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Abstract—In this paper, we present the design and implementation of an application-layer data throughput prediction and optimization
service for many-task computing in widely distributed environments. This service uses multiple parallel TCP streams to improve the
end-to-end throughput of data transfers. A novel mathematical model is developed to decide the number of parallel streams to achieve
best performance. This model can predict the optimal number of parallel streams with as few as three prediction points. We implement
this new service in the Stork data scheduler, where the prediction points can be obtained using Iperf and GridFTP samplings. Our
results show that the prediction cost plus the optimized transfer time is much less than the unoptimized transfer time in most cases.
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1 INTRODUCTION

In a widely distributed many-task computing environ-
ment, data communication between participating clus-
ters may become a major performance bottleneck [1].
Today, many regional and national optical networking
initiatives such as LONI [2], ESnet [3] and Teragrid [4]
provide high speed network connectivity to their users.
However, majority of the users fail to obtain even a
fraction of the theoretical speeds promised by these
networks due to issues such as sub-optimal TCP tuning,
disk performance bottleneck on the sending and/or
receiving ends, and server processor limitations. This
implies that having high speed networks in place is
important but not sufficient. Being able to effectively use
these high speed interconnects is becoming increasingly
important to achieve high performance many-task com-
puting in a widely distributed setting.

The end-to-end performance of a data transfer over
the network depends heavily on the underlying network
protocol used. TCP is the most widely adopted transport
protocol, however its AIMD behavior to maintain fair-
ness among streams sharing the network prevents TCP
to fully utilize the available network bandwidth. This
becomes a major problem especially for wide-area high
speed networks where both bandwidth and delay prop-
erties are too large which also results in a large amount
of time to reach up to the point where the bandwidth is
fully saturated. There has been different implementation
techniques both in the transport and application levels
to overcome the poor network utilization of the TCP
protocol. In the transport layer, different variations of
TCP have been implemented [5], [6], [7] to utilize high-
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speed networks but there is not a single adopted protocol
to replace it. In the application level, other techniques
are found just by using the existing underlying protocol.
Opening parallel streams is one way of doing that and
is highly used in many application areas.

Parallel streams are able to achieve high throughput
by behaving like a single large stream that is the com-
bination of n streams, and can get an unfair share of
the available bandwidth [8], [9], [10], [11], [12], [13],
[14]. However, using too many streams can bring the
network to a congestion point very easily especially
for low-bandwidth networks, and after that point, it
will only cause a drop in the performance. For high-
speed networks, use of parallel streams may decrease
the time to reach optimal saturation of the network. Not
to cause additional processing overhead, we still need to
find the optimal parallelism level where the achievable
throughput becomes stable. Unfortunately, it is difficult
to predict this optimal point and it is variable over some
parameters which are unique in both time and domain.
Hence, the prediction of the optimal number of streams
is very difficult and cannot be done without obtaining
some parameters regarding the network environment
such as available bandwidth, RTT, packet loss rate, bot-
tleneck link capacity and data size.

The computational methods used in today’s large
scale highly parallel and data-dependent applications
has lacked the sufficient handling of data. As applica-
tions have become more data-intensive, grew in size
and the necessity for parallelization to provide both
high-performance and high-throughput increased, it has
become more important to pay a special attention to
the scheduling of data. Although there are few novel
methodologies to handle data such as data-aware sched-
ulers or high-level data planners for efficient placement
and scheduling of data (e.g. Stork Data Scheduler [15],
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Storage Resource Managers (SRM) [16]), the applied
methods are high-level and prioritize the efficiency and
scalability of the whole application rather than low-level
single improvement of each data placement task. We
believe that a service that will enhance the data transfer
speed of each single data placement task will bring a
significant improvement over the whole application’s
performance that consists of many tasks that are both
compute and data-dependent.

In this paper, we present the design and implemen-
tation of a service that will provide the user with the
optimal parallel stream number and a provision of the
estimated time and throughput information for a specific
data transfer. The optimal stream number is calculated
using the mathematical models we have developed in
our prior work [17]. A user using this service only needs
to provide the source and destination addresses and the
size of the transfer. To the best of our knowledge, none of
the existing models and tools can give as accurate results
as ours with a comparable prediction overhead and we
believe that our service is unique in terms of the input
requirements, and the practical results it produces.

The current version of our prediction and optimiza-
tion service supports sampling with Iperf [18] and
GridFTP [19], however we plan to extend it to be a
more generic tool. Also it is embedded to the Stork data
scheduler as a service that will improve the performance
of each data transfer job submitted to it. We submitted
a large number of jobs with the request for optimized
transfers and have seen that the overall finish time of
the optimized jobs was far less than the non-optimized
version.

In Section 2, we present the related work regarding
our design goals. In Section 3, we discuss the design of
our prediction and optimization service as well as the
problems faced during implementation; and we provide
a detailed explanation of the mathematical models we
have developed. Section 4 presents the implementation
details; and in Section 5 we discuss the results of the
experiments conducted. Finally in Section 6, we discuss
the conclusions made.

2 RELATED WORK

The studies that try to find the optimal number of
streams are so few and they are mostly based on approx-
imate theoretical models [20], [21], [22], [23], [24]. They
all have specific constraints and assumptions. Also the
correctness of the proposed models are mostly proved
with simulation results only. Hacker et al. claim that
the total number of streams behaves like one giant
stream that transfers in capacity of total of each streams’
achievable throughput [20]. However, this model only
works for uncongested networks. Thus, it cannot pro-
vide a feasable solution for congested networks. Another
study [23] declares the same theory but develops a
protocol which at the same time provides fairness. Dinda
et al. [21] model the bandwidth of multiple streams as a

partial second order equation and require two different
throughput measurement of different stream numbers to
predict the others. However, this model cannot predict
the optimal number of parallel streams necessary to
achieve best transfer throughput. In another model [22],
the total throughput always shows the same character-
istics depending on the capacity of the connection as the
number of streams increases and 3 streams are sufficient
to get a 90% utilization. A new protocol study [24]
that adjusts sending rate according to calculated backlog
presents a model to predict the current number of flows
which could be useful to predict the future number of
flows.

All of the models presented have either poor accuracy
or they need a lot of information to be collected. Unfor-
tunately, users do not want to present this information
or have no idea what to supply to a data transfer tool.
They need a means to make a projection of their data
transfer throughput and must gather the information to
optimize their transfer without caring about the charac-
teristics of an environment and the transfer at hand. For
individual data transfers, instead of relying on historical
information, the transfers should be optimized based
on instant feedback. In our case, this optimization is
achieving optimal number of parallel streams to get the
highest throughput. However, an optimization technique
not relying on historical data in this case must not cause
overhead of gathering instant data that is larger than the
speed up gained with multiple streams for a particular
data size. Gathering instant information for prediction
models could be done by using network performance
measurement tools [25], [26], [27], [28], [29] or doing a
miniature version of the transfer.

In our service, we propose to use Iperf [28] and
GridFTP [19] to gather the sampling information to be
fed into our mathematical models. Both of the tools are
widely adopted by the Grid community and convenient
for our service since they both support parallel streams.
With GridFTP, it is also very convenient to perform third-
party transfers. By using our mathematical models and
the instant sampling information, we provide a service
that will give the optimal parallel stream number with
a negligible prediction cost.

3 DESIGN ISSUES OF THE OPTIMIZATION
SERVICE

The optimization service presented in this study takes a
snapshot of the network throughput for parallel streams
through sampling. The sampling data could be gener-
ated by using a performance prediction tool or an actual
data transfer protocol. Due to the differences in the
implementation of different data transfer or prediction
tools, the throughputs achieved in the same network
using different tools could be inconsistent with each
other. For this reason, the choice of the tool to perform
sampling could result in slight differences in the op-
timized parameters as well. At the current stage, we
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Fig. 1. Overview of the Optimization Service

have implemented the optimization service based on
both Iperf and Globus. In the future, it can simply be
modified to accommodate other data transfer protocols
and prediction tools.

3.1 Sketch of the Optimization Service

Figure 1 demonstrates the structure of our design and
presents two scenarios based on both GridFTP and Iperf
version of the service. Site A and site B represent two
machines between which the user wants to transfer data.
For the GridFTP version, those machines should have
GridFTP servers and GSI certificates installed. For the
Iperf version, those machines should have Iperf servers
running as well as a small remote module (TranServer)
that we have implemented to perform third-party Iperf
sampling. Optimization server is the orchestrator ma-
chine designated to perform the optimization of TCP
parameters and store the resultant data. It also has to be
recognized by the sites since the third-party sampling of
throughput data will be performed by it. Client/User
represents the terminal that sends out the request of
optimization to the optimization server. All of them are
connected via WAN or LAN.

When a user wants to transfer data between site A
and site B, the user will first send a request to the opti-
mization server, which process the request and respond
to the user with the optimal parallel stream number
to do the transfer. At the same time, the optimization
server will estimate the optimal throughput that can be
achieved and the time needed to finish the specified
transfer between sites A and B. This information is also
returned back to the user.

3.2 Integration with Stork Scheduler

Stork is a batch scheduler specialized in data placement
and movement [15]. Optimization of end-to-end data
transfer throughput is an important issue for a scheduler
like Stork, especially when moving large size of data
across wide-area networks.

In this implementation, Stork is extended to sup-
port both estimation and optimization tasks. A task
is categorized as an estimation task, if only estimated
information regarding to the specific data movement is
reported without the actual transfer. On the other hand,
a task is categorized as optimization if the specific data
movement is to be done according to the optimized
estimation results. Henceforth this service is named as
EOS(Estimation and Optimization Service) in short.

Stork inherits ClassAds structure from Condor [30]
batch scheduler which are used for submission of jobs.
We extend ClassAds with more fields and classify them
as estimation or transfer by specifying the dap type field.
If it is an estimation type, it will be submitted directly to
EOS, otherwise it will be submitted to the Stork server.
Since an estimation task takes much shorter time than
an optimization task, distinguishing the submission path
by different task types enables an immediate response
to the estimation tasks. Optimization field is added to
ClassAds in order to determine if the specified transfer
will adopt the optimization strategy supplied by EOS.
If optimization is specified as Y ES, then the transfer
is done by using the optimized parameters acquired
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from EOS, otherwise, it will use the default value. An-
other important field added to ClassAds is use history.
This option enforces EOS to search from the database
which keeps the optimized parameters for the previous
transfers of one specified source and destination pair.
If there is such a record, then Stork will use the history
information to perform transfers, otherwise, EOS should
first perform optimization and store the information into
the database, then provide Stork with the optimized
parameters. Below is an example submission file to Stork
server for a transfer with optimization:
[
dap_type = transfer;
stork_server = "oliver1.loni.org";
opt_server = "oliver1.loni.org";
src_url = "gsiftp://eric1.loni.org/default/scratch/test.dat";
dest_url = "gsiftp://qb1.loni.org/default/scratch/dest.dat";
optimization = "YES";
arguments = "-b 128K -s 10M";
output = "tran.out";
err = "tran.err";
log = "tran.log";
x509proxy = "default";
]

3.3 Prediction Scheme

We have developed two mathematical models to predict
the aggregated throughput of parallel streams that could
make accurate predictions based on only 3 samplings
of different parallelism levels. The development of these
models start from the foundations of the Mathis through-
put equation:

Th <=
MSS

RTT

c
√

p
(1)

In this equation, the achievable throughput (Th) de-
pends on three parameters: round trip time (RTT ),
packet loss rate (p) and maximum segment size (MSS).
The maximum segment size is in general IP maximum
transmission unit (MTU) size - TCP header. Round trip
time is the time it takes for the segment to reach the
receiver and for a segment carrying the generated ac-
knowledgment to return to the sender. The packet loss
rate is the ratio of missing packets over total number
of packets and c is a constant. Of MSS, RTT , and p
variables, packet loss is the most dynamic one while
MSS is the most static one.

According to the study in [20], an application opening
n connections actually gains n times the throughput of a
single connection, assuming all connections experiencing
equal packet losses. Also the RTT s of all connections are
equivalent since they most likely follow the same path.
In that case, Equation 1 is rearranged for n streams as:

Thn <=
MSS × c

RTT

(
n
√

p

)
(2)

However this equation accepts that packet loss is
stable and does not increase as the number n increases.
At the point the network gets congested, the packet loss
rate starts to increase dramatically and the achievable

throughput starts to decrease. So it is important to find
that point of knee in packet loss rate.

Dinda et al [21] model the relation between n, RTT
and p as a partial second order equation by using two
throughput measurements of different parallelism levels.
This approach fails to predict the optimal number of
parallel streams necessary to achieve the best transfer
throughput. Instead of modeling the throughput with a
partial second order equation, we increase the sampling
number to three and either use a full second order
equation or an equation where the order is determined
dynamically. For the full second order model, we define
a variable p′n :

p′n = pn
RTT 2

n

c2MSS2
= a′n2 + b′n + c′ (3)

According to Equation 3, we derive:

Thn =
n√
p′n

=
n√

a′n2 + b′n + c′
(4)

In order to obtain the values of a′, b′ and c′ presented
in Equation 4, we need the throughput values of three
different parallelism levels (Thn1 , Thn2 , Thn3 ) which can
be obtained through sampling or past data transfers .

Thn1 =
n1√

a′n2
1 + b′n + c′

(5)

Thn2 =
n2√

a′n2
2 + b′n + c′

(6)

Thn3 =
n3√

a′n2
3 + b′n + c′

(7)

By solving the following three equations we could
place the a′,b′ and c′ variables to Equation 4 to calculate
the throughput of any parallelism level.

In the second model, we define p′n as an equation
of order c′ which is unknown and can be calculated
dynamically based on the values of the samples:

p′n = pn
RTT 2

n

c2MSS2
= a′nc′ + b′ (8)

After we calculate the optimal number of parallel
streams, we can calculate the maximum throughput
corresponding to that number. The optimization server
needs to get at least three suitable throughput values
of different parallelism levels through sampling to be
able to apply the models. When the requests from the
users come, the optimization server will initiate data
transfers between the expected source and destination
supplied by the user. This procedure terminates when
the optimization server determines that it has obtained
sufficient sampling data for an accurate prediction.
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4 IMPLEMENTATION TECHNIQUE

In this section, we present the implementation details of
our service design. Depending on whether we choose to
use GridFTP or Iperf, the implementation slightly differs
because while GridFTP supports third-party transfers,
and Iperf works as a Client/Server model. Considering
the differences of the two categories of data transfer
tools, we will discuss the implementation of optimiza-
tion server based on both GridFTP and Iperf. The im-
plementation technique used for these two data transfer
tools can be applied to other data transfer tools no matter
it supports third-party transfers or not.

The implementation of optimization service based on
tools supporting third-party transfers is simply a typical
Client/Server model. We have a client module running
on the user site and an optimization server module
running on one of the machines that is part of the Grid.
On the other hand, the implementation of optimization
service for data transfer tools not supporting third-party
transfers such as Iperf, we need an extra module running
on the remote source and destination sites to invoke
the tool. The client module of the service is embedded
into Stork client application and the requests are done
by using ClassAdds. The server module on the other
hand is independent of the Stork server and able handle
requests coming both from Stork client and Stork server.

4.1 Optimization Server Module
The implementation of the optimization server module
is more complicated than that of the client side module.
The server should support multiple connections from
thousands of clients simultaneously. The processing time
for each client should be less than a threshold. Otherwise
the user would prefer to perform the data transfer
using the default configurations since the time saved by
using optimized parameters cannot compensate the time
waiting for the response from the optimization server.

There is a slight difference on the implementation
based on tools supporting third-party transfers and those
do not. In common, the optimization server keeps listen-
ing to the request from clients at a designated port. When
a new request arrives, it accepts the connection and forks
a child process to process that request. Then the parent
process continues to listen to new connections leaving
the child process to respond to the client’s request.

The child process is responsible for sampling data
transfers between the remote sites and get the data pairs
(throughput and number of parallel streams) from them.
Then it will analyze the data and generate an aggre-
gate throughput function with respect to the number of
parallel streams. Finally it will calculate the maximum
aggregate throughput with respect to the optimal num-
ber of parallel streams and send back the information
to the client. Algorithm 1 presents the outline of the
optimization server.

At step 13 in Algorithm 1, the performing of sampling
transfers is different on data transfer tools that support

third-party transfers and tools that does not support
third-party transfers. For the implementation based on
GridFTP, the child process is able to invoke globus-url-
copy command to control the data transfers between the
remote sites. However, for the implementation based on
Iperf, the child process belonging to the optimization
server has no privilege to control the data transfers
between the remote sites. We need an extra module
running on the remote sites that can be connected by
the optimization server. So the optimization server plays
dual roles. When a request comes from the client it acts
as a server and when it asks the remote module to start
Iperf transfers it acts as a client.

Algorithm 1 The optimization server implementation
1: create a socket to be connected by the client
2: bind the socket to an empty port
3: listen to this port
4: while TRUE do
5: if a new connection request arrives then
6: the optimization server accepts the connection

from the client program
7: processId← fork()
8: if processId = parent processId then
9: back to listening to the designated port

10: else {in the child process}
11: Child : close the listening port
12: Child : receive the request information from

the client
13: Child : perform sampling transfers
14: Child : build a mathematical model and pro-

cess the sampling results
15: Child : send back the optimized parameters

to the clients
16: Child : close the connection
17: Child : terminate
18: end if
19: else {no new connection request comes}
20: block until a new connection comes
21: end if
22: end while

4.2 Quantity Control of Sampling Data Transfers
The time interval between the arrival of a request from
the client and an optimized decision made for the corre-
sponding request mainly depends on the time consumed
on the sampling data transfers. The cost of application
of the mathematical model on the sampling data and
derivation of optimal parameters is negligible, around
several milliseconds on a 2.4Ghz CPU. However, each
sampling data transfer takes nearly 1 second based on
the sampling size. At least 3 sampling data transfers are
required because of the property of the mathematical
model we propose. However relying only on 3 mea-
surements makes the models susceptible to the correct
selection of the three parallelism levels.
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We propose to find a solution to satisfy both the
time limitation and the accuracy requirements. Our ap-
proach doubles the number of parallel streams for every
iteration of sampling, and observe the corresponding
throughput. While the throughput increases, if the slope
of the curve is below a threshold between successive it-
erations, the sampling stops. Another stopping condition
is if the throughput decreases compared to the previous
iteration before reaching that threshold. Algorithm 2
presents the outline of the sampling method.

Algorithm 2 Sampling data transfers
1: threshold← α
2: streamNo1← 1
3: throughput1 is the throughput corresponding to

streamNo1
4: repeat
5: streamNo2← 2 ∗ streamNo1
6: throughput2 is the throughput corresponding to

streamNo2
7: slope← throughput2−throughput1

streamNo2−streamNo1
8: streamNo1← streamNo2
9: throughput1← throughput2

10: until slope < threshold

Let n be the number of parallel streams with respect
to the maximum aggregated throughput of the underly-
ing network. According to our exponentially increasing
scheme,the total sampling time s is equal to the loga-
rithm of n, i.e, s = log n. For example, if the optimal
parallel number of streams is less than 32, we only need
less than 5 sampling iterations.

4.3 Scheduling of EOS

Generally speaking, an estimation type task costs less
time than an optimization type task as the former does
not need to transfer the whole data from the source to
the destination. Taking the variety of time consumption
into consideration, the estimation type task is submitted
to the EOS directly and the optimization type task is
firstly submitted to the Stork server and then submitted
to EOS by the Stork scheduler. This makes sense since the
shortest task is expected to finish as early as possible. A
strict shortest task first strategy guarantees that the total
waiting time is minimized.

A triple of source, destination and arguments is intro-
duced to characterize each individual task.

Triple(taski) =< Si, Di, Ai > (9)

S, D, and A represent source, destination and argu-
ments separately. Triple(taski) is said to be equivalent to
Triple(taskj) if they have the same source, destination
pairs as well as the arguments.

Triple(taski) = Triple(taskj)
⇐⇒

(Si = Sj ∧ Di = Dj ∧ Ai = Aj)
∨ (Si = Dj ∧ Di = Sj ∧ Ai = Aj)

(10)

Two tasks are said to be identical if the Triple operations
on them are equivalent, and they are said to be orthog-
onal if none of the elements in the triple are identical.

taski = taskj ⇐⇒ Triple(taski) = Triple(taskj) (11)

taski ⊥ taskj ⇐⇒ (Si ̸= Sj ∧ Di ̸= Dj ∧ Ai ̸= Aj)
∧ (Si ̸= Dj ∧ Di ̸= Sj ∧ Ai ̸= Aj)

(12)

Furthermore, two tasks are said to be similar if they have
one element in common in the source and destination
pairs, and they are said to be approximate to each other
if their source and destination pairs are identical while
the arguments not.

taski ∼ taskj ⇐⇒ (Si ̸= Sj ∧ Di = Dj)
∨ (Si = Sj ∧ Di ̸= Dj)
∨ (Si = Dj ∧ Di ̸= Sj)
∨ (Si ̸= Dj ∧ Di = Sj)

(13)

taski ≈ taskj ⇐⇒ (Si = Sj ∧ Di = Dj ∧ Ai ̸= Aj)
∨ (Si = Dj ∧ Di = Sj ∧ Ai ̸= Aj)

(14)

Introduce a term cor(taski, taskj) to denote the corre-
lation score between two tasks.

cor(taski, taskj) =


0 taski ⊥ taskj

α taski ∼ taskj

β taski ≈ taskj

1 taski = taskj

(15)

In Equation 15 α and β variate between systems. They
satisfy the following constrains.

0 ≤ α ≤ β ≤ 1 (16)

If two tasks have the same source and destination
pairs then their correlation score will be β or 1. In other
words, these two tasks have the equivalent to or ap-
proximate to relationship, indicating that they are closely
related to each other. Tasks having such relationship are
not allowed to be executed parallel since they will affect
each other. Actually, if two tasks have the equivalent
to relationship, then these two tasks have the same
optimized parameters. Only one of them needs to be
executed and then the results are sent to both of them.
If two tasks have the approximate to relationship, then
these two tasks should be done sequentially, otherwise
the measured sampling throughput of two tasks will
be less if they are allowed to be executed concurrently.
The inaccuracy of the throughput has significant impact
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Fig. 2. Optimization results over LONI network with 1Gbps network interfaces based on GridFTP
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Fig. 3. Optimization results between LAN 100Mbps and LONI 1Gbps network interfaces based on GridFTP
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Fig. 4. Optimization results over LONI network with 1Gbps network interfaces based on Iperf

on the mathematical model which the estimation and
optimization relay on.

On the contrary, if two tasks have different source
and destination pairs, their correlation score will be 0.
And if they have one in common in the source and
destination pairs, their correlation score is identified as α.
Definitely, two tasks are allowed to be executed parallel
if their correlation score is zero. However, it is hard to
make a decision when their correlation score is α. In
a low throughput network,the network interface card
(NIC) of 1Gbps is capable to handle hundreds of links
concurrently without affecting each other. However, in
a high throughput network such as 10Gbps, it will be
a bottleneck. In this situation, α approximates to 0.
Even if there are only two links connected, they will
affect each other’s transferring rate. In this situation, α
approximates to 1.

The tasks that can be executed parallel should be
maximized provided the system is not overloaded. The
maximal number of parallel tasks can be configured in
the configure file of EOS. Meanwhile, each task should
be as representative as possible. A task is said to be
representative to another task if they are equivalent to
each other. The more equivalent tasks it has the more
representative it is.

equ(taski, taskj) =
{

1 taski = taskj

0 otherwise
(17)

rep(task1, task2, ..., taskn) =
n∑

i=2

equ(task1, taski) (18)

Introduce a term confusion score for the parallel tasks.

conf(task1, task2, ..., taskk) =
k∑

i=1

k∑
j=i+1

cor(taski, taskj)

(19)
Each source or destination represents a host address.

Also introduce a penalty term for each host.

ind(host, taski) =
{

0 host ̸= Si ∧ host ̸= Di

1 host = Si ∨ host = Di
(20)

penal(host) =
k∑

i=1

α ∗ ind(host, taski) (21)

The penalty term indicates the frequency of one spec-
ified host appears in the source and destination pairs
of the parallel tasks list. For instance, if the tasks list
is < h1, h2, a1 >,< h1, h3, a2 >, < h2, h4, a3 >, then
penal(h1) = penal(h2) = 2 ∗ α, and penal(h3) =
penal(h4) = α. A threshold for the penalty term, namely
▽, is defined as the upper bound for each host appears
in the k parallel tasks. The penalty for each host should
satisfy the following condition.

penal(hosti) ≤ ▽ (22)

Suppose the maximal number of parallel tasks allowed
to be executed concurrently by EOS is n. There are s pos-
sible hosts that appear in these source and destination
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pairs. To get the optimal solution for the EOS scheduling
problem the number of parallel tasks should be as large
as possible. Meanwhile, the confusion score should be as
small as possible and the constrain on the penalty term
of each host should be satisfied. Specifically,

(k̂; t̂aski) = argmax
k:k≤n

min
taski:1,...,k

conf(task1, task2, ..., taskk)

subject to : penal(hostj) ≤ ▽ ∀j : 1 ≤ j ≤ s
(23)

To simplify the discussion, we use a sparse matrix
to represent the tasks received by EOS at a given time
T . The first column vector consists of all the candidate
parallel tasks. The tasks in each line vector are not
allowed to be executed parallel.

task =


task10 task11 task12 ... task1t1

task20 task21 task22 ... task2t2

... ... ... ... ...
taskN0 taskN1 taskN2 ... taskNtN



Algorithm 3 AddTask(newtask)

visit the column vector [task10, task20, ..., taskN0]T

if ∃i such that cor(taski0, newtask) ∈ {1, β} then
append newtask to the end of the line vector,
[taski0, ..., taskiti ]← [taski0, ..., taskiti , newtask]

else
append newtask to the end of the column vector,
[task10, ..., taskN0]T ← [task10, ..., taskN0, newtask]T

end if

Algorithm 4 DeterminParallelTasks-1(task, n, α, β,▽)
i← 1
initialize the penalty term for each host to be 0 :
penal(host)← 0
while i ≤ N ∧ |taskpar| < n do

if penal(sourcei0) < ▽ ∧ penal(destinationi0) < ▽
then

append taski0 to the end of taskpar

penal(sourcei0)← penal(sourcei0) + α
penal(destinationi0)← penal(destinationi0) + α

end if
i← i + 1

end while

When a new task is submitted to EOS, the first col-
umn will be searched. If there exists one task in the
column vector such that it has the same source and
destination pairs, then the new task will be appended
to the end of the corresponding line vector. Otherwise,
the new task will be appended to the end of the column
vector. A brief description of how to add a new task
is shown in Algorithm 3. It is easy to verify that: for
the first column vector: ∀i, j ∈ {1, 2, .., N}, we have
cor(taski0, taskj0) ∈ {0, α}. For any given line vector, e.g

Algorithm 5 DeterminParallelTasks-2(task, n, α, β,▽)
initialize the parallel tasks to be an empty vector:
taskpar ← [ ]
i← 1
while i ≤ N ∧ |taskpar| < n do

j ← 1
while j ≤ |taskpar| do

if cor(taskpar(j), taski0) ̸= 0 then
break;

else
j ← j + 1

end if
end while
if j = |taskpar|+ 1 then

append taski0 to the end of taskpar

mark taski0 as selected
penal(sourcei0)← α
penal(destinationi0)← α

end if
i← i + 1

end while
i← 1
if |taskpar| < n then

while i ≤ N ∧ |taskpar| < n do
if taski0 is not selected ∧
penal(sourcei0) < ▽ ∧
pelal(destinationi0) < ▽ then

append taski0 to the end of taskpar

penal(sourcei0)← penal(sourcei0) + α
penal(destinationi0)← penal(destinationi0)+α

end if
i← i + 1

end while
end if

Algorithm 6 ProcessParallelTasks(taskpar)
create a new thread for each task in taskpar

for each taskpar(i) ∈ taskpar

suppose taskpar(i) maps to taskk0 in task
j ← 0
while j ≤ tj do

if cor(taskk0, taskkj) = 0 then
send the optimized parameters to the owner of
taskkj

remove taskkj from the line vector:
[taskk0, taskk1, ..., taskktj ]

T

end if
j ← j + 1

end while
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[taskk0, taskk1, ..., taskktk
], ∀i, j ∈ {0, 1, 2, ..., tk}, we have

cor(taskki, taskkj) ∈ {1, β}.
The first column vector contains all the candidate tasks

that can be executed parallel. Hence the most efficient
way to determine the parallel tasks is to traverse this
vector. If adding one task from this vector into the
parallel tasks vector, the penalty constrain is not violated,
then this task is added to the parallel tasks vector. A brief
description of this method is shown in Algorithm 4. The
time complicity of this algorithm is O(N) since each of
the tasks in the column vector will be visited in the worst
case.

Algorithm 4 is time-efficient. However, it is not op-
timal since the confusion score of the parallel tasks
determined by this algorithm is not minimal. There
might exist a parallel tasks vector such that its confusion
score is zero, but this algorithm gives a solution that has
a larger confusion score. In order to reduce the confusion
score, an improved solution is shown in Algorithm 5.
In this solution, the first column vector is traversed to
extract all the possible tasks such that they are mutually
orthogonal. After this step the confusion score of the
parallel tasks vector is zero. If the size of this vector
has reached its upper bound n, then it is done. Other-
wise, traverse the first column vector a second time to
add more tasks into the parallel tasks vector. The time
complicity for this algorithm is O(n2 + N).

After the parallel tasks vector is set, then a new thread
is created for each task in this vector. All of them will
be executed concurrently. For each of them, when it is
finished, it should find the corresponding entry in the
first column vector and return the results back to all the
tasks that have the same arguments in that line vector
and remove them from this vector. A brief description is
illustrated in Algorithm 6.

Define the performance gain as the ratio of the number
of tasks done with a representative strategy to that
without it within a time unit. For instance, suppose
the parallel tasks vector happens to be the first column
vector of task.

taskpar = [task10, task20, ..., taskN0]T

The gain can be calculated as the following.

gain(task) =
N +

∑N
i=1 rep(taski0, taski1, ..., taskiti)

N
(24)

If most of the tasks in the line vectors have the same
arguments, then we have:

conf(taskk0, taskk1, ..., taskktk
) ∝ tk ∗ (tk + 1)

2
(25)

gain(task) ∝
N +

∑N
i=1 ti

N
(26)

On the contrary, if most of the tasks in the line vectors
have different arguments, then we have:

conf(taskk0, taskk1, ..., taskktk
) ∝ tk ∗ (tk + 1) ∗ β

2
(27)

gain(task) ∝ N

N
= 1 (28)

Fortunately, it turns out that the first case holds in
most time since the users often use the default argu-
ments set by the system. Hence the performance can
be improved significantly. Furthermore, research is being
done to deduce the optimal parameters according to the
hidden rules between these different parameters. Then it
is possible to improve the gain significantly even in the
second case.

In the following, a simple example illustrates how
the above algorithms work. T is the task matrix at a
given time. Tpar represents the parallel tasks vector. T1

represents the residual tasks after one round scheduling.
Suppose the maximal number of parallel tasks allowed
by EOS is 3, and the threshold is ▽ = 2α.

T =


< 1, 2, 1 > < 1, 2, 2 > < 1, 2, 1 > < 1, 2, 1 >
< 3, 4, 1 > < 3, 4, 1 > < 3, 4, 1 > < 3, 4, 1 >
< 1, 3, 1 > < 1, 3, 2 > < 1, 3, 2 > < 1, 3, 1 >
< 5, 6, 1 > < 5, 6, 2 > < 5, 6, 1 > < 5, 6, 2 >


Apply Algorithm 4, the following can be obtained:

Tpar = [< 1, 2, 1 >, < 3, 4, 1 >, < 1, 3, 1 >]T

T1 =

 < 1, 2, 2 >
< 1, 3, 2 > < 1, 3, 2 >
< 5, 6, 1 > < 5, 6, 2 > < 5, 6, 1 > < 5, 6, 2 >


gain(T ) =

3 + (2 + 3 + 1)
3

= 3

Apply Algorithm 5, the following can be obtained:

Tpar = [< 1, 2, 1 >, < 3, 4, 1 >, < 5, 6, 1 >]T

T1 =

 < 1, 2, 2 >
< 1, 3, 1 > < 1, 3, 2 > < 1, 3, 2 > < 1, 3, 1 >
< 5, 6, 2 > < 5, 6, 2 >


gain(T ) =

3 + (2 + 3 + 1)
3

= 3

5 EXPERIMENTAL RESULTS

Our experiments have two categories. In the first cat-
egory, we measure the accuracy of the optimization
service as a stand-alone application and tested in various
environments by changing parameters such as the sam-
pling and file size. In the second category, we decided
to measure the scalability of our approach in terms of
many-task-computing and conducted the experiments in
the form of job submissions to the Stork data scheduler.

5.1 Optimization Service as a Stand-alone
Application
In these experiments, requests are sent to the optimiza-
tion service and the optimized results based on the pre-
diction of the service are compared to actual data trans-
fers performed with GridFTP. Our testbed consists of
256-processor clusters in the LONI network with 1Gbps
interface and workstations on the DSL Lab at LSU with
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100Mbps interfaces. We range the sampling size and
file size parameters and conducted tests for 1Gbps and
100Mbps interfaces for GridFTP version and for 1Gbps
interface with Iperf version of our service. We evaluate
our results based on three metrics. First, we compare
the throughput of a default transfer for a specific file size
and the throughput obtained with an optimized transfer.
Second we add the overhead of the optimization cost
to the time of the optimized transfer and compare it to
the time of the non-optimized transfer. We do this to
see if the optimization cost does not surpass the time
gained by optimizing the transfer. Finally we compare
the throughput of an actual optimized transfer and the
estimated throughput given by our optimization service.

Figure 2 shows the averaged results of tests run on
LONI machines with 1Gbps interface. The file size is
ranged in [256MB-1GB-10GB] and the sampling size
takes values in [10MB-100MB]. For all of the cases,
the optimized throughput reaches up to 900Mbps while
the transfers done with default configurations stays in
100Mbps at most. As the sample size is increased the
optimized throughput also increases until 25 MB, after
that point increasing the sample size does not affect
the optimized throughput. In all of the cases the total
transfer time including the overhead of the optimization
service does not surpass the time of the non-optimized
transfers and for large file sizes it is even negligible.
For 256MB file transfer using a 100MB sample size is
not wise and we also know that 20MB sample size is
enough to get maximum throughput optimization. Since
our service tries to estimate the instant throughput it
can predict more accurate results comparing to actual
optimized data transfer throughput as the sample size
increases.

In the second test case, we conducted transfers be-
tween a Linux workstation in DSL Lab with a 100Mbps
interface and a cluster in LONI network. Figure 3
presents the results obtained from GridFTP optimiza-
tion service. The file size and sample size ranges are
decreased to [100MB-256MB-512MB] and [1M-8M] re-
spectively. Increasing the sample size did not cause a
significant change in the optimized throughput which
could reach up to 23 Mbps at most. In all of the cases the
total transfer time including the optimization overhead
did not surpass the non-optimized time and as the file
size is increased the optimization cost became negligible.
The estimated throughput gave promising accuracy for
larger sample sizes.

In the final test case, we tested our optimization
service based on Iperf with 1Gbps interface over the
LONI network. Iperf accepts the transfer duration as a
parameter, hence we decided to range the sampling size
in the rage [1-4] seconds. Increasing the sample size did
not have a significant effect on the optimized throughput
and we could get up to 900Mbps throughput with
optimized parameters while the default configurations
reached up to 100 Mbps. The tool overhead is negligible
for the file sizes of 1GB-10GB and since 1 second is

enough to get the highest throughput, the optimization
service gives promising results for the 256MB file size
case as well. The estimated throughput is very accurate
comparing to actual optimized throughput. The results
obtained with Iperf is more stable comparing to GridFTP
and does not saturates much.

The optimization service gives good results and the
overhead is negligible for most of the cases while the
total overhead does not surpass the non-optimized time
in almost all of the cases. A small sample size is enough
to reach the maximum throughput that can be obtained
and further increasing the sample size does not have
an effect on the optimized throughput. The estimated
throughput is very accurate with larger sample sizes.

5.2 Optimization Service as part of the Stork Sched-
uler

In this section, we designed our experiments to measure
the efficiency of the optimization service when it is
embedded to a data-aware scheduler and the requests
are done by the jobs submitted and the actual transfers
are done by the scheduler itself. Four LONI clusters
with 1Gbps and 10Gbps interfaces are used for this
experiment. The optimization service is able to make
prediction by either doing immediate sampling or by
using the history information over past transfers. That
option is left to the user to be specified in the .DAP
file. We compare the optimization service with imme-
diate sampling or history information to non-optimized
transfers as well as transfers with a fixed parallel stream
number of 4. We used 4 streams because it is believed
that 3-4 is a good number to fully utilize the network.

In the first test case, we measure the scalability of the
optimization service when it is embedded to the Stork
scheduler. The number of jobs is the main parameter
of which effects over the transfer time and throughput
is measured. It is ranged between [100-1000]. For each
job a random file size is picked from the list of [100M,
256M, 512M, 1G, 5G]. To better measure the overhead
of the service and prevention of overlapping the jobs,
we submit the jobs all together however configured the
Stork server to execute one job at a time.

Figure 5 shows the effect of number of jobs over total
transfer time and total throughput for 1Gbps and 10Gbps
network configurations. The total transfer time, includes
overhead of the optimization as well as of the scheduler
and is the difference between the submission time of
the first job and the finish time of the last job. The total
throughput is calculated by dividing the total data size
transferred by the total transfer time.

In Figure 5.a the total transfer time is presented based
on the number of jobs submitted for 1Gbps interface
clusters. A range of random size files are transferred
and the optimized time is much less than the non-
optimized time and this gap between them gets larger as
the number of jobs increases. When we use the history
information option the time is even less. The transfer
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Fig. 5. Total time and throughput of jobs submitted to Stork scheduler

time of the fixed-4 streams is better than the optimized
with immediate sampling however it is worse than the
optimized version with history information. The best
results are taken with optimized-history transfers. In
Figure 5.b, the total throughput is presented and the
distinction among them is more clear. While a non-
optimized transfer reach up to 300Mbps throughput an
optimized throughput achieve around 500 Mbps. The
optimized-history throughput reaches up to 600Mbps
while the fixed 4 stream shows its best results only for
500 jobs. For a 1000 jobs both optimized and optimized-
history throughput outperform the fixed-4 streams. Fig-
ure 5.c and d shows the transfer time and throughput
for 10Gbps clusters. The network throughput of these
transfers varies a lot and hence the results are different
comparing to 1Gbps interfaces. The optimized transfer
time and throughput outperforms all others and reaches
up to 425Mbps while the non-optimized throughput is
under 100Mbps. The optimized history transfers follows
it and reaches up to 390Mbps while the fixed 4 stream
transfers stays around 300Mbps only. In this situation
because the network throughput varies a lot, it is better
to use immediate sampling rather than history infor-
mation. The number of jobs does not seems to have a
significant effect over the total throughput although the
optimization gain is higher for high number of jobs.

We have also made a detailed analysis of the job
transfer time and queue waiting time to see the overhead
of the optimization service. The average transfer time
of the job is the difference between the time the job
is picked up from the queue for transfer and the time
it is removed from the queue. According to Figure
6.a , the optimized time is three times faster than the
non-optimized time. The optimized-history and fixed 4
streams time follows it. The queue waiting time is the
difference between the time the job is submitted and the
time it is picked up from the queue. This also includes

the optimization cost as well. Figure 6.b shows that
the queue waiting time of the non-optimized version is
greater than the optimized version. This is due to the
fact that all the jobs are submitted at the same time
hence their waiting time depends on the finish times of
the previous jobs. The waiting times of the optimized-
history and the fixed 4 streams are less than the opti-
mized version because there is no sampling overhead.
Figure 6.c presents the average throughput excluding
the optimization overhead. The optimized throughput
could reach up to over 1Gbps while the non-optimized
throughput stays around 300Mbps. The throughput of
the optimized version is better than the fixed 4-streams
and optimized-history transfer because the immediate
sampling gives a better prediction information regarding
the current network conditions when we exclude the
sampling overhead.

The results for the 10Gbps interface is different from
the 1Gbps interfaces in terms of the gap between the op-
timized and non-optimized throughput (Figure 6.c,d,e).
The optimized throughput outperforms all others. It is
around 1Gbps while the optimized history throughput
is around 500 Mbps(Figure 6.e). The fixed 4 streams
throughput reaches up to only 400 Mpbs. One interesting
point is that the queue waiting time of the optimized
version is less than the queue waiting time of all others.
This could be due to the large gap in average through-
put. In short, it is wiser to use optimized version when
the network throughput varies a lot but using history
information is better when the network is mostly stable.

Another important parameter to be analyzed is the file
size. We measure the effect of optimization for various
file sizes which are categorized as small and large.
Small file sizes range between 50-250 MB while large
file sizes range between 0.5-2.5 GB. For a total of 200
jobs, random file sizes are selected from the range and
the average throughput is compared for non-optimized,
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Fig. 6. Average transfer time, queue waiting time and throughput of jobs submitted to Stork scheduler
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Fig. 7. Effect of filesize over optimization throughput

optimized, optimized with history data and fixed 4
streams cases. Figure 7.a shows the compared average
throughput results with small file sizes for transfers
with 1GigE interface. The optimized throughput is better
than the non-optimized throughput. Both increase as
the file size increases. The optimized results compete
with the fixed 4 streams throughput results and the
optimized throughput with history information follows
them but outperforms the non-optimized throughput.
For large file sizes (Figure 7.b), the optimized throughput
outperforms all others. The optimized throughput with
history information follows it and the worst performance
is presented with non-optimized results. For transfers
with 10Gig interface (7.c and 7.d), the gap between
the non-optimized and optimized average throughput
increases for all file sizes. The optimized throughput
outperforms all others while optimized transfers with
history information follows it. Overall, the optimiza-
tion service improves the throughput for all file size

ranges in different network settings. The fixed 4 streams
throughput performs worse and that disproves the claim
that a fixed number of streams is able to get the same
throughput with an optimized stream number.

6 CONCLUSION

This study describes the design and implementation
of a network throughput prediction and optimization
service for many-task computing in widely distributed
environments. This involves the selection of prediction
models, the quantity control of sampling and the al-
gorithms applied using the mathematical models. We
have improved an existing prediction model by using
three prediction points and adapting a full second order
equation or an equation where the order is determined
dynamically. We have designed an exponentially increas-
ing sampling strategy to get the data pairs for prediction.
The algorithm to instantiate the throughput function
with respect to the number of parallel streams can avoid
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the ineffectiveness of the prediction models due to some
unexpected sampling data pairs.

We implement this new service in the Stork data
scheduler, where the prediction points can be obtained
using Iperf and GridFTP samplings. The experimental
results justify our improved models as well as the algo-
rithms applied to the implementation. When used within
the Stork data scheduler, the optimization service de-
creases the total transfer time for a large number of data
transfer jobs submitted to the scheduler significantly
compared to the non-optimized Stork transfers.
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