

Journal of Coastal Research, Special Issue 50, 2007

Journal of Coastal Research SI 50 pg - pg ICS2007 (Proceedings) Australia ISSN

 Towards a faster and improved ADCIRC (ADvanced Multi-Dimensional

CIRCulation) model

E. Ceyhan‡, P. Basuchowdhuri†, T. Judeh†, S. Ou‡, B. Estrade‡, and T. Kosar†‡
†Department of Computer Science,

Louisiana State University,

Baton Rouge, 70803,USA

E-mail: (pbasuc1,tjudeh1)@lsu.edu

‡ Center for Computation and Technology(CCT),

Louisiana State University

Baton Rouge, 70803,USA

E-mail: (eceyhan,estrabd,kosar)@cct.lsu.edu

sou1@lsu.edu

ABSTRACT

Given the aftermaths of Hurricane Katrina in New Orleans and the surrounding parishes, the need to predict

tropical storms and hurricanes has increased multifold. Accurate predictions may assist decision makers to

implement appropriate evacuation plans necessary for the wellbeing of citizens. Coastal modeling is a key tool

used to foresee hurricanes, storm surge, and flooding. Of the many models implemented, ADCIRC, a project of

the University of North Carolina, seems to hold much promise. Our objectives in this study were multifold. First,

we ascertained the current limitations of the ADCIRC model. We achieved this goal through a variety of means

including ADCIRC benchmarks on single and multiple clusters as well as a gprof profile of ADCIRC on a single

cluster. Then, based on the information obtained from these efforts, we suggested appropriate improvements to

optimize ADCIRC. With the achievement of these objectives, we hope ADCIRC will become a vital tool in

developing accurate evacuation plans under duress that will aid in saving a countless number of lives.

INDEX WORDS: ADCIRC, Coastal Modeling, Tightly Coupled Applications

INTRODUCTION

In areas where hurricanes, storm surges, and flooding occur

frequently, developing appropriate evacuation plans is a must.

Coastal modeling allows for the study of the complex coastal

systems. Consequently, scientists can then utilize these models as

aids in predicting hurricanes, storm surges, and flooding. A

number of models have been implemented in this spirit [LYNCH et

al., 1996, LUETTICH et al., 1992]. Following these models, it may

very well be possible to take preventive measures to minimize the

loss in event of a hurricane, storm surge, and flooding.

Developed at the University of North Carolina, ADCIRC

(ADvanced Multi-Dimensional CIRCulation Model for Shelves,

Coasts and Estuaries) is a multi-dimensional, depth integrated,

barotropic time-dependent long wave, finite element-based

hydrodynamic circulation code. It can be run either as a two-

dimensional depth integrated (2DDI) model or as a three-

dimensional (3D) model. ADCIRC-2DDI solves the vertically-

integrated momentum equations to determine the depth-averaged

velocity. 3D versions of ADCIRC solve the velocity components

in the coordinate direction, x, y, and z over generalized stretched

vertical coordinate system by utilizing the shallow water form of

the moment equation. In either case, elevation is attained from the

solution of the depth-integrated continuity equation in GWCE

form. Velocity is attained from the solution of either momentum

equations. All nonlinear terms have been kept in these equations.

The purpose of ADCIRC is to solve time dependent, free

surface circulation and transport problems in two and three

dimensions. These problems are handled using computer programs

that make use of the finite element method in space while

allowing the use of highly flexible unstructured grids [LUETTICH et

al., 1992].

According to [LUETTICH et al., 1992], ADCIRC application

consists of :

 • modeling tides and wind driven circulation

 • analysis of hurricane storm surge and flooding

 • dredging feasibility and material disposal studies

 • larval transport studies

 • near shore marine operations

The ADCIRC model has included several applications in

significant areas. Currently, ADCIRC can only be executed on a

tightly coupled cluster. Our major goal in this paper is ascertain

the current limitations of this model, and then suggest possible

improvements and optimize ADCIRC.

The outline of the article is as follows. First, we provide details

on related work. Then, we briefly introduce the ADCIRC model

theory. We then touch upon advantages and disadvantages of this

model. Afterwards, we present the ADCIRC benchmark results on

a single high-performance compute cluster, the gprof profile for

ADCIRC on that cluster, and initial benchmark results for

ADCIRC on multiple clusters. Finally, we conclude with a

discussion of current system status and future plans.

 RELATED WORK

There are a variety of fields of work related to ADCIRC. For

our purposes, though, we examine the literature on decoupling

tightly coupled applications that allow single cluster applications

to be run on multiple clusters. Given that multiple clusters exist

these days, being able to run ADCIRC on multiple clusters where

communication does not overcome computation will allow for a

better performance of ADCIRC. One effort in decoupling a tightly

coupled application can be found in [BARNARD et al., 1999]. In

this case the authors implemented a computational fluid dynamic

Journal of Coastal Research, Special Issue 50, 2007

Towards a faster and improved ADCIRC model

(CFD) algorithm, OVERFLOW, into a distributive algorithm to be

executed on the Information Power Grid. OVERFLOW is heavily

used by NASA, and a time is coming where the resources of a

single supercomputer would not suffice for the purposes of

NASA. To achieve this goal of executing OVERFLOW on

multiple clusters, significant work was performed. First, the

authors had a framework in which the distributed algorithm can be

applied via Globus and the Information Power Grid. More

interesting for our purposes, though, is the manner in which the

tightly coupled iterative solver was slightly modified to allow for

the implementation of OVERFLOW in a multiple cluster

environment.

This modified algorithm’s property can be summed up in three

major points. First, one needs to briefly illustrate traditional

parallel flow solvers. These traditional solvers synchronize and

communicate boundary values for a particular timestep N. After

the synchronization, the values are used to compute the boundary

values for timestep N + 1 using the current values of N.

In the modified approach, nodes asynchronously communicate

the boundary values for a timestep N. In the meantime, the N + 1

timestep is computed using the N – 1 timestep boundary values.

This procedure allows for hiding the communication latency

associated with processes running on multiple clusters. However,

a drawback is that convergence to a solution takes much longer to

occur. Another approach found in [MECHOSO et al., 1999] involves

modularizing the tightly coupled application into different

components that may then be run independently of each other. In

[MECHOSO et al., 1999], the tightly coupled application was split

into three components. Two of the components relied on data

provided by the third and did not need to interact with one

another. As a result, these two components can be implemented in

parallel to achieve a significant speedup.

 Also, in [MESRI et al, 2005] work has been done on a new

graph/mesh partitioner called MeshMigration. This work would

no doubt prove valuable to applications such as ADCIRC and

other mesh based applications. Whereas applications such as

Metis, Chaco, and Jostle have long existed and been used for

portioning meshes, these applications make a very limiting

assumption that all resources found in the computing environment

are uniform. This limitation makes adapting a Metis-heavy

application, such as ADCIRC, to a multicluster/grid environment

challenging.

 MeshMigration was developed to work in a heterogeneous

environment. However, one must ask how significant were load

balancing strategies in obtaining the results seen in [MESRI et al,

2005]. As for now, though, Metis remains the partitioner for

ADCIRC as well as many other applications.

 ADCIRC MODEL: THEORETICAL ASPECTS

ADCIRC is a highly developed computer program to solve the

equations of moving fluid on a rotating earth. The related

equations were formulated by using the traditional hydrostatic

pressure and Boussinesq approximations and have been

discretized in space using the finite element (FE) method and in

time using the finite difference (FD) method.

ADCIRC is generally run either as a two dimensional depth

integrated (2DDI) model or as a three dimensional (3D) model. It

can be run in either Cartesian or spherical coordinate systems,

respectively. Elevation (needed in both cases) is obtained by

solving the depth-integrated continuity equation in GWCE

(Generalized Wave-Continuity Equation) form. Velocity is

obtained by solving either the 2DDI or 3D momentum equations.

The GWCE is solved by using a consistent or a lumped mass

matrix (via a compiler flag) and an implicit or explicit time

stepping scheme (via variable time weighting coefficients). In case

of a lumped, fully explicit formulation no matrix solver is

necessary. For all other cases, the GWCE is solved by using the

Jacobi preconditioned iterative solver from the ITPACKV 2D

package. The 2DDI momentum equations require no matrix solver

as they are lumped. In 3D, vertical diffusion is treated implicitly

and the vertical mass matrix is not lumped. So, a solution of a

complex, tri-diagonal matrix problem is required over the vertical

at every horizontal node [LUETTICH et al., 2004].

ADCIRC’s algorithmic design criteria have a very low

numerical damping model that allows model parameters to be

based on physically relevant values. The algorithm should be

consistent with the governing equations. It should also be at least

second order accurate and also robust in nature.

Furthermore, ADCIRC has been optimized by unrolling loops

for enhanced performance on multiple computer architectures.

ADCIRC includes MPI library calls to allow it to operate at high

efficiency (typically more than 90 percent) on parallel computer

architectures.

In a single processor or parallel environment (high performance

machines), ADCIRC runs efficiently to solve large unstructured

grids. ADCIRC’s speed up is linear when executed on up to 256

processors for a mid-sized mesh [ADCIRC 2006]. However, when

one exceeds 256 processors, the communication overhead starts to

dominate over the computational efficiency. For larger meshes,

ADCIRC can easily scale up to 1000 processors.

ADCIRC is appropriate for tidal prediction because of its

computational efficiency partly because of implementing the finite

element method and the use of an iterative sparse matrix solver.

Simulations that extend from months to a year can be completed

and employ 30-second time-step increments expediently and also

without unreasonable storage requirements. For example, a model

of the western North Atlantic Ocean containing 36,185 points

completed a 250-day simulation of the tides after using only 103

hours of CPU on a CRAY SV1 (single-processor speed of 500

MHz). As such, real-time forecasting (e.g. 48 hour forecasts) is

well within reach of the ADCIRC model [BLAIN et al., 2002].

Usually, input for the ADCIRC program is a 2D unstructured

mesh, values of wind and pressure. For the Louisiana coast it uses

314 nodes and works with 85% efficiency. It has a 100m

resolution and in deep ocean the resolution is 50 km. In a 128

node supercomputer, it takes 1 hr of run-time to produce 1 day’s

forecast. It is run for dozens of simulations varying its inputs, path

and strength.

 Implementing ADCIRC efficiently on multiple clusters

requires a sound knowledge of the ADCIRC source code. The

ADCIRC source code has four main directories, namely prep,

metis, src and work.

The directory “prep” contains the code to control domain

decomposition for a parallel run. The important files in this

directory are: “adcprep.f”- controls domain decomposition,

“prep.f”- consists of subroutines to create input files after domain

decomposition, “adcpost.f”- controls the merging of sub-domain

output into full-domain files, “post.f”- merges each type of output

file.

The directory “metis” consists of third party code written in C

that is used during domain decomposition.

The directory “src” consists of all the code required to run

ADCIRC. One important file in this directory is “adcirc.f”, which

is the top-level driver code.

Journal of Coastal Research, Special Issue 50, 2007

Ceyhan, Basuchowdhuri, Judeh, Ou, Estrade, and Kosar

In the directory “work” executables are built. It also contains

makefiles and build-supporting files.

 Prior to our work, no one has yet to run ADCIRC on multiple

clusters. It may prove quite prudent during times of crisis to

shorten the run-time for forecasting. This golden objective,

though, can only be reached if one is able to ensure that

communication overhead does not overwhelm the computational

efficiency. To run ADCIRC on multiple clusters, we used

MPICH-G2. MPICH-G2 allows for the joining multiple machines

of homogeneous or heterogeneous architectures to run MPI

applications.

To use MPICH-G2, we configured the special MPICH-G2

(Globus) on MPICH-GM (Myrinet) where MPICH-G2 is in the

path before other MPICH-based implementations in Intel

compilers. Then, the code was compiled with the MPICH-G2/Intel

mpif90, and then a "machines" file was created that specifies the

CPUs to be used. After that the binary had to be transferred to the

other clusters needed for a Globus run placed in the same

directory. Finally, we created a Globus "RSL" file based on the

"machines" file. We will present our results in the “Initial

Benchmarks for Multiple Clusters” section.

PERFORMANCE OF ADCIRC: ADVANTAGES

AND DISADVANTAGES

Utilized heavily by the U.S. Army Corps of Engineers and U.S.

Navy, ADCIRC has also been adopted by the national Ocean

Service for U.S. East coast. It has been certified by FEMA for

national Flood Insurance Program. Several other state offices have

also adopted ADCIRC.

There are certain inherent advantages of the ADCIRC model.

First, ADCIRC possesses a large domain. It has flexible and

variable range of element areas with resolution control.

ADCIRC’s finite element method based solution strategy allows

for a very large number of discrete points to be placed in a highly

flexible and unstructured manner. It also has high resolution in

coastal regions and low resolution in deep ocean. The coastlines

are well defined with proper knowledge of the mainland, island

and other structures- such as channels inside the mainland. Any

errors in providing dynamically correct boundary conditions are

more readily absorbed in the computation [WESTERINK et al.,

2003].

The advantage of using ADCIRC over other storm surge

models, such as SLOSH, is that input conditions can include all or

part of wind stress, tides, wave stress, and river discharge to make

the model output more accurate [FITZPATRICK et al., 2006].

From the computational perspective, the code is highly efficient

and very large domains are possible. Loop-level optimization has

been done. ADCIRC is available in single thread and parallel

versions that yield the same answers to machine precision. It is

capable of domain decomposition and uses distributed memory

and has MPI based communication. Furthermore, ADCIRC is

being constantly updated. Most areas of update relate to Civil

engineering and Geo-physical aspects. Also, work on a new h-p

adaptive Discontinuous Galerkin (DG) based algorithm in place of

Continuous Galerkin (CG) based algorithm is currently underway.

The resolution of coastal regions can also be increased to 50m for

better performance.

There are a few areas of ADCIRC that need attention. The

matter in which I/O, for example, affects model performance and

usability is not ideal. Each sub-problem of a parallel ADCIRC

simulation writes its own output files that must be globalized in a

post processing step. This in and of itself does not affect

performance, but it does present a user with an additional step

when running ADCIRC in parallel. What does affect performance,

however, is that each output file must be written sequentially. The

writing of each output file blocks the progression of the

simulation, so when one wants to output from the model, he must

strike a balance between the run time and the output

frequency/period. Current efforts are under way to provide the

writing of global output files at run time, but the output scheme

will nevertheless remain obstructive.

Also, in the event of restarting ADCIRC, file reading proves to

be quite cumbersome. For a forecast system setup, file reading

needs a significant overhaul to increase the efficiency of the setup.

Currently, if ADCIRC was being run in a forecasting setup, one

should only need to "cold start" ADCIRC once. If one was

forcing the forecast model with wind (fort.22), for example, all

subsequent simulations could then be "hot started" as each new set

of wind forecasts are made available.

ADCIRC, however, requires that the wind forcing data file

contains all the data from the very beginning (cold start) of the

simulation. This causes the input file to grow for each subsequent

simulation. This situation should be easily rectifiable because for

each time step, ADCIRC only requires forcing data for the current

and previous time steps.

Recently, ADCIRC has been given the ability to generate

analytical winds internally using a hurricane track file consisting

of a series of central pressure and coordinates. This makes

ADCIRC quite beneficial when used to predict storm surges for

impending hurricanes. However, ADCIRC is somewhat limited in

the context of a daily forecast system during non-tropical

situations.

 Second, the Jacobi solver is neither parallelized plus it takes

more time to converge compared to other solvers. Given that a

parallelized version of the Jacobi solver exists, implementing this

parallelized version should yield markedly improved results. Also,

the SOR (Successive Over Relaxation) method converges faster

than the Jacobi method, and a parallelized version for the SOR

method exists as well.

Finally, ADCIRC lacks a comprehensive flow diagram and the

parallelization of ADCIRC occurred a while back. While

ADCIRC makes use of Fortran 90, the latest and newest methods

found in MPI need to be exploited for maximum performance. To

know effectively how to alter the MPI, one needs to know the

number of nodes where communication overhead is greater than

computation.

BENCMARK RESULTS FOR SINGLE

CLUSTERS

To obtain a better feel for ADCIRC, several benchmarks using

a different amount of processors were conducted. Benchmarking

was performed on SuperMike, a 512 X2 cluster located at

Louisiana State University. Each node is 3.06GHz Intel Pentium

IV Xeon processor with 2GB memory per processor. The mesh

sizes used in this experiment were 200K and 1000K. We ran

ADCIRC on 2, 4, 8, 16, 32, 64, 96, 128, and 256 processors. The

wall clock time decreased linearly as the number of CPUs was

doubled. This indicates that the time required to complete an

ADCIRC simulation decreases linearly as the number of

processors increases. The results of these benchmarks are shown

in Figure 1.

Another experiment was performed on the BlueGene/L

computer which is an IBM BGL architecture with 1024 x 700MHz

PPC440 processors located at Argonne National Laboratory. The

Journal of Coastal Research, Special Issue 50, 2007

Towards a faster and improved ADCIRC model

mesh size used in this experiment was 1000K. ADCIRC was run

on 2, 4, 8, 16, 32, 64, 128, 256, 512, and 1024 processors. The

results of this experiment are shown in Figure 2.

These benchmark results show that ADCIRC can easily scale

up to 512 processors for a mesh of size 1000K and up to 96

processors for a smaller mesh, which was 200K. The largest mesh

that the ADCIRC team has been working on has 2.5 million

nodes, which can easily scale up to more than a thousand

processors.

While not practical, these results may initially indicate that

running ADCIRC on two different clusters with twice the number

of nodes for a single cluster may yield better results. For example,

running ADCIRC with a 1000k mesh size on two different

clusters using 128 nodes should yield a markedly improved

performance as opposed to running ADCIRC on 128 nodes on a

single cluster.

Figure 1: ADCIRC scaling on SuperMike cluster

Figure 2: ADCIRC scaling on BluGene/L

GPROF RESULTS

The complexity and enormity of ADCIRC, inserting timing

routines before the major routines would have proven inefficient

as well as complex. We have conducted a variety of flat profiles

for a 200k grid as well as the 1000k grid. We wish to focus on the

gprof profiles of the 1000k grid. For columns that have the N/A

categorization, the functions were not profiled by gprof.

 From these tables one is able to discern a variety of interesting

characteristics concerning ADCIRC. First, procedures such as

hotstart_ and coldstart_ that deal with the initialization of

ADCIRC seem to scale quite well. In the 4 and 32 processor

scenario, these routines consumed the most time in ADCIRC.

After the increase to 64 and 256 processors, these routines account

for far less time of the total time spent by ADCIRC.

On the other hand, one notices procedures that were never

“significant” consuming major time in the 64 and 256 processors’

cases. For example, one can take itpackv_mp_ymasx2_ which

represents a single Jacobi iteration that is found in itpackv.F. The

Jacobi iterations account for more of the time spent by ADCIRC

as the number of processors increases dramatically. Apparently, it

is safe to assume that the Jacobi solver does not scale well

linearly, and in this case, it may be due to the communication

latency overwhelming the computational efficiency.

Table 2: Flat Profile 1000k Grid using 32 Processors

Routine Time

Spent (s)

of Calls % of Run

Time

hotstart_ 6.96 5 17.97

coldstart_ 5.95 6,938,695 15.36

for_inquire 5.34 N/A 13.79

write_output_2d_ 3.42 N/A 8.83

read_input 1.76 93,689 4.54

for__open_proc 1.65 N/A 4.26

timestep__ 1.58 274 4.08

Table 1: Flat Profile 1000k Grid using 4 Processors

Routine Time

Spent (s)

of Calls % of Run

Time

hotstart_ 6.98 5 18.54

for_inquire 5.06 N/A 13.44

coldstart_ 4.89 6,913,252 12.99

write_output_2d_ 3.91 N/A 10.39

read_input_ 1.99 12,407 5.29

timestep_ 1.99 54 5.29

for__open_proc 1.62 N/A 4.30

Journal of Coastal Research, Special Issue 50, 2007

Ceyhan, Basuchowdhuri, Judeh, Ou, Estrade, and Kosar

 Finally, there are routines that always play a major role in

ADCIRC as far as time spent is concerned. An example is the

timestep_ routine found in timestep.F. One particular subroutine

that shows major prominence later on, gwce_new_, is a subroutine

found in the timestep_ module.

From these tables, one is thus able to discern that hiding the

communication latency in ADCIRC will prove to be a major

benefit. By hiding the communication latency via a process found

in [BARNARD et al., 1999], one should be able to enjoy the

computational superiority of multiple clusters whilst avoiding the

communication latency associated with multiple clusters.

BENCHMARK RESULTS FOR MULTIPLE

CLUSTERS

For our initial ADCIRC runs on multiple clusters, we have used

two LONI clusters. One cluster, Zeke, is located at the University

of Lafayette in Lafayette, Louisiana. The other cluster used,

Ducky, is located at Tulane University in New Orleans, Louisiana.

These clusters are connected via a 10 Gbps network. Each LONI

cluster is a 14 8-way IBM Power5 1.9GHz system running

AIX5.3. Thus far, no changes have been made to the ADCIRC

code. The major change was modifying the makefile to use the

MPICH-G2 Fortran compiler. Our initial ADCIRC test runs make

use of both 200k and 1000k mesh sizes on varying numbers of

processors evenly divided between the two clusters.

 As observed from our data, the various runs indicate the

plausibility of running ADCIRC on multiple clusters. However, in

the case of the 200k mesh, ADCIRC begins to scale poorly which

was seen previously in single clusters as the number of processors

increases. At this critical stage, it appears that the communication

overhead overwhelms the computation benefit derived from the

extra processors. Fruthermore, as seen in the 1000k mesh

ADCIRC runs, a larger dataset allows for larger scalability. More

testing is nevertheless needed as the 64 processor run (32+32) for

the 1000k mesh appears to be an outlier.

 Given the current results, an unmodified ADCIRC does not

jusify the resource usage. In the case of the 200k mesh ADCIRC

run, we provided eight times the resources over a single cluster to

obtain an improvement of only three minutes. More work is

needed to hide the communication latency of ADCIRC, which

may entail modifying the source code and even some parts of the

model itself.

CONCLUSIONS

 In this study, we have analyzed one of the most widely used

storm surge models, ADCIRC, in order to provide a set of

guidelines on how its performance could be improved for faster

storm surge forecasts. Our study resulted in severeal possible areas

of improvement such as I/O, the solver used, parallelization

technique, and distributing the application to multiple clusters. An

enhanced version of ADCIRC will allow more “crunch-time”

computations where a hurricane may be only 72 hours off shore.

With such data at hand, catastrophes that occurred during

Hurricane Katrina can be better avoided where people will have

accurate knowledge to evacuate properly and know beforehand

whether levies may break as seen in the aftermath of Hurricane

Katrina.

ACKNOWLEDGMENTS

This work was supported by NSF grant CNS-0619843, Louisiana

BoR-RCS grant LEQSF (2006-09)-RD-A-06, and CCT General

Development Program. We wish to thank the ADCIRC team,

especially Rick Luettich, for making the ADCIRC code available

to us, and LSU CCT members including Chirag Dekate and

Steven Brandt for their efforts in aiding us during this project. We

also wish to thank LONI and LSU ITS for providing us with the

resources to run and analyze ADCIRC.

Table 4: Flat Profile 1000k Grid using 256 Processors

Routine Time

Spent (s)

of Calls % of Run

Time

Gwce_new_ 332.38 43,200 33.72

Itpackv_mp_ymasx2_ 201.45 495,964 20.44

mom_eqs_new_nc_ 156.56 43,200 15.88

timestep_ 101.65 43,200 10.31

Pow.J 32.51 N/A 3.30

itpackv_mp_itjcg_ 31.25 452,764 3.17

Itpackv_mp_scal_ 28.33 43,200 2.87

Table 3: Flat Profile 1000k Grid using 64 Processors

Routine Time

Spent (s)

of Calls % of Run

Time

Itpackv_mp_ymasx2_ 1,392.88 495,964 28.64

gwce_new_ 1,210.66 43,200 24.89

mom_eqs_new_nc_ 685.08 43,200 14.09

timestep_ 445.93 43,200 9.17

itpackv_mp_itjcg_ 445.93 452,764 5.17

Itpackv_mp_unscal_ 194.15 43,200 3.99

itpackv_mp_scal_ 167.14 43,200 3.44

Table 5: ADCIRC scaling on Zeke and Ducky

Number of Processors Time (minutes)

Zeke Ducky 200k Mesh 1000k Mesh

8 0 24 81

4 4 34 108

8 8 23 55

16 16 18 40

32 32 22 51

64 64 21 26

Journal of Coastal Research, Special Issue 50, 2007

Towards a faster and improved ADCIRC model

REFERENCES

LYNCH, D.R., J.T.C. IP, NAIMIE, .CE., and F.E. WERNER,

F.E., 1996. Comprehensive coastal circulation model

with application to the Gulf of Maine. Continental

Shelf Research, 16, 875-906.

LUETTICH, R.A., WESTERINK, J.J., SCHEFFNER, N. W,

 1992. ADCIRC: an advanced three-dimensional

circulation model for shelves, coasts and estuaries,

Report 1: theory and methodology of ADCIRC-2DDI

and ADCIRC-3DL. Dredging Research Program

Technical Report DRP-92-6, U.S. Army Engineers

Waterways Experiment Station, Vicksburg, MS, 137p.

LUETTICH, R.A., WESTERINK, J.J., 2004. Formulation and

 Numerical Implementation of the 2D/3D ADCIRC

Finite Element Model Version 44.XX. August 2004.

ADCIRC Online Tour, 2006. [online]. Available from:

http://veritechinc.net/products/sms_adcirc/ADCIRCsho

w/ADCIRCSlide2.php

WESTERINK, J.J., LUETTICH R.A.,KOLAR, R., and

DAWSON C., 2003. CIRP – SMS Steering Model

Workshop. ADCIRC Overview and Model Features,

Presentation, 2003.

 FITZPATRICK, P.,VALENTI, E., 2006. “Forecasting of Storm

Surge Floods Using ADCIRC and Optimized DEMs”-

Stennis Space Center, Mississippi, 2006.

BARNARD, S., SAINI, S., VAN DER WIJNGAART, R.,

YARROR, M., ZECHTZER, L., FOSTER, I., and

LARSSON, O., 1999. Large-scale distributed

computational fluid dynamics on the information power

grid using globus, in 7th Symposium on the Frontiers of

Massively Parallel Computation, pages 60-67, Los

Alamitos, CA, 1999. IEEE Computer Society Press.

MECHOSO, C.R.,MA, C.C, Ferrara, J.D., and SPAHR, J.A.,

MOORE, R.W., 1993. Parallelization and Distribution of

a Coupled Atmosphere–Ocean General Circulation

Model. Mon.Wea. Rev., 21:2026–2076.

BLAIN, C.A., PRELLER, R.H., and RIVERA, A.P., 2002. Tidal

Prediction Using the Advanced Circulation Model

(ADCIRC) and a Relocatable PC-based System.

Oceanography Magazine (special issue), 15 (1), 77-87,

04-FEB-2002.

MESRI, Y., DIGONNET. H., and GUILLARD. H., 2005.

Mesh Partitioning for Parallel Computational Fluid

Dynamics Applications on a Grid, in Finite Volumes for

complex applicationsIV. Hermes Science Publisher, p.

631-642

