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Abstract

Modern collaborative science has placed increasing burden on data management infrastructure to

handle the increasingly large data archives generated. Beside functionality, reliability and availability

are also key factors in delivering a data management system that can efficiently and effectively meet the

challenges posed and compounded by the unbounded increase in the size of data generated by scientific

applications. We have developed a reliable and efficient distributed data storage system, PetaShare, which

spans multiple institutions across the state of Louisiana. At the back-end, PetaShare provides a unified

name space and efficient data movement across geographically distributed storage sites. At the front-end,

it provides light-weight clients the enable easy, transparent, and scalable access. In PetaShare, we have

designed and implemented an asynchronously replicated multi-master metadata system for enhanced

reliability and availability, and an advanced buffering system for improved data transfer performance.

In this paper, we present the details of our design and implementation, show performance results, and

describe our experience in developing a reliable and efficient distributed data management system for

data-intensive science.

Keywords: distributed data storage, metadata management, asynchronous replication, advanced

buffer, reliability, performance, data-intensive science, PetaShare.

1 Introduction

A data-intensive cyber-infrastructure has become increasingly important in interdisciplinary research projects

that are generating ever larger data archives and requiring ever more sophisticated data management services

to handle these archives. Simply purchasing high-capacity, high-performance storage systems and adding



them to the existing infrastructure of the collaborating institutions does not solve the underlying and highly

challenging data management problems. Scientists are compelled to spend a great amount of time and energy

on solving basic data-handling issues, such as how to find out the physical location of data, how to access

it, and/or how to move it to visualization and/or compute resources for further analysis.

There are two main components in a distributed data management architecture: a data server which

coordinates physical access (i.e. writing/reading data sets to/from disks) to the storage resources, and a

metadata server which provides global name space to ensure location transparency of data as well as storage

resources, and keeps all related information regarding the system. Along with other design issues and system

components, metadata server layout has impact on the following system features: availability, scalability ,

load balancing, and performance. The metadata server is generally implemented as a single central entity

which makes it a performance bottleneck as well as a single point of failure. Obviously, replication of the

metadata server is necessary to ensure high availability as well as increased local performance. On the other

hand, a replicated mulit-metadata server architecture comes with some challenges such as synchronization

of these servers, data coherency, and overhead of syncronization.

Metadata servers can be synchronized either synchronously or asynchronously. In synchronous

replication, incoming request that requires metadata update is propagated to all metadata servers before it

gets committed. Metadata information is updated if and only if, all metadata servers agree to commit

the incoming request. Propagating update messages to all replicating metadata servers and receiving

corresponding confirmations takes time which degrades the metadata access performance. To eliminate

the overhead of synchronization of metadata servers in synchronous replication, we exploit asynchronous

replication. Asynchronous replication allows a metadata server to process the incoming request by itself

without propagating the request to all replicating servers immediately. Metadata servers are updated

asynchronously in the background. This dramatically increases performance for metadata access, especially

for write operations. One of the challenges in asynchronous metadata replication is providing metadata

consistency across all sites.

There have been many efforts in parallel and distributed data management systems to provide large I/O

bandwidth [1, 2, 3]. However, metadata management is still a challenging problem in widely distributed

large-scale storage systems. Scalability in file metadata operations for parallel filesystems has been studied

in [4]. In [5], I/O operations are delegated to a set of nodes to overcome I/O contention. GPFS [6]

handles metadata and data management separately and it uses shared lock mechanism to enable simultaneous

updates to file metadata from multiple clients. Collective communication patterns are proposed between

storage servers to simplify consistency controls. In [7, 8], metadata workload has been distributed among

multiple servers for performance and scalability. With its dynamic subtree partitioning, Ceph [7] provides
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adaptability and failure detection for changing environment conditions. It also performs lazy commits in

metadata operations to improve performance. I/O bottleneck is one of the bottlenecks in parallel scientific

computation [9]. Adaptability, reliability, latency between resources and utilization of available capacity are

some of the challenges in distributed data management to provide an efficient infrastructure [10, 11].

In this paper, we present the design and implementation of a reliable and efficient distributed data storage

system that we have developed, PetaShare, which spans multiple institutions across the state of Louisiana.

In Section 2, we will give a brief introduction to PetaShare and its underlying technologies; Section 3 will

present the design and implementation of the asynchronous mulit-master metadata replication in PetaShare;

Section 4 will discuss our work on advanced buffer to improve data transfer performance; and Section 5 will

conclude the paper.

2 PetaShare

The NSF funded PetaShare project aims to enable transparent handling of underlying data sharing, archival,

and retrieval mechanisms, and make data available to scientists for analysis and visualization on demand.

The goal is to enable scientists to focus on their primary research problems, assured that the underlying

infrastructure will manage the low-level data handling issues. Our initial implementation and deployment

of PetaShare involves five state universities and two health sciences centers in Louisiana. These institutions

are Louisiana State University, Tulane University, University of New Orleans, University of Louisiana at

Lafayette, Louisiana Tech University, Louisiana State University-Shreveport, and Louisiana State University-

Health Sciences Center in New Orleans. PetaShare manages 250 Terabytes of disk storage distributed across

these sites as well as 400 Terabytes of tape storage centrally located nearby LSU campus. For connecting

all of the participating sites together, PetaShare leverages 40 Gbps high bandwidth and low-latency optical

network: LONI, the Louisiana Optical Network Initiative [12] [13]. The internal network connection of LONI

resources and the distribution of the PetaShare resources among the LONI sites are shown in Figure 1.

PetaShare provides scientists with simple uniform interfaces to store, access, and process heterogeneous

distributed data sources. The archived data is well cataloged to enable easy access to the desired files or

segments of files, which can then be returned to the requester in a chosen format or resolution. Multiple

copies of high priority information can be stored at different physical locations to increase reliability and also

enable easier retrieval by scientists in different geographical locations. The data is also indexed to enable

easy and efficient access to the desired data. The requested data is moved from the source or archival sites to

the computation sites for processing as required, and the results then sent back to the interested parties for

further analysis or back to the long term storage sites for archival. To improve data transfer performance,
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Figure 1: Louisiana Optical Network Initiative and PetaShare Sites

we introduced advanced buffer to our system, we will elaborate in section 4.

The back-end of PetaShare, as illustrated in Figure 2. is based on enhanced version of iRODS and

Stork technologies which provide a unified name space and efficient data movement across geographically

distributed storage sites. iRODS stores all the system information, as well as user-defined rules in centralized

database, which is called iCAT. iCAT contains the information of the distributed storage resources,

directories, files, accounts, metadata for files and system/user rules. iRODS provides a generic client API to

control the iCAT. We try to utilize and enhance this API for achieving better performance and reliability

for PetaShare. iRODS is based on client/server architecture [14]. A sample deployment contains an iCAT

server along with multiple iRODS servers on each site. These iRODS servers manage the accesses to the

physical data in the resources. They interact with iCAT server to control the accesses to the resources. As it

can be easily noticed, the existence of central iCAT server is a single point of failure. Since the iCAT server

is the only authority to provide unified namespace and all system information, the overall system becomes

unavailable whenever iCAT server fails. To overcome this problem, we introduced asynchronous replication

into iCAT, we will discuss it in section 3.

2.1 Client Tools

PetaShare provides three different client tools for its users: petashell, petafs and pcommands. Petashell is

an interactive shell interface that catches system I/O calls made by an application and maps them to the

relevant iRODS I/O calls. Petafs is a userspace virtual filesystem that enables users to mount PetaShare
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Figure 2: PetaShare Architecture

resources to the local machines. Pcommands are a set of UNIX-like commands that are specialized for

interacting with PetaShare. These tools differ from each other in terms of their capabilities and usage. For

example, petafs can be used in systems that their kernels have FUSE [15] support. Contrary, petashell and

pcommands do not require any kernel level support. Further discussions below make it clear why there are

three different client tools.

Pcommands allow users to access PetaShare resources, and provide fundamental data access utilities,

such as listing, copying, moving, editing and deleting. However, shortcoming of Pcommands is that data

on PetaShare can not be transparently accessed by the user applications that are run locally. Pcommands

can work to stage in/out the data between PetaShare resources and local machine. However, in most cases

the sizes of input and output data of applications are exceeding the storage limits of the machines on where

application runs. Furthermore, it is usually impractical to deploy the application into where the data resides

due to reasons such as incompatibility of machines, copyrights, licenses and security. This is why transparent

remote access to data is important for the user applications.

This is the case where petashell and petafs come into the picture. They make it possible to run

applications without staging in/out the data to/from local machines, or deploy the application to the

machines where the data reside. The motivation behind petashell and petafs is that users should be able

to run their own applications in their machines while the required and produced data stay on remote

resources. Furthermore, users should be unaware of the details of connecting to remote resources, interacting

applications with the remote data and locating the data physically. All these operations should be transparent

to the users. In PetaShare, applications interacts with remote data through petashell and petafs that

translate the I/O requests made by user application into the respective iRODS I/O calls. These calls provide

the required data or store the produced data in PetaShare system and update iCAT database. The oveview

of PetaShare client tools and their interactions with low-level iRODS components are shown in Figure 3.
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Figure 3: Layered View of PetaShare Client Tools

As it can be seen in Figure 3, the client tools use iRODS API to call relevant iRODS operations at

the lowest level to handle I/O requests of an application. Petashell uses an existing open-source software,

Parrot [16], to catch system I/O calls of an application and to match them with the respective iRODS I/O

calls. On the other hand, petafs pretends as a filesystem to handle system I/O calls and maps filesystem

calls to respective the iRODS calls through a special interface called FUSE. Pcommands use iRODS API to

access the data on PetaShare.

2.1.1 Petashell

Petashell is an interactive shell interface that allows users to run their applications on their machines while

data resides on remote PetaShare resources. That means, there is no need to move the data to the machine

where application runs, or port the application to where data resides. Petashell attaches application and

data together while both are physically separated.

Petashell is based on Parrot which is a tool for attaching running programs to remote I/O systems through

the filesystem interface [17]. The main idea behind Parrot is to catch system I/O calls and translate these

calls into the corresponding I/O operations of remote system. Basically, the system calls of an application

are trapped through the ptrace debugging tool, and corresponding remote I/O operations are sent to the

remote system. Currently, Parrot offers service for various remote systems, such as http, ftp, gridftp, glite,

and iRODS [18]. In our case, iRODS service libraries are used to implement petashell where system I/O

calls of application are translated into the respective iRODS I/O routines. For example, if a user runs cat

utility to read a file on PetaShare resource, then Parrot captures the I/O calls (i.e. fstat, open, read, write,

close) made by cat , and maps these I/O calls to corresponding iRODS calls (i.e. rcObjStat, rcDataObjOpen,
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Figure 4: Mapping System I/O Calls to iRODS Calls via Petashell

rcDataObjRead, rcDataObjClose). This is illustrated in Figure 4. Here, cat is run in petashell interface where

/petashare specifies the service that is being used in Parrot (basically PetaShare service uses iRODS service

libraries of Parrot), /lsu specifies the name of PetaShare site that is going to be accessed, and /tempZone

states the name of current zone in PetaShare. Petashell installation requires no kernel modification, so

unprivileged users can run it without worrying about low-level system and permission issues [19].

2.1.2 Petafs

Petafs is a virtual filesystem that allows users to access PetaShare resources as a local filesystem after being

mounted to their machines. By using petafs, PetaShare resources can be seen in the directory hierarchy of

an existing filesystem and can be accessed in the same way as an existing filesystem.

Petafs is based on FUSE (Filesystem in Userspace) which is a simple interface to export a virtual filesystem

to the Linux kernel in userspace [15]. FUSE interacts with the existing filesystem at the kernel level and

maps virtual filesystem calls to the existing filesystem calls. Petafs provides a FUSE module for iRODS that

matches iRODS calls with FUSE calls in the FUSE library. In the kernel, FUSE incorporates with the real

filesystem and maps these FUSE calls to the actual filesystem calls. This is done through FUSE library in

a similar way to matching iRODS calls with FUSE calls.

The communication between kernel module and FUSE library is established by specifying a file descriptor

which is obtained from /dev/fuse device file. This file descriptor is passed to the mount system call to match

up the file descriptor with the mounted petafs virtual filesystem [15]. Installation of petafs requires kernel

support for FUSE, so it is appropriate for privileged users. However, unprivileged users can still use petafs

if their kernels support FUSE already.
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2.1.3 Pcommands

Pcommands are command-line utilities to access PetaShare. They evoking the basic UNIX-like commands,

such as pls, pcp, pmkdir where UNIX counterparts are ls, cp, mkdir respectively. These commands interact

with PetaShare directly by using iRODS API.

Pcommands are based on iRODS i-commands. The iRODS i-commands are command line utilities of

iRODS that interface to an iRODS system [20]. Pcommands differ from i-commands by providing transparent

interface for multiple iRODS servers. In our case, PetaShare is composed of several iRODS servers where we

want to make users unaware of the details of each of these iRODS servers. Pcommands provide an interface

where users only need to know the name of the PetaShare site that they want to access. After providing the

name of the PetaShare site, pcommands automatically adjust the iRODS environment files to access to the

desired PetaShare site.

Pcommands also provide some additional utilities such as pchangeuser that enables users to switch

between their existing PetaShare accounts (note that PetaShare accounts are created for project groups, not

for individuals, so a user may have permission to access multiple PetaShare accounts if the user is involved

in different research groups). Pcommands enable users to access PetaShare storage resources who are using

various types of operating systems; such as Linux, Solaris, MacOS, and AIX.

3 Asynchronous Multi-Master Metadata Replication

As discussed in the previous chapter, PetaShare based on iRODS and iCAT has a major weakness since

there is a single point of failure. The failure of iCAT server that keeps complete system information makes

the overall system failed unavailable, since there is no authority that provides globally unified namespace

to access the resources. To solve this issue, we attempted to replicate iCAT server, the replication of iCAT

server should be transparent, but not affect the performance of the system. We cloned the PetaShare system

on the testbed and replicated iCAT servers synchronously. Unfortunately, we obtained high latency and

performance degradation on data transfers while each transfer is committed after iCAT servers complete

replicating themselves. As a result, we decided to develop an asynchronous replication system.

3.1 Conflict Detection and Resolution

The biggest problem of asynchronous multi-master replication is that conflicts occur if two sites update

their databases within the same replication cycle. For this reason, the proposed multi-master replication

method should detect and resolve possible conflicts. However, it is well known that detecting and resolving
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Figure 5: Components of Asynchronous Multi-Master Replication Tool

conflicts require complex algorithms. Fortunately, we have built a conceptual conflict resolver that handles

such conflicts efficiently. Common conflict types are: (i) uniqueness conflicts: occur if two or more sites

try to insert the records with the same primary key; (ii) update conflicts: occur if two or more sites try to

update the same record within the same replication cycle; (iii) delete conflicts: occur if one site deletes a

record from database while another site tries to update this record.

Typically, conflict resolution mechanisms are based on timestamps. However, we also introduce intelligent

database design to eliminate some of these conflicts. For example, in the iCAT database, each object is

given a unique ID within increasing sequence of big int type. If two separate sites insert new records into

the database within the same replication cycle, then these two records will have the same ID in which case

a uniqueness conflict occurs. To eliminate uniqueness conflicts, we divide the range of big int type into the
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certain-sized intervals (i.e. relative to the number of sites). Then, these intervals are assigned to different

sites. Dividing ID space into the intervals allows each site to assign an ID to an inserted record from a

disjoint sequence of IDs. For example, we assigned an interval of 10000 and 8000000 to the first iCAT server,

8000001 and 16000000 to the second iCAT server, and so on. Thus, if two sites insert new records within

the same replication cycle, we are ensured that these records will have different IDs and uniqueness conflicts

never occur in iCAT database. On the other hand, update conflicts occur if two or more sites try to update

the same record within the same replication cycle. Using timestamps is the most famous technique to resolve

such conflicts. There are two ways of using timestamps. The first one is to use latest timestamp value [21].

This is the simplest technique since updates are run sequentially where the latest update (i.e. the latest

timestamp value) overwrites all the previous updates. The second one is to use earliest timestamp value [21].

This is more complex than the first technique where all conflicting updates should be identified and only the

first one (i.e. earliest timestamp value) should be processed.

We identified two different update types occurred in the ICAT database and developed different conflict

resolution methods for them. The first type of updates target only the tables of iCAT database, such as

updating accounts and permissions. The second type of updates target also the data stored in the resources,

such as writing a file.

The update conflicts of the first type are resolved by negotiation. For example, an update conflict occurs

if two sites update the password of the same account within the same replication cycle. Then, both sites are

informed that an update conflict has occurred and negotiation process is started. They have to decide which

update should be accepted and replicated. During the process of negotiation, the latest timestamp value is

used to resolve the conflict temporarily. If there is no agreement within a certain amount of time (i.e. 24

hours), the latest timestamp value becomes concrete and conflict is considered as resolved.

The update conflicts of the second type are resolved in the following way. The update request for data

can be done in any site regardless the physical location of the data. So, if an update request is made for

the data that reside in a remote resource, then the iRODS server should send the update request along with

the changes (i.e. changed bytes) to the corresponding iRODS server. This iRODS server accepts the update

requests from only one site for the same data within a replication cycle. Other sites that try to update

the same data within the same replication cycle receive update-rejected message from the corresponding

iRODS server.

Another case in which the update conflicts of the second type can occur is that if two iRODS servers

try to add new files with the same file name to the same PetaShare directory (although files are located in

different resources). The update conflict occurs since both files have the same name; although, they have

unique IDs. This type of conflicts are also resolved by negotiation. The first concern of us is the data safety.
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We ensure that the written files are in safe in the resources. However, the conflict appears in the unified

namespace has to be resolved. For this reason, whenever such a conflict is detected, our proposed conflict

resolver automatically changes the names of the conflicting files. For example, if two files have the name of

fileA, then one of the file name becomes fileA 1 . Afterwards, the conflict resolver acknowledges both iRODS

server that conflict has been occurred and file name has been changed. A user has a flexibility to accept the

changed file, or rename it. These updates for the file name are also replicated among all sites.

The delete conflicts are treated in the same way of update conflicts. However, there is an additional

control on delete operations. If a file is deleted, it is first moved to a special directory called trash. To

delete this file permanently, a special command has to be used. However, the usage of this command is not

allowed within the same replication cycle with the deletion of that file. This is done to prevent undesired

circumstances. For example, a delete conflict occurs if a site requests an update for a file that is deleted by

another site within the same replication cycle. However, if user does not agree on delete operation, then file

can be rescued and updated since it is kept in the trash during the replication cycle. On the other hand, file

can be deleted permanently if no delete conflict occurs within a replication cycle.

3.2 Implementation of Asynchronous Multi-Master Metadata Replication

Metadata information is kept in a relational database and managed by metadata server. Thus, metadata

server replication and database replication can be used interchangeably. Implementing replication logic in

database itself is complicated and creates extra work for database. For this reason, we design and implement

our own replication tool called MASREP (Multi-master ASynchronous REPlication) which is maintained

separately from the database. MASREP runs on the background and lets metadata server to run on its

own. This allows database not deal with replication, and makes all replication related issues transparent to

the database and users. Moreover, it provides flexibility of changing replication settings without interrupt

or stop metadata servers.

Our replication strategy is based on transaction logs generated by databases. The databases to be

replicated are configured to log only Data Manipulation Language (DML) statements (i.e. insert, update,

delete) in their transaction logs. All statements in the transaction log correspond to one of the metadata

update made in that metadata server. For this reason, these statements have to be replicated among all

other metadata servers to make them all consistent and synchronized. Other operations, such as read

operations, are handled by running select statements on metadata server. Since select statements do not

change metadata information of any object, they are not needed to be replicated; thus, we avoid them to be

logged in transaction log.
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MASREP is responsible for processing transaction logs and sending/receiving them to/from its

counterparts in all other replicating metadata servers. MASREP acts as a database client when it processes

requests received from other metadata servers. It consists of five main components which are coordinating

replication and synchronization related operations in the system. These components are extractor, dispatcher,

collector, injector and conflict resolver. Along with these components, MASREP maintains two types of

statement queues: outgoing-queues and incoming-queue. Outgoing-queues are used to store the statements

that must be propagated to metadata servers to make them synchronized. There are separate outgoing-

queues for each replicating metadata server. On the other hand, incoming queue is used to store the

statements that have been received from other metadata servers. The components of asynchronous replication

tool and interaction among them are shown in Figure 5.

We define a replication cycle that identifies the sequence of actions have to be made to replicate and

synchronize metadata servers. Basically, it is a duration of time in which all replication related functions

have been completed. Replication cycle starts with executing statements stored in incoming-queue (i.e. by

injector), and goes on with extracting statements from transaction log of metadata server, and filling them

into the respective outgoing-queues (i.e. by extractor). Then, statements in outgoing-queues are sent to the

respective metadata servers (i.e. by dispatcher). After this step, there is pre-defined waiting (i.e. sleeping)

period. A replication cycle finishes when waiting period is over, and a new replication cycle starts. It is

expected that all metadata servers become synchronized at the end of the replication cycle. Although, it is

said that synchronizing metadata servers once in a minute is sufficient [22]), we synchronize all metadata

servers in every 30 seconds to reduce the duration of inconsistencies. We observed that all metadata servers

become synchronized before any request comes for updated data object through other metadata servers. A

typical replication cycle is shown in Figure 6.

In MASREP, extractor component process transaction log of replicating metadata server to find the

statements that have been committed within last replication cycle. Also, it is responsible for eliminating the

statements that have been received from other metadata servers. It is worth to mention that transaction

log contains both the statements that are originated in actual metadata server, and also the statements that

are received from other metadata servers. If the statements that are received from other metadata servers

are propagated again to other metadata servers, metadata servers will receive the statements that they have

executed before and they will re-run and re-send the these statements which creates infinite loop. For this

reason, extractor is responsible for extracting the statements that are originated in the actual metadata

server. Only these statements should be propagated to other metadata servers to make them synchronized.

Extractor makes copies and moves these statements (if any) that have to be replicated into the outgoing-

queue of each metadata server.
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Figure 6: Replication Cycle

Dispatcher is responsible for propagating the statements (i.e. statements that have been filled by

extractor) in the outgoing-queues to the respective metadata server. If dispatcher sends these deferred

statements to the respective metadata server successfully, then these statements are removed from respective

outgoing-queue. If dispatcher can not send statements in particular outgoing-queue of a metadata server,

then these statements are kept in the outgoing-queue of respective metadata server. Dispatcher retries to

send these statements in the next replication cycle. Collector is responsible to collect the statements that

are propagated from other metadata servers. When a statement has been received, collector stores it in

the incoming queue. Collector consistently listens to receive statements. Injector acts as a database client.

Basically, it asks database to process the statements stored in incoming-queue. These statements have to be

executed in order to make metadata server synchronized with others. If a statement in incoming queue is

successfully executed by metadata server, then it is moved out from the incoming-queue and stored in archive.

If any error or conflict occurs, then conflict resolver is called and conflict resolver deals with the conflict as

discussed in previous section. The flowchart of the asynchronous multi-master replication procedure is shown

in Figure 7.

Defining the duration of waiting period in replication cycle is highly dependent on how long an application

can survive or tolerate inconsistent metadata servers in the system. There are also other factors such

as network, space allocated for queues, and frequency of updating metadata servers. The asynchronous

replication method that we have developed does not only improve reliability of the PetaShare system, but

also leads us to achieve lower network overhead compared to the synchronous replication. It also outperforms

the central iCAT model since the operations are made on the local iCAT server and replicated asynchronously.
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Figure 7: Flowchart of Replication Process

The quantitative assessment of asynchronous replication is given in Section 3.3.

3.3 Results

The replicated iCAT servers make PetaShare system more reliable. They also reduce the latency since

the requests can be handled by local iCAT servers. However, the replication method can influence the

operation time dramatically. For example, synchronous replication method increases the latency, since each

database operation should be approved by all iCAT servers before getting committed. On the other hand,

asynchronous replication method eliminates such latency. Of course, asynchronous replication has its own

challenges and threats; however, we discussed them in Section 3. In this Section, we compare the replication

methods, and show the positive affects of asynchronous replication method on the system performance.

We have performed our tests on a testbed in LONI, on the same environment that real PetaShare system

runs. We use Pcommands as a client interface in these tests. We have performed tests for writing to remote

site, writing to local site, reading from remote site and reading from local site. These different categories
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Writing to Remote PetaShare Resources
No SynchronousAsynchronous

Replication Replication Replication
10K * 1000 files 75.94 240.32 38.81
10M(single file) 1.38 1.48 1.34
100K * 1000 files 83.53 247.43 47.76
100M(single file) 2.51 2.96 2.83
1M * 1000 files 156.61 320.96 144.53
1G(single file) 9.91 11.68 10.31

Table 1: Average Duration of Writing to Remote PetaShare Resources for Three Replication Scenarios

Writing To Local PetaShare Resource
No SynchronousAsynchronous

Replication Replication Replication
10K * 1000 files 63.51 221.33 19.92
10M(single file) 0.25 0.46 0.15
100K * 1000 files 64.42 223.06 21.38
100M(single file) 0.58 1.02 0.47
1M * 1000 files 75.02 232.48 36.75
1G(single file) 5.16 9.18 8.37

Table 2: Average Duration of Writing to Local PetaShare Resource for Three Replication Scenarios

of tests let us to see the characteristics of replication models and to draw a better conclusion regarding the

performance of the models. In each test, we used 1000 files of the same size and a single file that has the size

of 1000-file-bytes. By doing this, we can see the effect of the number of files on overall time. On the database,

the number of operations increases while the number of files increases. This introduce database overhead

along file open/close overhead. We repeated this strategy for different size of files to see the correlation

between the file size and database and file open/close overheads. We use the data sets of 10KB * 1000 files

and a 10MB file, 100KB * 1000 files and a 100MB file, and 1MB * 1000 files and a 1GB file.

The most expensive operation is to write a file in a remote resource. In central iCAT server model, write

request should be sent to the iCAT server while file is sent to the remote resource. The requirement of

these two distinct remote connection increases the latency and network traffic. In synchronous replication

method, the latency and network traffic increases dramatically, since a write request should be forwarded

to the all iCAT servers. Note that this is done for the sake of increasing the reliability of the system. On

the other hand, a write request can be handled in local iCAT server in asynchronous replication method.

The overhead of getting unified namespace information and updating database is minimized, since there is

a local iCAT server. The main source of the latency is to send a file to the remote resource. Table 1 shows

the average time of writing different data sets to the remote resource for all three replication methods.

As we can see from Table 1, time required to write 1000 files is much bigger than writing a single 1000-

file-sized file. This is the case because writing 1000 files requires 1000 writing request on iCAT server, as
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Reading From Remote PetaShare Resources
No SynchronousAsynchronous

Replication Replication Replication
10K * 1000 files 46 40.75 26.51
10M(single file) 1.58 1.74 1.47
100K * 1000 files 55 48.92 34.13
100M(single file) 3.44 3.54 3.29
1M * 1000 files 166.98 157.43 144.98
1G(single file) 14.47 11.55 9.57

Table 3: Average Duration of Reading from Remote PetaShare Resources for Three Replication Scenarios

Reading From Local PetaShare Resource
No SynchronousAsynchronous

Replication Replication Replication
10K * 1000 files 24.33 23.63 17.8
10M(single file) 0.2 0.36 0.14
100K * 1000 files 25.57 25.23 19.43
100M(single file) 0.42 1.4 0.43
1M * 1000 files 31.94 38.08 25.43
1G(single file) 7.34 14.06 3.25

Table 4: Average Duration of Reading from Local PetaShare Resource for Three Replication Scenarios

well as 1000 file open/close calls at both ends, opposed to single writing request on iCAT and single file

open/close operation of a 1000-file-sized file. The effects of replication methods can be seen in respective

columns. All the replication methods have similar values for single files, since time is dominated by sending

data instead of iCAT operation. However, when the number of file is increased to 1000, each method can

be identified easily. It is obvious that synchronous replication method is the worst one since it replicates

1000 write requests to the other iCAT servers. Central iCAT gives better performance than synchronous

replication method since it requires to send write request to only one iCAT server. The asynchronous method

outperforms the other two methods since write requests are handled by local iCAT server.

It is worth to note time does not increase linearly with the size of files. The ratio of time to write 1000

file and 1000-file-sized file becomes smaller when the file size increases. This is simply because the time spent

to send the data to the resource hides the overhead of database and file open/close operations(i.e. these

overheads are independent from the file size). In the last row of Table 1, central iCAT model has smaller

value than asynchronous replication method. However, this was because temporary network congestion

occurred that increases the average of asynchronous replication method when 1GB file has been sent. We

believe that it is not essential to draw a general picture.

Table 2 shows the average time of writing different data sets to the local resource for all three replication

methods. Writing to local resource is less expensive than writing to remote resource, since there is no

network latency to send the data to the remote resource. This situation lets us to evaluate the performance
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of replication methods, because the contribution of data transfer to the latency is minimized besides the

contribution of the database and file open/close operations is fixed. Although, it takes less time to write files

to local resources than remote resources, the conclusions derived from the tests are very similar. For all data

sets the asynchronous replication method outperforms the others, since both write and database operations

are done locally. Similar to the first case, the central iCAT model gives better results than synchronous

replication.

Table 3 shows the average time of reading different data sets from the remote resources for all three

replication methods. The biggest difference of reading than writing is that it requires less database

transaction on iCAT server. A writing a file requires insert and update operations on different tables

while reading a file requires a select (i.e. to learn physical address of data) operation on database. This

alleviates the pressure on replication methods, especially synchronous replication method. It is worth to note

in Table 3 that synchronous replication method performs better than central iCAT. This is because reading

request can be replicated faster among iCAT servers since there is no need to negotiate on it (i.e. it is a select

operation). However, synchronous replication method stays behind the asynchronous replication method.

Table 4 shows the average time of reading different data sets from the local resources for all three replication

methods. The asynchronous replication method performs the best while synchronous replication method and

central iCAT model draw close performance for smaller files. The performance of synchronous replication

method starts to draw away from the central iCAT model whenever the file size starts to increase. However,

this was not the case in the tests of reading from remote resources. This can be explained as file is read

from remote resource where network latency has a bigger contribution to the spent time. The contribution

of network latency increases that hides the overhead of the synchronous replication as the file size increases.

However, the contribution of network latency disappears if file is read from local resource. For this reason,

the overhead of the synchronous replication method becomes obvious.

The results of the tests allow us to conclude that asynchronous replication outperforms central iCAT

model and synchronous replication method. The synchronous replication method introduces high latency

that degrades overall system performance. On the other hand, central iCAT server model gives reasonable

results as opposed to synchronous replication method; however, it threats reliability of the system since it is

a single point of failure. However, these results validate that asynchronous replication method satisfies the

performance requirements while it improves the reliability of the system.
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Selective Data-Object Metadata
location dateOfcreation filetype size name
institution creator resolution department project

Table 5: Selective Data-Object Metadata

3.4 Scalability and Performance Benchmarking

With improved reliability and availability of metadata server, quality of service of PetaShare has been

greatly improved. However, with the exponential growth of the amount of scientific data as well as the

increasingly interdisciplinary nature of modern science, scientific data management must also address the

issues of cross-domain data access in a heavily data-intensive environment. In this section, we present

scalability and performance benchmarking results we conducted in preparation for the development of

metadata management system that can support efficient and scalable cross-domain data access.

For scalability, four rounds of tests were conducted. First round consists of attaching data object metadata

to 100,000 data objects; second round consists of attaching data object metadata to 200,000 data objects;

third and fourth rounds each consists of attaching data object metadata to 300,000 and 400,000 data objects

respectively. Each individual data object will be attached with an set of ten triples data object metadata, as

shown in Table 5. So together, after 4 rounds of expansion, the system now contains ten millions metadata

triples in total. A vastly improved scalability benchmark than our previous experiments registered [23].

For performance benchmarking, Figure 8 contains benchmarks of five rounds of performance tests on

four key metadata operations respectively. Each rounds of test consists of tests ranging in size from 1 to

10000 data objects, since metadata attached to each data object in our benchmarking tests consist of 10

triples, the maximum number of triples benchmarked in these tests is 100,000. As illustrated in Figure 8.a-c,

performance of insertion, deletion and modification of data object metadata shows strong linear positive

correlation to the number of triples involved. Absolute performance wise, the results indicate that it is far

more costly in time to insert and modify data object metadata than delete data object metadata. It takes

days to insert and modify 100,000 triples into data object metadata store while it only takes hours to delete

same number of triples from data object metadata store. The performance of insertion, comparing to our

previous work [23]., is improved considering the size of triples in data object metadata store increases ten

times while the time taken to insert similar number of triples only doubles. Performance of modification,

however, significantly deteriorates comparing to previous work [23], even after considering the much more

data intensive environment, cause of performance degradation is not clear at this stage, we plan to conduct

more tests in the future to understand and improve performance of modification of data object metadata.

On the other hand, performance of query of data object metadata largely remains constant as the number
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Figure 8: Performance Benchmarks for: a) Insertion; b) Deletion; c) Modification; d) Query

of triples involved increases, as shown in Figure 8.d. In terms of absolute performance, however, query of

data object metadata does not perform as well as hoped as time taken to finish a query that returns relatively

small number of data objects still reaches several minutes, the relatively unsatisfactory performance of data

object query is related to the size of the data set, namely, data set contains up to 1 million data objects

and metadata store has up to 10 millions triples stored, in a less data intensive environment, performance of

query operation should conceivably improve, our previous work [23] indicates that query performance in a

less data intensive environment is vastly improved, nonetheless, more tests are needed to definitively prove

the hypothesis.

4 Advance Buffer to Improve Performance of Data Transfers

In this section, we give details of our study on performance of PetaShare client tools. As mentioned in

Section 2, although, petashell and petafs client interfaces provide a convenient way for accessing to PetaShare
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Read performance (Mb/s) – read to dsl-turtle from:
lsu tulane ull uno

pget 91.61 89.43 90.14 90.85
petashell 45.31 13.63 22.02 13.99
petafs 22.35 5.44 9.06 5.33

Write performance (Mb/s) – write from dsl-turtle to:
lsu tulane ull uno

pput 23.66 20.62 25.29 26.55
petashell 14.74 9.46 11.55 9.04
petafs 6.48 3.60 6.22 3.61

Read performance (Mb/s) – read to queenbee from:
lsu tulane ull uno

pget 740.17 648.61 723.16 683.86
petashell 208.33 16.79 34.64 16.09

Write performance (Mb/s) – write from queenbee to:
lsu tulane ull uno

pput 460.91 645.28 658.79 653.66
petashell 253.18 24.88 50.60 23.66

Table 6: Read and Write Performance Comparison of Pcommands (pput & pget), Petashell, and Petafs

resources, they come with extra cost in terms of performance due to overhead of I/O forwarding. Every

read/write request is converted to an iRODS request and sent over the network to the server. In addition to

the network latency, there is also overhead at server side in receiving and processing each I/O operation. We

have observed that transferring small blocks, especially over a low latency network, results in poor application

performance. Therefore, fetching large amount of data at once has great impact on performance of data

transfers. For that reason, we have optimized petafs and petashell clients by aggregating I/O requests to

minimize the number of network messages.

Petafs and petashell write/read library functions accepts I/O calls for the file with offset and size as

arguments. However, default block size for petafs using unix commands is 4K for writes and 8K for reads.

Thus, users would be reading and writing in small chunks of data from the server. For petashell client,

writes and reads are in 64K blocks. On the other hand, pcommands use 32MB blocks for transferring data.

In Table 6, we show average results both from a client machine outside the LONI network (dsl-turtle), and

a machine within the LONI network (quenbee). Those inefficient results of petafs and petashell led us to

enhance the PetaShare clients for better performance in data transfers.

One option is to force users to read and write large blocks of data inside their applications. It is

known that minimizing number of messages sent over the network by increasing the data size in each

message will improve the overall throughput. However, standard unix commands are highly preferred by

20



our user community, and we would like to provide a transparent access to data resources while achieving

desirable performance. Therefore, we have implemented prefetching for read operations, and caching for

write operations by delaying I/O requests. There is no need to force user programs to write or read large

chunks of data. Since it is done automatically, standard Unix commands such as cp benefit from advance

buffer inside petafs and petashell clients.

The advance buffers in petafs and petashell act as a prefetch cache. Without any optimization, the offset

and the size of data sent to the server, and the requested block is read and passed to the user. We keep a

prefetch buffer in the client tool for each file. Instead of reading a small data chunk, we request and receive

a larger block which includes the requested data and subsequent blocks of the file. Data read from the server

is stored in a buffer assuming that subsequent calls will fall into the buffer. Therefore, there is no need to

access the server for every incoming call. We process subsequent blocks from this prefetch buffer instead of

requesting from the server.

Implementation details are described as follows. After receiving a read request, the client tool checks

whether any prefetch buffer has been created for the file. The prefetch buffer is a contiguous sequence of

data, such that we keep the beginning and the end offset of that data inside the cache. If the requested block

falls into the prefetch cache, the client processes and copies data from the cache instead of requesting from

the server. Otherwise, a new data chunk with the size of the buffer is read from the server starting from the

beginning offset specified in the I/O call. The requested block in the I/O call is copied from the cache and

returned to the user, and the rest of the data inside the buffer is kept for further requests.

The technique described above works well for sequential file accesses. If requested block size is larger than

the buffer size, prefetching process is bypassed and data is directly requested from the server. For random

reads and writes, advance buffer implementation might put unnecessary cost. If write calls are not coming

in a contiguous order, the data inside the buffer is synchronized to the server and the advance buffer is

initialized to zero. Same condition might happen for read operations, such that subsequent blocks might not

fall into the buffer. However, our main focus is to enhance the sequential operations which is a common case

in our system. Therefore, advance buffer implementation work over the existing mechanism for performance

optimization by aggregating I/O requests.

Dealing with write operations is more complex.The client tool stores incoming write blocks instead of

sending each write request to the server, such that we delay I/O calls and combine requests to minimize the

number of messages over sent over the network. For each file, we keep a write buffer which is separate from

the prefetch buffer used for read operations. There can be only one active buffer at a time; the client uses

advance buffer either for sequential read operations or sequential write operations. For an incoming write

I/O call, the client first checks if there is any active buffer. If so, the block to be written is appended and
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Figure 9: Performance of Petafs and Petashell with Advanced-Buffer

information about the buffer is updated. If there is no space in the buffer, data inside the buffer is first sent

to the server as a write request. Later, we form a new cache buffer and store the blocks provided by the

following I/O calls. Before delaying any write operation and storing data inside the buffer, we ensure that it

is a subsequent request by controlling the offset and the size. If not, the process starts from beginning and

the buffer is flushed to the server. Besides, if we receive a read request, we make sure the client writes data

from the buffer to the server and deactivate the write buffer. Same happens when the file is closed, such

that the buffer is synchronized before closing the file.

We emphasize that advance buffer implementation is basically for sequential reads and writes. One
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important problem is data consistency that may happen due to delaying I/O operations. We try to ensure

data consistency by controlling beginning offsets before fetching data from the buffer. First, we make sure

that read requests are coming in a sequential order. Later, we maintain two separate read and write modes

for the buffers. As an example, the prefetch buffer will be deactivated when the client receives a write

request. So, the following I/O calls will be forced to make another request from the server. Same situation

happens for write operations. The advance buffer for write operations will be deactivated and synchronized

to the server whenever a read request is received. We ensure that incoming write calls and also read calls

are coming in a sequential order.

In our experiment testbed, there are 4 major remote sites and the metadata database is on lsu site.

We have experimented data transfer performance from two different client machines with different access

patterns to PetaShare sites. Dsl-turtle is outside of the LONI network and it has slow access to 4 PetaShare

sites. Queenbee is inside the LONI network and it has much faster access to all of those 4 sites. Results are

average values of 3 to 5 separate runs. We have used cp command and collected average throughput of 3

to 5 separate runs for copying 1MB, 10MB and 100MB files. The x-axis (buffer size) in Figure 9 is in log

scale. We forced client tools to use a fixed data chunk size for each network I/O call, such that I/O requests

to the server are rearranged to fit into the buffer size. As can be seen in Figure 9, we use large buffer size,

we minimize the number of network I/O calls to the server, and thus increase the performance. Especially,

we see better improvement in read operation as in Figure 9.a and Figure 9.c. Petashell puts extra costs by

making many systems calls for tracing I/O calls. Thus, we see a lot of fluctuation in Figure 9.d. On the

other hand, petashell client makes extra connection caching which was not available in petafs at the time

when we performed those experiments.

The advance buffer simply aggregates I/O calls using a simple logic to improve performance of sequential

operations. The size of the advance buffer both in petafs and petashell can be set by user as a command

argument to PetaShare client tools.

5 Conclusion

In this paper, we have presented the design and implementation of a reliable and efficient distributed data

storage system, PetaShare, which spans multiple institutions across the state of Louisiana. PetaShare

provides an asynchronously replicated multi-master metadata system for enhanced reliability and availability,

and an advanced buffering system for improved data transfer performance. Our results show that our

asynchronous multi-master replication method can achieve both high performance, reliability, and availability

at the same time. We gave a brief overview of the benchmarking tests we did for key metadata operations. We
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have also presented the design and implementation of the advanced buffer system for improved data transfer

performance For future work, we plan to improve conflict resolver in asynchronous replication to ensure

stability of our production PetaShare system. We also plan to enhance the advance buffer implementation

by making buffer size dynamic, such that buffer size will increased by adapting to the frequency of incoming

I/O operations.
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