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Abstract—Wide area data transfers may be a major bottleneck for the end-to-end performance of distributed applications. A practical
way of increasing the wide area throughput at the application layer is using multiple parallel streams. Although increased number
of parallel streams may yield much better performance than using a single stream, overwhelming the network by opening too many
streams may have an inverse effect. The congestion created by excess number of streams may cause a drop down in the throughput
achieved. Hence, it is important to decide on the optimal number of streams without congesting the network. Predicting this ’optimum’
number is not straightforward, since it depends on many parameters specific to each individual transfer. Generic models that try to
predict this number either rely too much on historical information or fail to achieve accurate predictions. In this paper, we present a
set of new models which aim to approximate the optimal number with least history information and lowest prediction overhead. An
algorithm is introduced to select the best combination of historic information to do the prediction for evaluation purposes as well as
optimizing prediction by reducing error rate. We measure the feasibility and accuracy of the proposed prediction models by comparing
to actual GridFTP data transfers by using little historical information and have seen that we could predict the throughput of parallel
streams accurately and find a very close approximation of the optimal stream number.

Index Terms—Data intensive distributed applications, wide area data transfers, parallel TCP streams, throughput prediction,
performance modeling.
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1 INTRODUCTION

THE end-to-end performance of a data intensive dis-
tributed application heavily depends on the wide

area data transfer performance and the effective through-
put achieved by the application. Prediction of the ef-
fective throughput that is achievable by an application
given the capacity of a network and current load is a
study area in which several different methods have been
developed either in high or low-level. As an example
of low level methods, different transport protocols have
been developed [1], [2], [3], [4] and also tuning the
existing protocol parameters [5], [6], [7] gave promising
results. Among those protocols, TCP is the most widely
used one and different versions of TCP are implemented
to increase efficiency in achievable transfer rate. On the
high level, other techniques are proposed which use the
existing underlying protocol. Opening parallel streams is
one way of doing that and is widely used in many ap-
plication areas from data-intensive scientific computing
to live multimedia, and peer-to-peer paradigms.

It is shown that parallel streams achieve high through-
put by mimicking the behavior of individual streams and
get an unfair share of the available bandwidth [8], [5],
[9], [10], [1], [2], [11]. On the other hand, using too many
simultaneous connections results in congestion and the
achievable throughput starts to drop down. Unfortu-
nately it is difficult to predict the point of congestion
and is variable over some parameters which are unique
in both time and domain. The prediction of the optimal
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number of streams is hence very challenging and almost
impossible without some parameters of current network
conditions such as available bandwidth, RTT, packet loss
rate, bottleneck link capacity and data size.

It is easier to optimize the network parameters in
the case of bulk data transfers, where enough histor-
ical information is gathered and the parameters are
optimized using this history information. This type of
optimization has been already used with Stork data
scheduler [6] before. However, for individual data trans-
fers, the optimization becomes more challenging. Instead
of relying on historical information, the transfer should
be optimized based on instant feedback. In our case,
this optimization is achieving optimal number of parallel
streams to get the highest throughput. However, an opti-
mization technique not relying on historical data in this
case must not cause overhead of gathering instant data
that is larger than the speed up gained with multiple
streams for a particular data size.

The studies that try to find the optimal number of
streams are so few and they are mostly based on approx-
imate theoretical models [12], [13], [14], [3], [4]. They
all have specific constraints and assumptions. Also the
correctness of the proposed models are mostly proved
with simulation results only. Hacker et al [12] claim
that the total number of streams behaves like one giant
stream that transfers in capacity of total of each streams’
achievable throughput. However, this model only works
for uncongested networks. Thus it does not give an
answer to at what point the network will be congested.
Crowcroft et al [3] declare the same theory but develop a
protocol which at the same time provides fairness. Dinda
et al [13] model the bandwidth of multiple streams as
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a partial second order equation and needs two different
throughput measurement of different stream numbers to
predict the others. In another model, Altman et al [14]
claim that the total throughput always shows the same
characteristics depending on the capacity of the connec-
tion as the number of streams increases and 3 streams
are sufficient to get a 90% utilization. In [4], Kola
et al present a new protocol that adjusts sending rate
according to calculated backlog which provides a model
to predict the current number of flows which could be
useful to predict the future number of flows.

In this study, we present theoretical models that are
used to predict the behavior of parallel streams and
discuss their assumptions in application. We also ap-
ply those models and measure their accuracy against
actual GridFTP transfers with the improvements we
have made. It has been observed that GridFTP transfers
show different characteristics in existence or absence of
congestion due to opening too many streams and none
of the existing models could predict this behavior. With
the improvements we make on the existing models, with
little historical information or instant prediction informa-
tion we are able to predict this behavior and our tests
have proven the correctness of our approach. With this
information at hand any data scheduler may optimize
its each individual transfer with little information to be
gathered.

2 EXISTING MODELS

In this section, we present the existing models for pre-
dicting the behavior of parallel TCP streams and discuss
their advantages, shortcomings and ease of applicability.

2.1 Hacker et al Model

In this model, the achievable throughput depends on
three parameters: round trip time, packet loss rate and
maximum segment size. The maximum segment size is
in general IP maximum transmission unit (MTU) size
- TCP header. Round trip time is the time it takes for
the segment to reach the receiver and for a segment
carrying the generated acknowledgment to return to
the sender. The packet loss rate is the ratio of missing
packets over total number of packets. The following
formula represents an upper bound on the achievable
throughput [12]:

Th <=
MSS

RTT

c
√
p

(1)

Th represents the achievable throughput by an ap-
plication opening single stream, MSS represents the
maximum segment size, RTT is the round trip time,
p is the packet loss rate and c is a constant. Of MSS,
RTT , and p variables, packet loss is the most dynamic
one while MSS is the most static one. According to
TCP’s AIMD congestion avoidance algorithm, packet
loss is considered as an indication of congestion and

the window size of TCP is halved immediately. Then it
increases linearly until another packet loss event occurs.
This gives a saw tooth behavior to the TCP congestion
window [12].

An application opening n connections actually gains n
times the throughput of a single connection, assuming all
connections experiencing equal packet losses. Also the
RTT s of all connections are equivalent since they most
likely follow the same path. In that case, Equation 1 is
rearranged for n streams as:

Thn <=
MSS × c
RTT

(
n
√
p

)
(2)

However this equation accepts that packet loss is
stable and does not increase as the number n increases.
At the point the network gets congested, the packet loss
rate starts to increase dramatically and the achievable
throughput starts to decrease. So it is important to find
that point of knee in packet loss rate. One possible way is
to gather statistical data to apply a time series prediction
of p, MSS and RTT . The requirement of that model is
to gather data regarding RTT , MSS, and p. There are
separate tools that give this information however, in that
study Web100 is used to collect it [12].

2.2 Dinda et al Model

The model presented in the previous section is only
valid for uncongested networks and does not give us
a relation between packetloss rates and the number of
streams. Considering both pn and RTTn all depend on
the number of streams, if a model can be presented
that computes this relationship with only small number
of measurements, then throughput of n streams can be
predicted. The model proposed by Dinda et al tries to
solve Equation 2 by computing the relationship between
p, RTT , and n. MSS and c are considered as constants.
The relationship is represented by a new variable p′n
which is equalized to a partial second order polynomial
which is believed to be best suited [13]:

p′n = pn
RTT 2

n

c2MSS2
= a′n2 + b′ (3)

After placing p′n in Equation 2, total throughput of n
streams is calculated as follows:

Thn =
n
√
p′

n

=
n√

a′n2 + b′
(4)

a′ and b′ are parameters to be found by measure-
ments. To solve this equation, two achievable throughput
measurements for two different parallelism levels are
needed. The only possible way to find those throughput
values is either use a tool that has the capability to
do parallel transfers or to use information from past
transfers.

Thn1 =
n1√

a′n2
1 + b′

(5)
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Thn2 =
n2√

a′n2
2 + b′

(6)

By using equations 5 and 6, the values of a′ and b′ are
calculated and placing them to Equation 4, the aggregate
throughput for any number of streams can be calculated
n1 and n2 are two parallelism levels of which achiev-

able throughput needs to be measured and n is the
parallelism level of which achievable throughput will be
predicted. Besides using partial second order equations,
they also use linear and Full Second Order equations and
based on experimental results partial second order equa-
tion is chosen. The experimental results claim that the
parallelism level correctly can be predicted, however in
those results the aggregated throughput of connections
increases and then becomes stable but never falls down.
So, it will be interesting to analyze the behavior of that
function when the throughput starts to decrease.

By predicting the achievable throughput of n streams,
it should be decided which stream number will be
used. For this, a percentage is given as input for cross
traffic effect. In that case, we may find the optimal
number of streams that will effect the cross traffic by
x%. For measurement of sample throughput values for
two different parallelism levels that will be fed into the
function, they use Iperf which has the capability to open
parallel connections. The predicted results however are
again compared to actual Iperf measurements and the
behavior of actual protocol transfers are not considered.

2.3 Altman et al Model

The third model bases its correctness on the fact that
opening too many connections imposes a processing
overhead and leaves smaller bandwidth to other flows.
Only 3 streams are enough to get a 90% link utilization.
It is noted that for single stream case, a TCP connection
may utilize only 75% of the bandwidth because of its
AIMD (additive increase and multiplicative decrease)
property. Only with parallel streams we could increase
this ratio. Because only a small subset of the connections
undergoes multiplicative decrease during congestion,
this helps parallel streams to recover quickly. Assuming
only one of the connections undergoes a multiplicative
decrease at any time, the following formula can be used
to predict the throughput [14]:

Thn = C

(
1− 1

1 + 1+B
1−Bn

)
(7)

B is 1/2 for TCP connections as it decreases its win-
dow by half for the multiplicative decrease and C is the
capacity of the link. There are two issues that need to be
solved for that approach to be applied. First of all, we
need to know the bottleneck link capacity for the overall
connection to be able to produce correct results since
this formula gives the throughput over a single link.
Second, this formula gives the total number of streams

that survive to get this aggregate throughput. However,
if we need to know the additional number of streams to
open, then we must have an idea about how many other
streams are using the link as cross traffic. We must find
a way to determine the existing flow number.

2.4 Kola&Vernon Model
A new protocol implementation is given with the pur-
pose of high bottleneck link utilization and low average
backlog at the bottleneck link as well as maintaining
fairness among all flows utilizing the bandwidth [4].
A target backlog is computed from the current mea-
sured bottleneck to achieve the stated goals. Four input
parameters are needed for calculations: capacity of the
bottleneck link, average and minimum round trip times,
and packet loss rate. With these inputs, it is possible to
derive average number of flows sharing the bottleneck
link:

Step 1 : Calculate backlog of a single flow. b = S × d
where S is the sending rate and d = RTTavg −RTTmin .

Step 2 : Calculate total backlog . B = d×12/C in terms
of packets of MTU size 1500 bytes. In this equation C is
the capacity of the bottleneck link.

Step 3: Calculate link utilization U .

U ≈ 2B/(2B + 1) (8)

Step 4: Calculate average number of equivalent flows
n sharing the bottleneck link.

n = B/b = (C × U)/12S (9)

If we know the average number of flows sharing
the bottleneck link, we can combine this with Altman
et al Model. Say that we want a 98% link utilization
and we know the capacity of the bottleneck link. We
can calculate the optimal n and subtract the average
number of flows sharing the link. We find the number
of additional streams to open, using:

nadd = nopt − n (10)

However the information for those calculations can be
gained in the low level protocol layer. For example the
sending rate can only be decided by the underlying
protocol.

3 PROPOSED MODELS

In this section, we propose several model improvements
both based on Hacker et al and Dinda et al models and
discuss their derivations and implications.

3.1 Modeling Packet Loss Rate
The shortage of Hacker et al Model is that there is no
information on when the point of congestion will occur
as a result of opening multiple streams. The reason of
that conclusion is that the behavior of the packet loss
rate as the number of streams increase is unpredictable.
However, if we can find a model to characterize the
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packet loss rate, then we can use Equation 2 to calculate
the throughput gained by n streams.

To achieve this, a methodology similar to the one in
Dinda et al Model can be used. However this time we
can not use a partial second order polynomial to model
the packet loss rate, since it increases exponentially as the
throughput increases logarithmically. By changing the
places of Thn and pn in Equation 2 we get the following
equation:

pn =
MSS2c2n2

RTT 2Th2
n

(11)

In this case, we define a new variable Th′n and corre-
late it to RTT , MSS, n and Thn. Hacker et al proves that
throughput increases linearly in uncongested networks
as the number of streams increases. However this is not
true for congested networks. The throughput achieved
by n streams increases logarithmically:

Th′n =
RTT 2

nTh
2
n

MSS2c2
= a′n1/x + b′ (12)

Ranging x between 2 and a greater number, we deter-
mine how sharp the increase in packet loss will be after
the point of congestion. By placing Th′n in Equation 11,
we get the following equation for the packet loss of n
streams:

pn =
n2

Th′n
(13)

Considering we can gather the packet loss rates of
transfers with two different stream numbers pn1 and pn2 ,
we could find the values of a′ and b′.

a′ =
n2

2
pn2
− n2

1
pn1

n
1/x
2 − n1/x

1

(14)

b′ =
n2

1

pn1

− a′n1/x
1 (15)

After finding the value of pn, we could easily calculate
the throughput value of n streams by using Equation 2
in Hacker et al Model. However, this value represents an
upper bound on the throughput achieved. In section 6,
we show that this calculation gives a better approxima-
tion to the throughput curve.

3.2 Increasing Curve Fitting with More Data
The study in [13] shows that the characteristic of a
throughput curve increases sharply then becomes stable
until it reaches the capacity of the link therefore the
model represented fits to the data presented. However
in real experimental environment by using actual file
transfer protocols(e.g. GridFTP) the results could be
different from the proposed situation. Figure 1 presents
a file transfer of 512MB with GridFTP over a wide
area network using up to 40 parallel streams. As the
number of streams increases, the throughput achieved
also increases. However, after some point, the created
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Fig. 1. The aggregate throughput of GridFTP transfers for
a 512MB file over 155ms latency wide area network.

congestion by opening too many streams causes a de-
crease. The peek point in this case gives us the optimum
number of streams. The existing models can not predict
this behavior. Hacket et al Model predicts the throughput
correctly up to the point where the congestion starts
and packet loss rate starts to increase. On the other
hand Dinda et al Model can predict the throughput
behavior correctly up to the point the throughput starts
to decrease. However, it can not predict the decreasing
part of the throughput curve.

Instead of using two throughput measurements for
two different parallelism levels we plan to increase
this information level into three measurement values.
However, the overhead of gathering extra information
must not surpass the actual speed up gained by opening
parallel streams. In this case, we may apply two different
methodology to make use of the extra information. First,
the calculated a′ and b′ for using parallelism levels
n12 and n13 are averaged either by using arithmetic,
geometric or quadratic averaging methods. Throughput
can be calculated with the averaged values of a′ and b′.
Second, as we can see from Figure 1, the throughput
curve acts as two different functions. Until reaching
the peek point, it acts as a certain function. However,
when falling down, it shows a different characteristic.
Instead of using a single function, we could break the
function into two. By using parallelism level n1 and n2,
we could model a certain function; and by using n2 and
n3 we could model the second part. Passing between two
functions can be a little sharp; however, this indicates
that the optimal number of streams is certainly between
n2 and n3. The result of experiments are further analyzed
in section 6. In the next section, we present a model that
smooths out this sharp transition between two functions.

3.3 Logarithmic Modeling of Throughput Curve
The relationship between p, RTT and n is modeled
with a partial second order polynomial equation in[13].
However, the proof of their of equation is based on
the experiments done. In some of the cases a linear
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or Full Second Order polynomial equation may give
good results. We know that the packet loss rate increases
exponentially. However, we may not know the order
of the equation to use. In this case, instead of using a
partial second order polynomial, we use an exponential
equation whose order may change depending on the a′

and b′ parameters. The following equation is used to
define the variable p′n we have mentioned before:

p′n = a′eb′n (16)

and
Thn =

n√
a′eb′n

(17)

By using two throughput measurements Th1 and Th2

with different parallelism levels n1 and n2 the following
values are calculated for a′ and b′:

a′ =
n2

1

Th2
n1
× eb′n1

(18)

b′ = logen1−n2

Th2
n2

Th2
n1

× n2
1

n2
2

(19)

3.4 Predicting Model Equation Order via
Newton’s Iteration
The logarithmic modeling of throughput that is ex-
plained in the previous section is able to make a smooth
transition from the increasing to the decreasing part of
the prediction curve. However as the stream number
increases the prediction curve approaches to 0 and may
not give an approximate prediction result to the actual
throughput in the decreasing part of the curve. To be
able to make a good prediction we have formulized the
p′n by addition of a new variable to predict the order of
the equation as follows:

p′n = a′nc′ + b′ (20)

In this case c′ is the unknown order of the equation
additional to a′ and b′. Our throughput formulation
becomes:

Thn =
n√

a′nc′ + b′
(21)

To solve this equation, we need three measurements
Thn1 , Thn2 and Thn3 on the throughput curve for stream
values n1, n2 and n3. Also, c′ being to the power n makes
the solving of the equation much harder. After several
substitutions, we come up with the following equations
for a′, b′ and c′:

nc′

3 − nc′

1

nc′
2 − nc′

1

=

n2
3

Th2
n3
− n2

1
Th2

n1

n2
2

Th2
n2
− n2

1
Th2

n1

(22)

a′ =

n2
2

Th2
n2
− n2

1
Th2

n1

nc′
2 − nc′

1

(23)

b′ =
n2

1

Th2
n1

− a′nc′

1 (24)

The derivations of a′ and b′ depend on c′. To solve
the first equation we applied a mathematical root find-
ing method called Newton’s iteration (known also as
Newton-Raphson Method). We revised the method to be
suitable to our own problem:

c′x+1 = c′x −
f(c′x)
f ′(c′x)

(25)

According to that method, after x+1 iterations we are
able to find a very close approximation to c′. Starting
with a small number for c′0 we continued to calculate
through c′x+1. The value of the most approximate c′ de-
pends on only f(c′), in this case the first equation above,
and its derivative. After calculating a most approximate
c′ which is possible with only a few iterations, the value
of a′ and b′ can easily be calculated.

3.5 Full Second Order Model

The study in [13] briefly compares the partial second or-
der with linear and Full Second Order models. However
the results are compared based on the increasing and
then becoming stable characteristics of the throughput
and suitable parallelism levels were not used. We believe
that a Full Second Order model can predict the in-
creasing and then decreasing characteristics of GridFTP
througput as the number of streams increases. In the
following sections we also provide a means to determine
the best parallelism level samples to fit the models to the
actual throughput results.

Regarding to the Full Second Order model, we assume
that p′n is related to a Full Second Order polynomial,
other than the partial second order one which was
presented before. Adding the linear term to the model
will result in a series of changes to the corresponding
equations. The following equations are derived to be
used in this model.

p′n = pn
RTT 2

n

c2MSS2
= a′n2 + b′n+ c′ (26)

According to Equation 26, we derive:

Thn =
n√
p′n

=
n√

a′n2 + b′n+ c′
(27)

In order to obtain the values of a′, b′ and c′ presented
in Equation 27, we need the throughput values of
three different parallelism levels(Thn1 , Thn2 , Thn3 )
which can be obtained from the predictions of network
measurement tools or past data transfers .

Thn1 =
n1√

a′n2
1 + b′n+ c′

(28)
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Thn2 =
n2√

a′n2
2 + b′n+ c′

(29)

Thn3 =
n3√

a′n2
3 + b′n+ c′

(30)

By solving the following three equations we could
place the a′,b′ and c′ variables to Equation 27 to calcu-
late the throughput of any parallelism level. Based on
equations 31,32 and 33, the values of a′,b′ and c′ can be
calculated easily.

a′ =

n2
3

T h2
n3
−

n2
1

T h2
n1

n3−n1
−

n2
2

T h2
n2
−

n2
1

T h2
n1

n2−n1

n3 − n2
(31)

b′ =

n2
2

Th2
n2
− n2

1
Th2

n1

n2 − n1
− (n1 + n2)a′ (32)

c′ =
n2

1

Th2
n1

− n2
1a
′ − n1b

′ (33)

4 ALGORITHM TO FIND BEST PARALLELISM
LEVELS TO CALCULATE THROUGHPUT

Each model presented above can show their best perfor-
mances if the sample throughput data to calculate the
predicted throughput can be chosen from appropriate
parallelism levels. All of the models either need 2 or 3
throughput data of different parallelism levels. Hence
there exists many combinations if we have more than
three pairs(n, Thn) of data and it is important for us
to find the best combination to minimize the distance
between historical or prediction data and calculated
throughput of n streams based on the models presented.
In this section, we introduce an algorithm about how to
find the appropriate combination of pairs. The algorithm
can both be used for evaluation of different prediction
models presented as well as optimization in choosing
the best historical or prediction data.

The outline of the algorithm is given below for the
models that need three sample throughput data pairs.
The algorithm can easily be adjusted for models re-
quiring only two throughput data pairs with a few
changes. We only need to leave out one of the loops
and calculation of c′.

Input: CollectiveData[m][2] =


n0 Thn0

n1 Thn1

· · · · · ·
nl Thnl

· · · · · ·
nm−1 Thnm−1


Output: (nr, Thnr )(ns, Thns)(nt, Thnt)(a

′, b′, c′)errmin

Begin
for i← 0 to m− 2 do

for j ← i+ 1 to m− 1 do
for k ← j + 1 to m do
a, b, c← GETCOEFFICIENT(CollectiveData[i],
CollectiveData[j], CollectiveData[k])
err ← ERREVALUATION(a, b, c, CollectiveData)
if minerr is not initialized then
minerr ← err
r, s, t← i, j, k
a′, b′, c′ ← a, b, c

else if err < minerr then
minerr ← err
r, s, t← i, j, k
a′, b′, c′ ← a, b, c

end if
k ← k + 1

end for
j ← j + 1

end for
i← i+ 1

end for
nr ← CollectiveData[r][0]
ns ← CollectiveData[s][0]
nt ← CollectiveData[t][0]
Thnr

← CollectiveData[r][1]
Thns

← CollectiveData[s][1]
Thnt

← CollectiveData[t][1]
End

The input of the algorithm is a m × 2 array which
can be obtained from a file which contains all the data
pairs that are collected from past GridFTP transfers or it
can also be obtained instantly from network performance
measurement tools. In each pair (nl, Thnl

), nl stands for
the number of streams, correspondingly, Thnl

stands for
the throughput with respect to nl.

The output of the algorithm is as follows:

• (nr, Thnr
) (ns, Thns

) (nt, Thnt
) stand for the

streams and the corresponding throughputs when
the prediction function best fits the historical or
prediction data.

• (a′, b′, c′) stands for the polynomial coefficients
when the prediction function best fits the historical
or prediction data.

• errmin stands for the minimum average error of all
the trials to find the polynomial coefficients. The fact
is that err approaches its miminum value errmin
when the prediction function best fits the actual
throughput.
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The functions are defined as:
• CollectiveData stands for all the data in the m×2 ar-

ray; CollectiveData[i] stands for the ith line of data,
i.e., CollectiveData[i][0] and CollectiveData[i][1].

• GetCoefficient(· · ·) will use three pairs of data as
its parameters and return the value of the polyno-
mial coefficients in the prediction function.

• ErrEvaluation(· · ·) will use the parameters pre-
sented above to calculate err value based on a cer-
tain criteria such as mean square error. The details
of the function will be discussed in detail in the
following sections.

In our algorithm, we have considered to minimize the
average distance between the historical or tool predic-
tion data and calculated predicted throughput values
of all parallelism levels based on the models. Let ε
denote the distance between historical or tool predicted
throughput and calculated throughput of models, Tha

ni

denote the historical or tool predicted throughput value
of parallelism level ni and Th(ni) denote the calculated
throughput of parallelism level ni based on the models.
The error value based on this distance (Err) is calculated
in Equations 34 and 35.

εi = Tha
ni
− Th(ni) (34)

Err=

√
ε20 + ε21 + · · ·+ ε2m−1

m

=

√∑m−1
i=0 (Tha

ni
− Th(ni))2

m
(35)

5 DELIMITATION OF COEFFICIENTS

The prediction by using some combinations of streams
causes the error rate to be very large and the prediction
curve not to show the characteristics of the historical or
tool predicted throughput curve. The difficulty is that we
can not know if the prediction is successful or not before
the error rate is calculated and this results in a large
number of comparisons in our algorithm. However, if we
can predict the accuracy of the prediction curve using a
certain combination of streams based on the delimitation
of the coefficients (a′,b′ and c′) without comparing the
predicted throughput with the historical or tool predic-
tion data, then we can improve the efficiency of the
algorithm significantly. For this purpose, we introduce
propositions for all models and prove it in the following
subsections.

5.1 Propositions
The following inequalities represents the range of values
that a certain coefficient should take in our models to
reflect the characteristics of the throughput curve better.

i)Dinda et al model:
1) a′ > 0
2) b′ > 0

ii)Newton’s Iteration Model:
1) a′ > 0
2) b′ > 0
3) c′ ≥ 2

4)
(

2b′

a′(c′−2)

) 1
c′
> 1

iii)Full Second Order Model:
1) a′ > 0
2) b′ < 0
3) c′ > 0
4) 2c′ + b′ > 0

iv)The Averaging and Break function methods uses the
same requirements as those of Dinda et al Model.

5.2 Proof of Dinda et al Model Coefficients Require-
ments
In order to get a monotonically increasing throughput
function in which the throughput increases logarithmi-
cally as the number of streams increases and becomes
stable with an upper bound, we should guarantee that
the derivative of the throughput function must be greater
than 0.

Th′din =
b′

(a′n2 + b′)
3
2
> 0

⇒
{
b′ > 0
a′n2 + b′ > 0 ∀n ∈ N+, n ≤ optnum

⇒
{
a′ > 0
b′ > 0

When we take the limit of the throughput function we
can see that it increases monotonically with an upper
bound

√
a′

a′ as well.

lim
n→∞

n√
a′n2 + b′

= lim
n→∞

√
a′n2 + b′

a′n

= lim
n→∞

√
a′ + b′

n2

a′

=
√
a′

a′
(36)

5.3 Proof of Newton’s Iteration Model Coefficients
Requirements
Newton’s Iteration Model should give us a prediction
curve that increases first to a peak value as the number
of streams increases, and then decreases gradually to a
lower bound.

Based on Equation 21, we know that c′ ≥ 2, otherwise,
the limit of the throughput function will be infinity.
When c′ = 2, the throughput equation will be the
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same as the Dinda et al Model. From the discussion
about Dinda et al Model, we also know the throughput
function of that model increases monotonically. In this
case, in order to get a throughput prediction curve with
the characteristics described in the first paragraph, c′

must be greater than 2. Also we must ensure that a′ > 0,
otherwise, the term inside the square root will be less
than zero.

To meet the increasing and decreasing properties of
the throughput curve, the first derivative should be
positive initially, at the peek point it should become zero,
and finally become negative. Since the denominator is
positive, we only need to control the numerator of the
throughput function. If b′ ≤ 0, the numerator will be
negative, thus we conclude that b′ > 0.

When we equalize the numerator of the derivative

function to 0, we find that n =
(

2b′

a′(c′−2)

) 1
c′ . Since the

throughput will increase along with the stream number,
the optimum value of n should be greater than 1. Thus

we get an inequality of
(

2b′

a′(c′−2)

) 1
c′
> 1.

5.4 Proof of Full Second Order Model Coefficients
Requirements

The proof for the Full Second Order Model is similar to
the Dinda et al Model except that we have to break the
derivative of the function into 3 parts. In order to get a
curve which increases first and then decreases monoton-
ically, we should guarantee that the first derivative of the
throughput function is positive for the increasing part,
and later is zero when it reaches the peak, and finally is
negative for the decreasing part of the curve.

Th′ful =



b′
2 n+c′

(a′n2+b′n+c′)
3
2
> 0 n < optnum

b′
2 n+c′

(a′n2+b′n+c′)
3
2

= 0 n = optnum

b′
2 n+c′

(a′n2+b′n+c′)
3
2
< 0 n > optnum

⇒


b′

2 n+ c′ > 0 n < optnum
b′

2 n+ c′ = 0 n = optnum
b′

2 n+ c′ < 0 n > optnum
a′n2 + b′n+ c′ > 0 ∀n ∈ N+

⇒


a′ > 0
b′ < 0
c′ > 0
optnum = −2c′

b′ > 1

⇒


a′ > 0
b′ < 0
c′ > 0
2c′ + b′ > 1

When the limit is calculated we could see that Full
second order Model increases first, then reaches a peak

value, later decreases to a lower bound
√

a′

a′ .

lim
n→∞

n√
a′n2 + b′n+ c′

= lim
n→∞

2
√
a′n2 + b′n+ c′

2a′n+ b′

= lim
n→∞

√
a′ + b′

n + c′

n2

a′

=
√
a′

a′
(37)

The predictability of the coefficients for the models
presented above is of great significance. When we get the
value of the coefficients through a certain combination
of some streams, we can use the above propositions
to determine whether they are acceptable or not. If
the coefficients do not hold the propositions, we do
not calculate the throughput for those combinations of
parallelism levels and that saves us a lot of time, since
we can decide if the specified combination of data can
give us a correct prediction result based on a few simple
proposition checks without doing a significant amount
of calculations and comparisons.

6 EXPERIMENTAL ANALYSIS

In this section, we present our wide area test results
regarding GridFTP transfers and give prediction results
of several methods used. The first wide area test bed
consists of two Linux machines, one is a Redhat work-
station in the Center for Computation and Technology
at Lousiana State University, the other belongs to a Suse
cluster in University of Trento in Italy. Both machines
have Globus Toolkit [15] installed. Also for packet behav-
ior measurements, we used a Linux network analyzer
tool called Wireshark [16]. We have conducted GridFTP
transfers with a file size of 512MB. The number of
streams ranged between 1 and 40. The results presented
in Figure 1 are the average of multi-iteration of tests.
The actual file transfers by means of a protocol, in our
case GridFTP, follows a different characteristics than
presented in study [13]. In this case, the aggregate
throughput achieved by parallel streams increases as the
number of streams increases, after reaching its peek it
presents a wavy behavior, however further increasing of
stream number results in a descent in throughput. The
current models can not predict this unstable behavior. To
prove the correctness of our models we also conducted
the same tests with different parameter settings in the
LONI network [17] by using two IBM clusters of which
results will be represented in the following subsections.

6.1 Comparison of Models with Randomly Chosen
Paralellism Levels
Starting with the shortcomings of Hacker et al Model,
the idea of the total aggregate throughput of parallel
streams being equal to the throughput of a single stream
times the number of streams seems to be proven in
uncongested networks. Figure 1 shows that up to 3
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Fig. 2. The prediction results of GridFTP transfers by applying Dinda et al Model and its improvements.

streams this equivalence is true more or less, however
after that point the linear ascent of throughput curve
turns into a logarithmic one indicating the existence
of congestion in the network. The primary reason of
this behavior is the change in packet loss rate due to
congestion. By modeling packet loss according to some
measured packet loss rates of different parallelism levels
taken from Wireshark with our presented model and
applying Equation 11 we get a predicted packet loss
rate and replace it in Equation 2 to calculate throughput.
As a result, we get the following results presented in
Figure 2.a. The difficulty of applying this model is that
we need a lot of information like MSS, RTT and packet
loss rate. The figure shows that we can get a logarithmic
increase which better suits assuming that packet loss
rate increases exponentially as we have proposed in our
model. By increasing the x value we could get a sharper
knee and a flatter continuous behavior for the rest of the
stream numbers.

We also implemented Dinda et al Model and all of
the improvements based upon it for randomly chosen
parallelism level information. Figure 2.b represents the
prediction results of Dinda et al Model for different
parallelism levels. The prediction curve calculated with

throughput results of 1 and 5 parallel streams presents
higher results than the ones calculated with 1 and 7,
and also 1 and 10. All of the prediction curves have a
logarithmic ascent behavior and then becomes stable for
high number of streams but never fall down. The study
in [13] mentions that best parallelism values to use are
either 1-5 or 1-10. However we could only tell this after
some experiences with the transfers. Instead of that we
could try to increase our information level by using 3
parallelism levels. According to our approach, we may
detect the behavior change in the function by calculating
average a′ and b′ values. The results of this model is
given in Figure 2.c. The averaging results give that best
stream number values to predict this curve is between 7
and 10. However we do not need to know exactly this
number by using our averaging approach. The averaged
curve gives a closer result to both the increasing and
decreasing part of the GridFTP throughput curve.

Figure 2.d shows the prediction results taken by 1-5-10
and 1-7-10 parallelism levels for Break Function model.
We could see that the prediction curve almost perfectly
suits the GridFTP curve. Although the transitions are a
little sharp between the pieces of the curve that gives us
an exact idea where the optimal parallel stream number
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lies. The result of the logarithmic model is shown in
Figure 2.e. The transition between the ascending and
descending part of the throughput curve is smoothed
out. However, the descending part of the throughput
curve can not be predicted well as the curve approaches
to 0 as the number of streams increases further. We have
solved the problems of both the ’break function’ and
’logarithmic prediction’ methods by predicting model
equation order dynamically. Figure 2.f shows the results
of the predicted throughput by using Newton’s Iteration
mentioned in Section 3.4. The best results are taken with
1, 7 and 25 parallelism levels although 1, 7 and 15 give
pretty close results. We are able to predict the actual
GridFTP curve with a smooth transition between the
increasing and decresing part of the curve and with a
good approximation overall. In the last model, we have
applied a Full Second Order equation and have seen
that if the correct parallelism levels are used this model
predicts the throughput value precisely. Hence, although
1-7-15 gives exaggerated results for the maximum point
in throughput, 1-7-25 gives accurate results. In this case,
it becomes an important decision which paralelism levels
to use to get the most accurate results.

6.2 Effect of Using Randomly Chosen Datasets
To evaluate the performance of different models by
using some specified data set may not give us a good
approximation of the power of the models. In existence
of the appropriate combination of data sets, a model may
give less error rates. However, for different sets of data,
while some models give accurate results the others may
not. In the previous experiments we assumed that we
have the total throughput values of all parallelism levels,
in our case, up to 40 streams. However, in practical cases,
it might not be possible to gather the whole data set
information. The problem is whether we can use the
limited number of data to find the suitable coefficients
for the prediction models. In this section, we design an
evaluation strategy which will use randomized datasets
that will cover subsets of all the parallelism level in-
formation. Based on this strategy we also define new
metrics and evaluate our models based on them.

Since the number of data used for model evaluation
will affect the accuracy of our prediction, we will try
different numbers of data in the evaluation procedure.
We use a data file that keeps all the data we get from
the experiments we have conducted. We call all the data
in this file which includes the throughput values of all
parallelism levels up to 40 the population, from which
we get samples with different numbers of data for our
evaluation procedure. The sample data sets are taken
from the population randomly.

6.2.1 Comparison Metrics
For each sample data set, we calculate the coefficients
and get the equation to predict the throughput. The coef-
ficients are obtained from the sample data set, however,

we will make the comparison based on both the data
from the population and the data from the sample.

The predicted throughput can not be calculated for
some paralelism levels with the coefficients derived from
a specified stream combination selection as they will
make the term of the square root less than zero or make
the denominator equal to zero. So we call those stream
numbers out of the domain. We say that the Predictability
of a specified equation is poor if the number of streams
out of the domain is large in proportion. We use Ppre[m i]

to stand for the predictability of a specified equation
derived from the data set named m i where m represents
the number of data and i represents the ith set. Let
the number of streams within domain be represented
by Nind and the number of streams out of domain be
represented by Noutd, then we define Ppre[m i] as follows:

Ppre[m i] =
Nind

Noutd +Nind
(38)

The equation solved by some combinations of paral-
lelism level data will cause the predictability to be in
a poor situation, while some other combinations may
cause the predictability to be stronger. If there are lots of
combinations of data which make the predictability to
be in a poor situation, then we say that this prediction
model is sensitive to data. Let Psen[m i] to be denoted
as the sensitivity of the sample data set, the number of
combinations which make Ppre[m i] = 1 to be denoted as
Neff and the number of all the combinations of a sample
data to be denoted as Nsam, then we calculate Ppre[m i]

as follows:
Psen[m i] =

Neff

Nsam
(39)

For evaluation of accuracy of the models, we use the
quadratic average of the distance metric that was used
in BFC Algorithm for stream values within the domain.

Err[m i] =

√∑Nind

k=1 ε2k
Nind

(40)

We propose to find a best fitted combination of data
for the data set m i such that Ppre[m i] = 1 and Err[m i]

gets the minimum value compared with all possible
combinations for the sample data. The following equa-
tion represents the best error rate value among different
combinations of parallelism levels.

Errbest[m i] = minNeff

(
Err[m i]

)
(41)

Finally, by taking the average of results for all random
data sets, we compare our models. In the following
equations km represents the number of data sets of m
data.

Psen[m]ave =
∑km−1

i=0 Psen[m i]

km
(42)

Ppre[m]ave =
∑km−1

i=0 Ppre[m i]

km
(43)
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Fig. 3. Model Evaluation based on predictability, sensibility and error rate.

Errbest[m]ave =
∑km−1

i=0 Errbest[m i]

km
(44)

6.2.2 Evaluation
In this section, we present the results based on the
evaluation metrics we defined above. Figure 3.a shows
the sensibility of data that is used for prediction using all
models as the number of data is increased in the samples.
We select one combination of parallelism level data each
time to get the coefficients of the throughput equation.
The y-axis is the probability of the effectiveness of these
combinations. If the equation derived from a specified
combination can predict the throughput of each number
of stream, i.e., Ppre[m i] = 1, we say this combination is
effective in the data set m i. The sensibility is inversely
related to the effectiveness of the combinations. From
Figure 3.a we can see that the logarithmic and the
averaging model is not sensible to the data. So they
are the most stable models. Newton’s Iteration follows
them with a high probability of effectiveness. Full second
order, break function and Dinda et al. models are the
most sensible to data. Another observation is that as the
number of data increases, the combinations become more
sensitive to data.

Figure 3.b presents the predictability of a throughput
equation with specified coefficients. Once the equation is
applied with the coefficients, the throughput value for
some number of streams can not be calculated as the
denominator becomes equal to zero or the term inside
the square root is less than zero. In this case, we say
that those stream numbers are out of the domain. We
can not predict the throughput of a stream number if it
is out of the domain. From the figure, it can be seen
that logarithmic and averaging models are the most
predictable while Newton’s Iteration Model, Dinda et

al Model and Full Second Order Model can only reach
them for large number of data. The worst performance
is with the break function model.

Figure 3.c presents the average error for the popu-
lation data, in which case the predicted throughput is
calculated for every parallelism level and compared to
the whole data set of experimental results. According to
the figure, the best results are taken with Full Second
Order and Newton’s Iteration and the worst ones are
taken with logarithmic model.

When the predicted results are calculated for only the
parallelism level existing in the sample, break function
model gives the best results and Full Second Order and
Newton’s Iteration follows it (Figure 3.d). The worst
are again taken with logarithmic model. The results are
similar when comparison is made for population and
sample data sets. This is a strong proof of the correctness
of our scheme of using a subset of the pupulation data
to predict the throughput of the population.

6.3 Decreasing DataSet Size with Intelligent Selec-
tion of Parallelism Levels
In the previous evaluation sections, we have presented
the power of the models for randomly chosen paral-
lelism levels and randomly chosen data sets. When we
choose a random combination of parallelism levels, it
is a high possibility that the chosen levels may not
reflect the characteristics of the throughput curve. The
algorithm we have presented solves this problem by
finding the best coefficients. However it tries a large
number of combinations to reach a steady result and it
may need a certain size of historical data set to give a
good prediction hence can not be used with an online
strategy which uses the prediction results of tools rather
than past historical transfers.
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Fig. 4. Prediction of peak point with intelligent parallelism level selection.

In this section, we provide an intelligent selection
strategy which decides on less number of data and can
be used with an online model as well. Our previous
experiences showed that it is better if we choose the
parallelism levels not close to each other. So we applied
an exponential increase strategy by selecting the stream
numbers that are power of 2: 1, 2, 22, 23, ..., 2k. Each time
we double the number of streams until the throughput
starts to drop down or increase very slowly compared
to the previous level. After k+1 steps we gather k+1
parallelism level throughput data and apply the Best-
fitted Coefficient Algorithm to find the best parallelism
levels. In this case we only need a data size of O(log 2k)
and hence do less number of comparisons.

Figure 4 shows the difference between the basic
Best-fitted Coefficient Algorithm results and the
exponential selection strategy for all the models. This
strategy focuses on better prediction of the optimal
parallelism level which is the peak point of the curves.
While the basic algorithm gives better results for the
average throughput distances in most of the cases,
with exponential increase strategy we are able to better
predict the peak throughput point hence the number of
streams that gives it. More importantly, we could find
this point with a small size dataset of exponentially
increasing points. According to the figure, only 4 points
(1,2,4 and 8) seems to be enough to get a good prediction
curve. Best results are taken with Full Second Order
model in terms of both throughput distance and peak
point prediction. Newton’s Iteration and Logarithmic
models can predict the peak point well, however with
a trade of high throughput distance between GridFTP
and prediction results.

6.4 LONI Experiments
To prove the correctness of models and algorithms better,
we set up another testbed in the LONI network. Two
IBM clusters with 10Gbps network interfaces and 512KB
buffer sizes are used. Although the underlying network
has the capacity of more than 10Gbps, the end-systems
are capable of transferring in much less speeds and the
network transfer speed varies a lot. For that experiment,
we used a much bigger file size of 5GB. Again, the num-
ber of parallel streams is ranged between [1-40]. Depend-
ing on the different characteristics of the network, the fall
after reaching the peak point of achievable throughput
was much steeper than the previous experiments. Figure
5 shows the application of the Best-fitted Coefficients
algorithm and the exponential selection strategy on the
GridFTP transfer curve. While both algorithms can not
predict the peak point well for Dinda et al and Averaging
models, the exponential selection strategy can predict
better for Break Function, Logarithmic, Newton’s Iter-
ation and Full Second Order models. The best results
are taken by applying the Newton’s Iteration Model
with the exponential selection strategy while Full Second
Order and Break Function models follow it. Although
the Logarithmic model can not predict the exact peak
point, it gives a very close approximation.

In the end, we solve the problems regarding the
following cases:
• A good prediction could be made with limited

number of data.
• A practical application could be realized by using

online prediction tools instead of using past data
transfers.
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Fig. 5. Comparison of models and algorithms in the LONI network.

• The correct set of parallelism levels could be selected
with an intelligent method which has negligible
computation overhead.

7 OPTIMIZATION MODELS IMPLEMENTATION
ON APPLICATIONS

All data-intensive grid applications need high per-
formance for their data transfers. However there are
some applications such as data-aware schedulers (e.g.
Stork [6]) and storage resource planners (e.g. SRM [18])
that serve to enable the other applications and try
to reach their performance requirements. Optimization
models we have presented in this study could provide
these systems with a powerful tool and shorten their job
run time. We have implemented a prototype of our mod-
els as an optimization service in the Stork scheduler [6]
which enables the user with the option to optimize their
data transfer jobs. From that point on, the service does
samplings if there are no available history information to
apply the models and if there is, the service applies the
models on results of the previous transfers. Based on the
optimized parameters for parallel streams, the scheduler
performs the transfer job.

We have submitted data transfer jobs to Stork sched-
uler to be performed between two clusters named
QueenBee and Oliver with 1Gbps interfaces at LONI
network [17]. Figure 6 presents the averaged results of
job turnaround times with or without applying the opti-
mization models. Full Second Order Model is applied
for this experiment. The time for optimized transfers
also includes the time of sampling transfers to gather
optimization data as well as the model calculations. The
file sizes are ranged between 100MB to 6GB. Based on the

results, the optimized data transfer times are much less
than the non-optimized data transfers even if no history
information is used and the model data is gathered
online. It shows us that our models can even be applied
online and still improve the data transfer time.

8 CONCLUSION
The parallel transfer behavior of a TCP-based proto-
col, GridFTP, over wide area networks is analyzed and
several prediction models are presented and improved
according to the characteristics of the transfers. It has
been observed that the aggregate throughput starts to
fall down in existence of congestion and none of the
models could mimic this behavior. By using minimum
information on historical results, we have improved
the current models to predict the throughput curve
of GridFTP and we have observed promising results.
Theoretically we prove that our improved models can
minimize the average error compared with the existing
models. Furthermore, we propose assumptions about the
delimitation of the coefficients for our improved model
and prove it mathematically. After the mathematical
analysis and proof of the correctness regarding to our
assumptions, we design an algorithm to find out the
coefficients of the throughput function. Also we present
an intelligent strategy to choose appropriate parallelism
levels and decrease data set size. A detailed experimental
analysis is done to support our ideas using multiple
sampling, enumerating and averaging. Based on the
results of our experiments we conclude that we are able
to predict the throughput behavior of parallel transfers
with Full Second Order and Newton’s Iteration with
very good accuracy and with a limited data size of
historical transfers.
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