hurricane Katrina can be better avoided where people will have 

accurate knowledge to evacuate properly and know beforehand 

whether levies may break as seen in the aftermath of Hurricane 

Katrina. 
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Table 4:      Flat Profile 1000k Grid using 256 Processors 

 

Routine Time 

Spent (s) 

# of Calls % of Run 

Time 

Gwce_new_ 332.38 43,200 33.72 

Itpackv_mp_ymasx2_ 201.45 495,964 20.44 

mom_eqs_new_nc_ 156.56 43,200 15.88 

timestep_ 101.65 43,200 10.31 

Pow.J 32.51 N/A 3.30 

itpackv_mp_itjcg_ 31.25 452,764 3.17 

Itpackv_mp_scal_ 28.33 43,200 2.87 

Table 3:     Flat Profile 1000k Grid using 64 Processors  

 

Routine Time 

Spent (s) 

# of Calls % of Run 

Time 

Itpackv_mp_ymasx2_ 1,392.88 495,964 28.64 

gwce_new_ 1,210.66 43,200 24.89 

mom_eqs_new_nc_ 685.08 43,200 14.09 

timestep_ 445.93 43,200 9.17 

itpackv_mp_itjcg_ 445.93 452,764 5.17 

Itpackv_mp_unscal_ 194.15 43,200 3.99 

itpackv_mp_scal_ 167.14 43,200 3.44 

Table 5:      ADCIRC scaling on Zeke and Ducky 

 

Number of Processors Time (minutes) 

Zeke Ducky 200k Mesh 1000k Mesh 

8 0 24 81 

4 4 34 108 

8 8 23 55 

16 16 18 40 

32 32 22 51 

64 64 21 26 
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