
Stork Data Scheduler: Mitigating the

Data Bottleneck in e-Science

By Tevfik Kosar1,3†, Mehmet Balman2, Esma Yildirim1,
Sivakumar Kulasekaran3, and Brandon Ross3

1Department of Computer Science & Engineering,
State University of NewYork, Buffalo, NY, USA

2Computational Research Division,
Lawrence Berkeley National Laboratory, Berkeley, CA, USA

3Center for Computation & Technology,
Louisiana State University, Baton Rouge, LA, USA

In this paper, we present the Stork Data Scheduler as a solution for mitigating the
data bottleneck in e-science and data-intensive scientific discovery. Stork focuses
on planning, scheduling, monitoring and management of data placement tasks and
application-level end-to-end optimization of networked I/O for petascale distributed
e-Science applications. Unlike existing approaches, Stork treats data resources and
the tasks related to data access and movement as first class entities just like compu-
tational resources and compute tasks, and not simply the side effect of computation.
Stork provides unique features such as aggregation of data transfer jobs considering
their source and destination addresses, and an application-level throughput estima-
tion and optimization service. We describe how these two features are implemented
in Stork and their effects on end-to-end data transfer performance.

Keywords: Data-intensive computing, I/O scheduling, throughput
optimization, e-Science, Stork.

1. Introduction

Scientific applications generate increasingly large amounts of data, often referred
as the “data deluge” (Hey & Trefethen 2003), which necessitates collaboration and
sharing among the national and international research institutions. Simply pur-
chasing high-capacity, high-performance storage systems and adding them to the
existing infrastructure of the collaborating institutions does not solve the under-
lying and highly challenging data handling problem. Scientists are often forced to
spend a great deal of time and energy on solving basic data-handling issues, such
as the physical location of data, how to access it, and/or how to move it to vi-
sualization and/or compute resources for further analysis. The systems managing
these resources must provide robust scheduling and allocation of network and stor-
age resources, as well as optimization of end-to-end data transfers over wide-area
networks.

According to the ‘Strategic Plan for the US Climate Change Science Program
(CCSP)’, one of the main objectives of the future research programs should be
“Enhancing the data management infrastructure”, since “The users should be able

† Corresponding author: tkosar@buffalo.edu

Article submitted to Royal Society TEX Paper

2 T.Kosar, M. Balman, E. Yildirim, S. Kulasekaran, and B. Ross

to focus their attention on the information content of the data, rather than how to
discover, access, and use it.” (CCSP 2003). This statement by CCSP summarizes
the goal of many cyberinfrastructure efforts initiated by NSF, DOE and other fed-
eral agencies, as well the research direction of several leading academic institutions.
This is also the main motivation for our work presented in this paper.

Traditional distributed computing systems closely couple data handling and
computation. They consider data resources as second class entities, and access to
data as a side effect of computation. Data placement (i.e., access, retrieval, and/or
movement of data) is either embedded in the computation and causes the computa-
tion to delay, or is performed by simple scripts which do not have the same privileges
as compute jobs. The inadequacy of traditional distributed computing systems in
dealing with complex data handling problems in our new data-rich world has moti-
vated a new paradigm called data-aware distributed computing (Kosar et al.
2009).

In previous work, we have introduced the concept that the data placement
activities in a distributed computing environment need to be first class entities
just like computational jobs, and presented the first batch scheduler specialized in
data placement and data movement: Stork (Kosar & Livny 2004). This scheduler
implements techniques specific to queuing, scheduling, and optimization of data
placement jobs, and provides a level of abstraction between the user applications
and the underlying data transfer and storage resources. Stork is considered one of
the very first examples of “data-aware scheduling” and has been very actively used
in many e-Science application areas including coastal hazard prediction and storm
surge modeling (SCOOP); oil flow and reservoir uncertainty analysis (UCoMS); nu-
merical relativity and black hole collisions (NumRel); educational video processing
and behavioral assessment (WCER); digital sky imaging (DPOSS); and multiscale
computational fluid dynamics (MSCFD).

Our previous work in this area has also been acknowledged by the strategic re-
ports of federal agencies. The DOE Office of Science report on ‘Data Management
Challenges’ defines data movement and efficient access to data as two key foun-
dations of scientific data management technology (DOE 2004). The DOE report
says: “In the same way that the load register instruction is the most basic operation
provided by a CPU, so is the placement of data on a storage device... It is therefore
essential that at all levels data placement tasks be treated in the same way computing
tasks are treated.” and refers to our previous work (Kosar & Livny 2004). The same
report also states that “Although many mechanisms exist for data transfer, research
and development is still required to create schedulers and planners for storage space
allocation and the transfer of data.”

In this paper, we elaborate on how a data scheduler like Stork can help to miti-
gate the large-scale data management problem for e-Science applications. Section 2
presents the related work in this area, and Section 3 gives background information
about the Stork data scheduler. In the following sections, we describe two unique
features of Stork: aggregation of data transfer jobs considering their source and
destination addresses (Section 4), and the application-level throughput estimation
and optimization service (Section 5). We conclude the paper in Section 6.

Article submitted to Royal Society

Stork Data Scheduler: Mitigating the Data Bottleneck in e-Science 3

2. Background

Several previous studies address data management for large-scale applications (Tier-
ney et al. 1999; Johnston et al. 2000; Allcock et al. 2001a,b,c; Ranganathan et al.
2002, 2004; Venugopal et al. 2004; ROOT 2006). However, scheduling of data stor-
age and networking resources and optimization of data transfer tasks has been an
open problem.

In an effort to achieve reliable and efficient data placement, high level data
management tools such as the Reliable File Transfer Service (RFT) (Ravi et al.
2002), the Lightweight Data Replicator (LDR) (Koranda & Moe 2007), and the
Data Replication Service (DRS) (Chervenak et al. 2005) were developed. The main
motivation for these tools was to enable byte streams to be transferred in a reli-
able manner, by handling possible failures such as dropped connections, machine
reboots, and temporary network outages automatically via retrying. Most of these
tools are built on top of GridFTP (Allcock et al. 2001a,b) which is a secure and
reliable data transfer protocol especially developed for high-bandwidth wide-area
networks.

Beck et al. (1999) introduced Logistical Networking which performs global schedul-
ing and optimization of data movement, storage and computation based on a model
that takes into account all the network’s underlying physical resources. Systems
such as the Storage Resource Broker (SRB), iRODS, and the Storage Resource
Manager (SRM) were developed to provide a uniform interface for connecting to
heterogeneous data resources and accessing replicated data sets.

Thain et al. (2004) introduced the Batch-Aware Distributed File System (BAD-
FS), which was followed by a modified data-driven batch scheduling system (Bent
2005). Their goal was to achieve data-driven batch scheduling by exporting explicit
control of storage decisions from the distributed file system to the batch scheduler.
Using some simple data-driven scheduling techniques, they have demonstrated that
the new data-driven system can achieve better throughput both over current dis-
tributed file systems such as AFS as well as over traditional CPU-centric batch
scheduling techniques which are using remote I/O.

According to Stockinger (2005a,b), the entire resource selection problem requires
detailed cost models with respect to data transfer. A cost model for data-intensive
applications is presented in (Stockinger et al. 2001) where theoretical models for
data-intensive job scheduling are discussed. In that work, a cost model is created
that can determine if it is more efficient to transfer the data to a job or vice
versa. The metric for measuring efficiency is the effective time seen by the client
application. The model includes all important factors in a distributed Data Grid
and takes various storage and access latencies into account to determine optimal
data access. More general performance engineering approaches are discussed in
(Stockinger et al. 2005b). In that work, they analyze a typical Grid system and
point out performance analysis aspects in order to improve the overall job execution
time of the system. Their focus is on the performance issues regarding data and
replica management.

The studies that try to find the optimal number of streams for data scheduling
are limited and they are mostly based on approximate theoretical models (Crowcroft
et al. 1998; Hacker et al. 2002; Lu et al. 2005; Altman et al. 2006). They all have
specific constraints and assumptions. Also the correctness of the model is proved

Article submitted to Royal Society

4 T.Kosar, M. Balman, E. Yildirim, S. Kulasekaran, and B. Ross

with simulation results mostly. Hacker et al. (2002) claim that the total number
of streams behaves like one giant stream that transfers in capacity of total of each
streams’ achievable throughput. However, this model only works for uncongested
networks. Thus it is not be able to predict when the network will be congested. An-
other study (Crowcroft et al. 1998) declares the same theory but develops a protocol
which at the same time provides fairness. Lu et al. (2005) models the bandwidth
of multiple streams as a partial second order polynomial equation and needs two
different throughput measurement of different stream numbers to predict the oth-
ers. In another model, the total throughput always shows the same characteristics
(Altman et al. 2006) depending on the capacity of the connection as the number of
streams increases and 3 streams are sufficient to get a 90% utilization. None of the
existing studies are able to accurately predict optimal number of parallel streams
for best data throughput in a congested network.

3. Stork Data Scheduler

The Stork data scheduler (Kosar 2004; 2005a, b) implements techniques specific
to queuing, scheduling, and optimization of data placement jobs; provides high
reliability in data transfers; and creates a level of abstraction between the user
applications and the underlying data transfer and storage resources (including FTP,
HTTP, GridFTP, SRM, SRB, and iRODS) via a modular, uniform interface. Stork
is considered one of the very first examples of “data-aware scheduling” and has
been very actively used in many e-Science application areas, including: coastal
hazard prediction, reservoir uncertainty analysis, digital sky imaging, educational
video processing, numerical relativity, and multiscale computational fluid dynamics
resulting in breakthrough research (Kola et al. 2004; Kosar et al. 2005b; Ceyhan et
al. 2008; SCOOP; UCoMS; DPOSS; WCER; NumRel; MSCFD).

Using Stork, the users can transfer very large data sets via a single command.
The checkpointing, error recovery and retry mechanisms ensure the completion
of the tasks even in case of unexpected failures. Multi-protocol support makes
Stork a very powerful data transfer tool. This feature does not only allow Stork to
access and manage different data storage systems, but can also be used as a fall-
back mechanism when one of the protocols fails in transferring the desired data.
Optimizations such as concurrent transfers, parallel streaming, request aggregation,
and data fusion provide enhanced performance compared to other data transfer
tools. The Stork data scheduler can also interact with higher level planners and
workflow managers for the coordination of compute and data tasks. This allows the
users to schedule both CPU resources and storage resources asynchronously as two
parallel universes, overlapping computation and I/O.

Our initial end-to-end implementation using Stork consists of two parallel uni-
verses: a data subsystem, and a compute subsystem. These two subsystems are
complimentary, the first specializing in data management and scheduling and the
latter specializing in compute management and scheduling. The orchestration of
these two parallel subsystems is performed by the upper layer workflow planning
and execution components. In cases where multiple workflows need to be executed
on the same system, users may want to prioritize among multiple workflows or
make other scheduling decisions. This is handled by the workflow scheduler at the

Article submitted to Royal Society

Stork Data Scheduler: Mitigating the Data Bottleneck in e-Science 5

highest level. An example for such a case would be hurricanes of different urgency
levels arriving at the same time.

When integrating data placement into end-to-end workflow planning and man-
agement systems, we make use of similarities to instruction pipelining in micropro-
cessors, where the lifecycle of an instruction consists of steps such as fetch, decode,
execute, and write. A distributed workflow system can be viewed as a large pipeline
consisting of many tasks divided into sub-stages, where the main bottleneck is re-
mote data access/retrieval due to network latency and communication overhead.
Just as pipelining techniques are used to overlap different types of jobs and exe-
cute them concurrently while preserving the task sequence and dependencies, we
can order and schedule data movement jobs in distributed systems independent
of compute tasks to exploit parallel execution while preserving data dependencies.
For this purpose, we expand the scientific workflows to include the necessary data-
placement steps such as stage-in and stage-out, as well as other important steps
which support data movement, such as allocating and de-allocating storage space
for the data, and reserving and releasing the network links.

We have done a preliminary implementation of data-aware workflow manage-
ment where data-awareness components were added to workflow planning tool Pe-
gasus and workflow execution tool Condor DAGMan. This preliminary implemen-
tation was used in coastal hazard prediction (SCOOP) and reservoir uncertainty
analysis (UCoMS) applications. We have developed a preliminary model to choose
between remote-I/O versus staging for particular applications. As one of the results
of that work, we suggest that for remote-I/O to be more efficient than staging, the
following equation should hold true:

Nr −Ns < Wl + Rl (3.1)

where Rl is the time to read from local disk to local memory, Wl is the time to write
from local memory to local disk, Ns is the time to send data over the network via
a staging protocol, and Nr is the time to send data over the network via a remote-
I/O protocol. This equation shows that the time difference coming from using a
specialized data transfer protocol versus a remote-I/O protocol should be less than
the overhead of extra read/write to the disk in staging. In other words, if your
remote-I/O library performs well in data transfer over network, or your local disk
performance is slow, remote-I/O might be advantageous over staging. Otherwise,
staging method would perform better. One challenge would be estimating these
parameters without actually running the application.

For this purpose, the Stork data scheduler includes network and storage band-
width monitoring capabilities that collect statistics on the maximum available end-
to-end bandwidth, actual bandwidth utilization, latency, and the number of hops
to be traveled. In order to estimate the speed at which data movement can take
place, it is necessary to estimate the bandwidth capability at the source storage
system, at the target storage system, and the network in between.

In the next two sections, we will present two unique features of Stork: aggrega-
tion of data transfer jobs considering their source and destination addresses, and
the application-level throughput estimation and optimization service.

Article submitted to Royal Society

6 T.Kosar, M. Balman, E. Yildirim, S. Kulasekaran, and B. Ross

 0

 20

 40

 60

 80

 100

 120

 0 2 4 6 8 10

tim
e

(s
ec

s)

number of data files sent in a single transfer operation

file size 10MB (rrt 5.131ms)
file size 10MB (rrt 0.548ms)

file size 100MB (rrt 5.131ms)
 file size 100MB (rrt 0.548ms)

file size 1GB (rrt 0.548ms)

 0

 20

 40

 60

 80

 100

 120

 0 2 4 6 8 10

T
hr

ou
gh

pu
t (

M
B

/s
ec

)

number of data files sent in a single transfer operation

file size 10MB (rrt 5.131ms)
file size 10MB (rrt 0.548ms)

file size 100MB (rrt 5.131ms)
 file size 100MB (rrt 0.548ms)

file size 1GB (rrt 0.548ms)
file size 1GB (rrt 5.131ms)

Figure 1. The Effect of Connection Time in Data Transfers

4. Request Aggregation

We have implemented aggregation of data transfer requests in Stork data scheduler
in order to minimize the overhead of connection setup and tear down for each
transfer. Inspired by prefetching and caching techniques in microprocessor design,
data placement jobs are combined and embedded into a single request in which
we increase overall performance especially for transfers of data sets with small file
sizes.

The Stork data scheduler accepts multiple data transfer jobs in a nondetermin-
istic order. For each transfer operation, we need to initialize the network trans-
fer protocol and setup a connection to a remote data transfer service. A single
transfer t consists of tsetup in which we initialize the transfer module and pre-
pare a connection to transfer the data, and ttransfer in which we transfer data
using the data transfer protocol over a network. Although this connection time is
small compared to the total duration spent for transferring the data, it becomes
quite important if there are hundreds of jobs to be scheduled. We target on min-
imizing the load put by tsetup by multiple transfer jobs. Instead of having sepa-
rate setup operations such as t1 = tsetup + t1transfer, t2 = tsetup + t2transfer, ...,
tn = tsetup +tntransfer, we aggregate multiple requests to improve the total transfer
time t = tsetup + t1transfer + t2transfer+...+tntransfer.

Aggregating data placement jobs and combining data transfer requests into a
single operation also has its benefits in terms of improving the overall scheduler
performance, by reducing the total number of requests that data scheduler needs
to execute separately. Instead of initiating each request one at a time, it is more
beneficial to execute them as a single operation if they are requesting data from the
same storage site or using the same protocol to access data. Figure 1 presents the
performance gain by aggregating the file transfer requests. Table 1 is given to show
the overhead in the connection setup. The test environment includes host machines
from the LONI network. Transfer operations are performed using the GridFTP
protocol. The average Round-trip delay times between test hosts are 5.131ms and
0.548ms. As latency increases, the effect of overhead in connection time increases.
We see better throughput results with aggregated requests. The main performance
gain comes from decreasing the amount of protocol usage and reducing the number
of independent network connections.

Article submitted to Royal Society

Stork Data Scheduler: Mitigating the Data Bottleneck in e-Science 7

Table 1. Request Aggregation and the Overhead of Connection Time in Data Transfers

fnum time
(secs)

Thrpt
(MBps)

time
(secs)

Thrpt
(MBps)

time
(secs)

Thrpt
(MBps)

time
(secs)

Thrpt
(MBps)

1 1.59 6.29 0.39 25.64 9.81 10.19 2.4 41.66

2 1.95 10.26 0.52 38.46 17.82 11.22 2.65 75.47

3 3.39 8.85 0.67 44.78 27.7 10.83 5.26 57.03

4 3.68 10.87 0.8 50.00 32.93 12.14 7.87 50.82

5 4.71 10.62 0.9 55.56 43.86 11.39 9.48 52.74

6 6.69 8.97 1.03 58.25 49.46 12.13 11.47 52.31

7 5.94 11.78 1.62 43.21 60.64 11.54 11.73 59.67

8 6.77 11.82 1.35 59.26 64.48 12.40 11.35 70.48

9 7.4 12.16 1.7 52.94 72.59 12.39 11.92 75.50

10 8.18 12.22 2.5 40.00 80.5 12.42 13.39 74.68

RRT 5.131ms RRT 0.548ms RRT 5.131ms RRT 0.548ms

data file size 10MB data file size 100MB

fnum time
(secs)

Thrpt
(MBps)

time
(secs)

Thrpt
(MBps)

1 79.74 12.54 17.46 57.27

2 155.78 12.83 34.74 57.57

3 228 13.15 54.2 55.35

4 312.36 12.80 63.25 63.24

5 381.86 13.09 78.82 63.44

RRT 5.131ms RRT 0.548ms

data file size 1GB

fnum: number of data files sent in a single transfer operation

We have successfully applied job aggregation in Stork scheduler such that total
throughput is increased by reducing the number of transfer operations. According
to the file size and source/destination pairs, data placement request are combined
and processed as a single transfer job. Information about aggregated requests is
stored in a transparent manner. A main job that includes multiple requests is
defined virtually and it is used to perform the transfer operation. Therefore, users
can query and get status reports individually without knowing that their requests
are aggregated and being executed with others. Stork performs a simple search in
the job queue to figure out which requests can be aggregated. In this step, our
main criteria is that data placement jobs need to have the same user privileges and
should be asking for the same data transfer protocol. We have seen major increase
in total throughput of data transfers, especially with small data files, simply by
combining data placement jobs based on their source and destination addresses.

5. Throughput Optimization

In data scheduling, effective use of available network throughput and optimiza-
tion of data transfer speed is crucial for end-to-end application performance. The
throughput optimization in the Stork data scheduler is done by opening parallel
streams and setting the optimal parallel stream number specific to each transfer.
The intelligent selection of this number is based on a novel mathematical model we
have developed that predicts the peak point of the throughput of parallel streams

Article submitted to Royal Society

8 T.Kosar, M. Balman, E. Yildirim, S. Kulasekaran, and B. Ross

 0

 10

 20

 30

 40

 50

 1 5 10 15 20 25 30

Th
ro

ug
hp

ut
 (M

bp
s)

number of parallel streams

LAN-LAN Newton’s Method Model

GridFTP
Newton 1_8_16

Dinda 1_16

 0

 10

 20

 30

 40

 50

 1 5 10 15 20 25 30

Th
ro

ug
hp

ut
 (M

bp
s)

number of parallel streams

LAN-LAN Full Second Order Model

GridFTP
Full 1_8_16
Dinda 1_16

 0

 10

 20

 30

 40

 1 5 10 15 20 25 30

Th
ro

ug
hp

ut
 (M

bp
s)

number of parallel streams

LAN-WAN Newton’s Method Model

GridFTP
Newton 1_8_16

Dinda 1_16

 0

 10

 20

 30

 40

 1 5 10 15 20 25 30

Th
ro

ug
hp

ut
 (M

bp
s)

number of parallel streams

LAN-WAN Full Second Order Model

GridFTP
Full 1_8_16
Dinda 1_16

Figure 2. Model Application for Parallel Stream Optimization

and the corresponding stream number for that value. The throughput of n streams
(Thn) is calculated by the following equation:

Thn =
n√

a′nc′ + b′
(5.1)

The unknown variables a′, b′ and c′ are calculated based on the throughput
samplings of three different parallelism data points. The detailed derivation of this
equation and variables as well as selection strategy of data points (n1, n2, n3) are
explained in our previous work (Yildirim et al. 2010).

The throughput increases as the stream number is increased, it reaches its peak
point either when congestion occurs or the end-system capacities are reached. Fur-
ther increasing the stream number does not increase the throughput but it causes a
drop down due to losses. In Figure 2, we present the characteristics of the through-
put curve for local-area and wide-area transfers. In both cases, the throughput has
a peak point which indicates the optimal parallel stream number and it starts to
drop down for larger numbers of streams. The prediction model we have developed
(Dynamic model order by Newton’s Iteration) can predict the peak point by using
the throughput values of parallelism levels 1, 8 and 16. Our model is much more
accurate compared with the previous work –Dinda Model (Lu et al. 2005).

In cases where network optimization is not sufficient and the end-system char-
acteristics play a decising role in limiting the achievable throughput, making con-
current requests for multiple data transfers can improve the total throughput. The
Stork data scheduler also enables the users to set a concurrency level in server setup
and provides multiple data transfer jobs to be handled concurrently. However, it is
up to the user to set this property.

We compare concurrency and parallelism through a set of different test cases
to demonstrate the situations where a concurrent transfer can also improve an
optimized transfer with parallel streams. The first test case shows us the memory-
to-memory transfers with parallel streams and different concurrency levels between
a local-area workstation with 100 Mbps network interface and a cluster I/O node
in the LONI network with 10 Gbps network interface. The speed of the transfer
is bound by the local-area workstation. In Figure 3.a, increasing the concurrency
level does not provide a more significant improvement than increasing the parallel
stream values. Thus, the thrughput of 4 parallel streams is almost as good as the
throughput of concurrency levels 2 and 4. The reason behind this outcome is that

Article submitted to Royal Society

Stork Data Scheduler: Mitigating the Data Bottleneck in e-Science 9

 10
 20
 40
 60
 80

 100

 1 2 4

M
bp

s

number of streams

a) Dsl-condor - Eric 100Mbps

Con-level=1
Con-level=2
Con-level=4

 1000
 2000

 4000

 6000

 8000

 1 4 8 16 32 64

M
bp

s

number of streams

b) Oliver - Poseidon 10Gbps

Con-level=1
Con-level=2
Con-level=4

Figure 3. Concurrency vs. Parallelism in Memory-to-memory Transfers

the throughput is bound by the interface and the CPU is fast enough and does
not present a bottleneck. Next we look into the case where we conducted transfers
between two clusters with 10 Gbps network interfaces in the LONI network (Figure
3.b). The I/O nodes have 4 CPU cores in each. With parallel streams, we were
able to achieve a throughput value of 6 Gbps. However, when we increase the
concurrency level we were be able to achieve around 8 Gbps with a combination of
concurrency level of 2 and parallel stream number of 32. This significant increase is
due to the fact that a single CPU reaches its upper limit with a single request but
through concurrency, multiple CPUs are utilized until the network limit is reached.

The effect of concurrency is much more significant for disk-to-disk transfers
where multiple parallel disks are available and managed by parallel file systems.
Figure 4 presents the results of disk-to-disk transfers between the I/O nodes of two
clusters in the LONI network with 10 Gbps network interfaces. The disk system is
managed by Lustre parallel file system (Lustre). The x-axis represents the range
of parallel stream numbers and the concurrency level is also ranged between 1 and
10. As the concurrency level is increased, the size of the data is divided among the
concurrent requests totaling to 12 Gbps. While the total throughput presents the
total number of bytes transferred in unit time, the average throughput is calculated
by the amount of bytes transferred in unit time by each concurrent request. Parallel
streams improve the throughput for single concurrency level by increasing it from
500 Mbps to 750 Mbps. However, due to serial disk access this improvement is lim-
ited. Only by increasing the concurrency level can we improve the total throughput.
The throughput in Figure 4.a is increased to 2 Gbps at concurrency level 4. After
that point, increasing the concurrency level causes the throughput to be unstable
with sudden ups and downs in throughput, however it is always around 2 Gbps.
This value is due to the end-system CPU limitations. If we increase the node num-
ber better throughput results could be seen. As we look into the figure for average
throughput, the transfer speed per request falls as we increase the concurrency level
(Figure 4.b).

We tested our throughput optimization embedded into the Stork data scheduler
combining with different concurrency levels set for the server. Similar concurrency
and data sizes are used as in the previous experiment for disk-to-disk transfers.
For each concurrency level, we have submitted 30 jobs to the server and measured
the total throughput as the total amount of data transferred divided by the time

Article submitted to Royal Society

10 T.Kosar, M. Balman, E. Yildirim, S. Kulasekaran, and B. Ross

 500
 1000
 1500
 2000

 3000

 4000

 5 10 15 20 25 30

M
bp

s

number of streams

a) Total Throughput

Con-level/datasize=1/12G
2/6G
4/3G
6/2G

8/1.5G
10/1.2G

 500

 1000

 1500

 5 10 15 20 25 30

M
bp

s

number of streams

b) Average Throughput

Con-level/datasize=1/12G
2/6G
4/3G
6/2G

8/1.5G
10/1.2G

Figure 4. Concurrency vs. Parallelism in Disk-to-disk Transfers

 500

 1000

 1500

 2000

1/12G 2/6G 4/3G 6/2G 8/1.5G10/1.2G

M
bp

s

concurrency/datasize

a) Total Throughput

 100
 200

 400

 600

 800

1/12G 2/6G 4/3G 6/2G 8/1.5G10/1.2G

M
bp

s

concurrency/datasize

b) Average Throughput

 1

 2

 3

 4

 5

 6

 7

1/12G 2/6G 4/3G 6/2G 8/1.5G 10/1.2G

nu
m

be
r o

f s
tre

am
s

concurrency/datasize

c) Average Stream Number

Figure 5. Concurrency vs Parallel Stream Optimization in the Stork Data Scheduler

difference between the first job submitted to the scheduler and the last job finished.
The average throughput is calculated as the throughput of each data transfer job
separately based on the job start and finish time. When we look into the total
throughput results in Figure 5.a, similar trends are seen. The optimization service
provides 750 Mbps throughput for single concurrency level and it increases upto
2 Gbps for concurrency level 4. The average throughput decreases more steeply
after that level (Figure 5.b). Also the optimal parallel stream number decreases
and adapts to the concurrency level (Figure 5.c). From the experiments, it can
be seen that an appropriately chosen concurrency level may improve the transfer
throughput significantly.

6. Conclusion

In this paper, we have discussed the limitations of the traditional CPU-oriented
batch schedulers in handling the challenging data management problem of large
scale distributed e-Science applications. We have elaborated on how we can bring
the concept of ‘data-awareness’ to several most crucial distributed computing com-
ponents such as scheduling, workflow management, and end-to-end throughput op-
timization. In this new paradigm, data placement activities are represented as full-
featured jobs in the end-to-end workflow, and they are queued, managed, scheduled,
and optimized via a specialized data-aware scheduler.

As part of this new paradigm, we have developed a set of tools for mitigating
the data bottleneck in distributed computing systems, which consists of three main
components: a data scheduler which provides capabilities such as planning, schedul-

Article submitted to Royal Society

Stork Data Scheduler: Mitigating the Data Bottleneck in e-Science 11

ing, resource reservation, job execution, and error recovery for data movement tasks;
integration of these capabilities with the other layers in distributed computing such
as workflow planning; and further optimization of data movement tasks via aggre-
gation of data transfer jobs considering their source and destination addresses, and
through application-level throughput optimization. We have described how these
two features are implemented in Stork and their effects on end-to-end data trans-
fer performance. Our results show that the optimizations performed by the Stork
data scheduler help to achieve much higher end-to-end throughput in data transfers
compared to non-optimized approaches.

We believe that Stork data scheduler and this new ‘data-aware distributed com-
puting’ paradigm will impact all traditionally compute and data-intensive e-Science
disciplines, as well as new emerging computational areas in the arts, humanities,
business and education which need to deal with increasingly large amounts of data.

This project is in part sponsored by the National Science Foundation under award num-
bers CNS-0846052 (CAREER), CNS-0619843 (PetaShare), OCI-0926701 (Stork) and EPS-
0701491 (CyberTools, and by the Board of Regents, State of Louisiana, under Contract
Number NSF/LEQSF (2007-10)-CyberRII-01.

References

Allcock, B., Bester, J., Bresnahan, J., Chervenak, A., Foster, I., Kesselman, C.,
Meder, S., Nefedove, V., Quesnel, D., & Tuecke, S. 2001 Secure, efficient data
transport and replica management for high-performance data-intensive computing.
In Proceedings of IEEE Mass Storage Conference, April 2001.

Allcock, B., Bester, J., Bresnahan, J., Chervenak, A., Foster, I., Kesselman, C.,
Meder, S., Nefedove, V., Quesnel, D., & Tuecke, S. 2001 Data Management and
Transfer in HighPerformance Computational Grid Environments. In Proceedings of
Data Management and Transfer in HighPerformance Computational Grid Environ-
ments. Parallel Computing, 2001.

Allcock, B., Foster, I., Nefedova, V., Chervenak, A., Deelman, E., Kesselman, C.,
Lee, J., Sim, A., Shoshani, A., Drach, B. & Williams, D. 2001 High-performance
remote access to climate simulation data: a challenge problem for data grid tech-
nologies. In Proceedings of the 2001 ACM/IEEE conference on Supercomputing,
2001.

Altman, E., Barman, D., Tuffin, T., & Voinovic, M. 2006 Parallel TCP Sockets:
Simple Model, Throughput and Validation. In Proceedings of INFOCOM , April
2006 , pp. 1-12.

Beck, M., Elwasif, W.R., Plank, J. & Moore, T. 1999 The Internet Backplane Proto-
col: Storage in the Network. In Proceedings of the 1999 Network Storage Symposium
NetStore99, Seattle, WA, USA

Bent, J. 2005 Data-driven Batch Scheduling. Ph.D thesis, University of Wisconsin-
Madison

CCSP. 2003 Strategic Plan for the US Climate Change Science Program. CCSP
Report

Article submitted to Royal Society

12 T.Kosar, M. Balman, E. Yildirim, S. Kulasekaran, and B. Ross

Ceyhan, E., Allen, G., White, C. & Kosar, T. A Grid-enabled Workow System for
Reservoir Uncertainty Analysis. In Proceedings of Challenges of Large Applications
in Distributed Environments (CLADE 2008) Workshop, June 2008.

Chervenak, A., Schuler, C., Kesselman, C., Koranda, S., & Moe, B. 2005 Wide area
data replication for scientific collaborations. In Proceedings of the 6th IEEE/ACM
International Workshop on Grid Computing, November 2005.

Crowcroft, J. & Oechslin, P. 1998 Differentiated End-to-end Internet Services using
a weighted proportional Fair Sharing TCP. ACM SIGCOMM Computer Commu-
nication Review. 28, 53-69

DPOSS. The Palomar Digital Sky Survey (DPOSS). http://www.astro.caltech.edu/
george/dposs/.

Hacker, T.J., Noble, B.D., & Atley, D. 2002 The end-to-end Performance effects of
Parallel TCP sockets on a lossy wide area network. In Proceedings of IPDPS ’05,
pp 314.

Hey, T. & Trefethen, A. 2003 The data deluge: An e-science perspective. In Grid
Computing - Making the Global Infrastructure a Reality, chapter 36, pp. 809–824.
Wiley and Sons, 2003.

IRODS. The Integrated Rule Oriented Data System. iRODShttp://www.irods.org/.

Johnston, W.E., Gannon, D., Nitzberg, B., Tanner, L.A., Thigpen, B., & Woo, A.
2000 Computing and data grids for science and engineering, pp. 52. Supercomputing
2000 CDROM. Dallas, USA

Kiehl, J.T. 1998 The National Center for Atmospheric Research Community Cli-
mate Model: CCM3. Journal of Climate. 11.6, 1131-1149

Kola, G., Kosar, T. & Livny, M. A Fully Automated Fault-tolerant System for
Distributed Video Processing and Off-site Replication. In Proceedings of the 14th
ACM International Workshop on Network and Operating Systems Support for Dig-
ital Audio and Video (NOSSDAV 2004).

Koranda, S & Moe, 2007 M. Lightweight Data Replicator.
http://www.ligo.caltech.edu/docs/G/G030623-00/G030623-00.pdf

Kosar, T. & Livny, M. 2004 Stork: Making Data Placement a First Class Citizen
in the Grid. In Proc. of ICDCS, March 2004, pp. 342-349.

Kosar, T. 2005 Data Placement in Widely Distributed Systems. Ph.D thesis, Uni-
versity of Wisconsin-Madison.

Kosar, T., Kola, G., Livny, M., Brunner, R.J. & Remijan, M. Reliable, Automatic
Transfer and Processing of Large Scale Astronomy Data Sets. In Proceedings of
Astronomical Data Analysis Software and Systems (ADASS), 2005.

Kosar, T., Balman, M., Suslu, I., Yildirim, E., & Yin., D. 2009. Data-Aware Dis-
tributed Computing with Stork Data Scheduler. In Proceedings of the SEE-GRID-
SCI’09, Istanbul, Turkey, December 2009

Lu, D., Qiao, Y., Dinda, P.A., & Stamante, F.E. 2005 Modeling and Taming Parallel
TCP on the Wide Area Network. In Proceedings of IPDPS ’05 , pp . 682.

LUSTRE Cluster File System, Inc. Lustre: A Scalable, High Performance File Sys-
tem. http://www.Lustre.org/docs.htm.

Article submitted to Royal Society

Stork Data Scheduler: Mitigating the Data Bottleneck in e-Science 13

MSCFD. Multiscale Computational Fluid Dynamics at LSU.
http://www.cct.lsu.edu/IGERT/.

NumRel. Numerical Relativity at LSU. http://www.cct.lsu.edu/numerical/.

Ranganathan, R. & Foster, I. 2002 Decoupling Computation and Data Scheduling
in Distributed Data-Intensive Applications. In Proceedings of the 11 th IEEE Inter-
national Symposium on High Performance Distributed Computing HPDC-11 2002,
pp.352.

Ranganathan, R. & Foster, I. 2004 Computation scheduling and data replication
algorithms for data Grids . Journal of Grid resource management: state of the art
and future trends. 359-373.

Ravi, M. K., Cynthia, H.S., William, E.A. 2002 Reliable File Transfer in Grid Envi-
ronments. In Proceedings of the 27th Annual IEEE Conference on Local Computer
Networks, 2002, pp. 737-738.

ROOT. 2006 Object Oriented Data Analysis Framework. European Organization
for Nuclear Research Journal. http://root.cern.ch.

SCOOP. SURA Coastal Ocean Observing and Prediction.
http://www.ucoms.org/overview.html.

SRB. The Storage Resource Broker SRB. http://www.sdsc.edu/srb/.

SRM. The Storage Resource Managers SRM. http://sdm.lbl.gov/srm.

Stockinger, H. 2005 Data Management in Data Grids - Habilitation Overview. Re-
search Lab for Computational Technologies and Applications.

Stockinger, H., Laure, E. & Stockinger, K. 2005. Performance Engineering in Data
Grids. Journal of Concurrency and Computation: Practice and Experience, Wiley
Press.17(2-4), 171-191

Stockinger, K., Schikuta, E., Stockinger, H. & Willers, I. 2001 Towards a Cost
Model for Distributed and Replicated Data Stores. In 9th Euromicro Workshop on
Parallel and Distributed Processing (PDP 2001), IEEE Computer Society Press,
Mantova, Italy, February 2001.

Thain, D., Arpaci Dusseau, A., Bent, J., & Livny, M. 2004 Explicit Control in a
Batch Aware Distributed File System. In Proceedings of the First USENIX/ACM
Conference on Networked Systems Design and Implementation, San Francisco, CA,
March 2004.

Tierney, B.L., Lee, J., Crowley, B., Holding, M., Hylton, J. & Drake, F.L. 1999
A Network-Aware Distributed Storage Cache for Data-Intensive Environments. In
Proceedings of the Eighth IEEE International Symposium on High Performance
Distributed Computing, 1999, pp. 185-189.

UCoMS. Ubiquitous Computing and Monitoring System for Discovery and Man-
agement of Energy Resources. http://www.scoop.sura.org/

Venugopal, S., Buyya, R., & Winton, L. 2004 A grid service broker for scheduling
distributed data-oriented applications on global grids. In Proceedings of the 2nd
workshop on Middleware for grid computing, Toronto, Canada, 2004, pp. 75-80.

WCER. Wisconsin Center for Education Research Digital Video Processing Project.
http://www.wcer.wisc.edu/.

Article submitted to Royal Society

14 T.Kosar, M. Balman, E. Yildirim, S. Kulasekaran, and B. Ross

Yildirim, E., Yin, D. & Kosar, T. 2010 Prediction of optimal parallelism level in
wide area data transfers. TPDS 2010.

Yin, D., Yildirim, E., Sivakumar, K.A., Ross, B. & Kosar, T. 2011 Data Through-
put Prediction and Optimization Service for Widely Distributed Many-Task Com-
puting. IEEE Transactions on Parallel and Distributed Systems-Special Issue on
Many-Task Computing (TPDS-SI).

Article submitted to Royal Society

