High-Speed Transfer Optimization Based on
Historical Analysis and Real-Time Tuning
Engin Arslan, Member, IEEE and Tevfik Kosar, Member, IEEE

Abstract—Data-intensive scientific and commercial applications increasingly require frequent movement of large datasets from one
site to the other(s). Despite growing network capacities, these data movements rarely achieve the promised data transfer rates of the
underlying physical network due to poorly tuned data transfer protocols. Accurately and efficiently tuning the data transfer protocol
parameters in a dynamically changing network environment is a major challenge and remains as an open research problem. In this
paper, we present a novel dynamic parameter tuning algorithm based on historical data analysis and real-time background traffic
probing, dubbed HARP. Most of the previous work in this area are solely based on real-time network probing or static parameter tuning,
which either result in an excessive sampling overhead or fail to accurately predict the optimal transfer parameters. Combining historical
data analysis with real-time sampling lets HARP tune the application-layer data transfer parameters accurately and efficiently to achieve
close-to-optimal end-to-end data transfer throughput with very low overhead. Instead of one-time parameter estimation, HARP uses a
feedback loop to adjust the parameter values to changing network conditions in real-time. Our experimental analyses over a variety of

network settings show that HARP outperforms existing solutions by up to 50% in terms of the achieved data transfer throughput.

Index Terms—High performance networks, transfer tuning, application-layer optimization, network modeling, online tuning.

1 INTRODUCTION

As the trend towards increasingly data-intensive ap-
plications continues, developers and users need to invest
significant effort into efficiently moving large datasets be-
tween distributed sites. Effective use of the available net-
work bandwidth together with optimization of data transfer
throughput have been critical for the end-to-end perfor-
mance observed by most commercial and scientific appli-
cations. This is true despite multi-gigabit optical network
offerings, since most users fail to obtain even a fraction
of the theoretical speeds promised by existing networks
due to issues such as sub-optimal end-system and network
protocol tuning.

Most of the existing work on data transfer tuning and
optimization is at the lower layers of the networking stack,
including design of new transport protocols [1], [2], [3], [4],
[5] as well as adapting and changing the existing transport
protocols for better performance [6], [7]. At the application-
layer, techniques have been proposed to keep the underly-
ing transport protocol intact and tune it through parameters
such as pipelining [8], [9], parallelism [6], [10], [11], [12],
concurrency [13], [14], [15], and buffer size [16], [17], [18],
[19] for improved performance. While significant perfor-
mance gain can be achieved by tuning these application-
layer transfer parameters [20], [21], [22], the optimal values
of them vary depending on the characteristics of dataset (i.e.,
file size and the number of files), network (i.e., bandwidth,
round-trip-time, and background traffic on network), and
end-systems (i.e., file system and transfer protocol type).
Thus, finding the best combination for these parameters is a
challenging task.

o E. Arslan is with University of Nevada, Reno.
E-mail: earslan@unr.edu
o T Kosar is with University at Buffalo, SUNY.

Among these application-layer transfer parameters!
pipelining helps in transferring multiple files back-to-back
by eliminating the communication delay between client
and servers, but the size of the transferred files must be
small to benefit from it. Pipelining may even degrade the
throughput when set to high values for large files. Instead,
large files benefit from being divided into smaller blocks
and transferred over multiple transfer channels. Similarly,
both small and large files benefit from concurrency, mean-
ing transferring multiple files simultaneously over multiple
transfer channels. On the other hand, opening too many
channels to transfer a single file (parallelism) or multiple
files (concurrency) would degrade the throughput by caus-
ing network and storage congestion. Optimal values for
these parameters depend on the many factors described
above. In our previous work, we have developed heuristic-
based dynamic optimization algorithms [20] to determine
the best combination of these parameters.

In this paper, we present a novel transfer parameter
tuning algorithm based on historical data analysis and
real-time background traffic probing, called HARP. We use
historical data to derive network specific models of transfer
throughput based on the transfer parameters. Then, by
running sample transfers, we capture the current load on
the network which is used to prioritize the models based
on their accuracy in estimating the current network traffic.
Combining historical data analysis with real-time sampling
enables our algorithms to tune the transfer parameters accu-
rately and efficiently to achieve close-to-optimal end-to-end
data transfer throughput with very low sampling overhead.
Our experimental analyses over a variety of network set-
tings show that HARP outperforms existing solutions by up

1. Application-layer transfer parameters will be referred as transfer
parameters in the rest of the paper.

to 50% in terms of the achieved data transfer throughput.
We also extend HARP with “online tuning” to monitor
transfer throughput periodically and update values of the
transfer parameters when the network conditions change,
such as the background traffic increase and decrease. Online
tuning is able to improve the data transfer throughput
an additional 30-40% compared to HARP without online
tuning.

The rest of this paper is organized as follows: Section
II presents our system design and the proposed algorithm;
Section III discusses the experimental evaluation of our
model; Section IV describes the related work in this field;
and Section V concludes the paper.

2 OVERVIEW OF HARP

HARP combines three transfer parameter tuning ap-
proaches: i) heuristics, (ii) real-time probing, and (iii) his-
torical data analysis. Heuristic algorithms compute the val-
ues of the transfer parameters through calculations on the
dataset and network metrics [20], [23]. For example, the
value of pipelining is calculated by dividing bandwidth-
delay-product (BDP) to average file size so that it will
return large values for small files and small values for
large files, which aligns with the purpose of pipelining [24].
However, heuristic approaches fail to capture end-system
specific settings and dynamic components of networks, such
as storage performances and background traffic. Real-time
probing based approaches [22], [25] find the optimal values
of the transfer parameters by running a sequence of sample
transfers (probes) using different parameter values. They
take a portion of the original dataset and transfer it with
an initial parameter value (generally set to 1), followed
by a series of sample transfers with increased values (2,
4, 8, etc.) until the observed throughput stops increasing.
Although real-time probing has an advantage of capturing
the instantaneous network load, too many sample transfers
are needed to discover the best values of the transfer pa-
rameters. Finally, historical data based modeling solutions
derive a model for transfer throughput based on dataset,
network, and protocol metrics [26], [27]. In order to capture
changes in the network load, they either rely on recent
historical data [27] or run sample transfers [26].

HARP runs sample transfers similar to probing based
methods, but the number of sample transfers is way less
than it is in probing based algorithms. HARP benefits from
heuristic solutions to determine the parameter values of
sample transfers. Since poor choice of parameter values in
the sample transfers may affect overall throughput, taking
advantage of heuristic algorithms helps to alleviate the
sampling overhead. Once the current network condition is
observed, HARP models the transfer throughput similar
to the solutions based on historical data analysis. While
models driven by Kettimuthu et al. [27] and Nine et al. [26]
require offline analysis and work well only for networks
for which they are trained, HARP requires no prior data
analysis and can be applied to different networks with the
help of its extensible similarity detection algorithm. Further-
more, HARP can continuously monitor network conditions
and adjust the parameter values if the background traffic

Derive a model and solve for
maximum throughput

* Network & dataset characteristics
+ Sample transfer throughput

J

Run sample transfers

2

Scheduler

List of similar
entries

Query similar (5
entries

1 Update Transfer
Transfer request Parameters
 List of files

Historical
Data

Fig. 1: Flow of operations in HARP.

(92}
-

changes, which is especially important for long running
transfers.

HARP is composed of two major components, which
are (1) Scheduler; and (2) Optimizer, as shown in Figure 1.
When a data transfer request is submitted to Scheduler (step
1), it first categorizes files in the transfer request into clusters
(a.k.a. file groups) based on the file size. Then, it runs one
sample transfer for each file group to capture the load on the
network (step 2) as well as the effect of the network load on
the file groups. Once the sample transfer throughputs are
obtained, Scheduler passes them to Optimizer along with
the network settings (BW and RTT) and dataset character-
istics (file metadata) (step 3) to determine similar entries in
the historical data. Then, Optimizer identifies similar entries
(step 4 and 5) and runs a regression analysis to derive a
model that relates the transfer parameters to throughput.
The derived model is then solved for the maximum transfer
throughput and the corresponding parameter values are
obtained (step 6). After the parameter values are found,
parameter relaxation process is used to lower the values
of parameters while keeping the estimated throughput in a
reasonable range. Finally, Scheduler receives the estimated
parameter values (step 7) and uses them to transfer the rest
of the dataset (step 8).

The notations used in this paper are explained in Table 1.

Notation Description
p Parallelism; number of parallel connections for single file
cc Concurrency; number of concurrent file transfers
PP Pipelining; number of outstanding transfer commands
maxCC Maximum allowed concurrency value for a transfer task
BW Bandwidth of the network link
RTT Round trip time

Buffer size Maximum TCP buffer size defined at the end servers

ST Sample transfer throughput
UT Unit transfer throughput (when cc = 1)
SUT Sum of unit transfer throughputs for all file clusters

T, Thr Transfer throughput
p Relaxation threshold
€ Residual error

TABLE 1: The notations used in this paper.

2.1 Transfer Scheduler

HARP’s Scheduler is responsible for managing data transfer
executions between source and destination end points. It
first partitions files into clusters according to the file size
(i.e., Tiny, Small, Medium, and Large) (line 3 of Algorithm 1).
Then, it runs a sample transfer for each file cluster to

Algorithm 1 - HARP Scheduler

1: function TRANSFER(source,destination,BW,RTT)

2: allFiles = getListof FilesFromSource()

3 clusters = partitionFiles(allFiles)

4: for each cluster in clusters do

5: (cco, po, Ppo) = heuristicParams(cluster, BW, RTT)

6: cluster.ST = runSampleTrans fer(cluster, cco, po, ppo)

7 end for

8: mazCC =1

9: SUT =0

10: for each cluster in clusters do

11: cluster.{ccest, Pest, PPest, UT} = runOptimizer(cluster.ST,

BW, RTT, cluster. fileCount, cluster.avgFileSize)

12: SUT += cluster.UT

13: mazCC = maz(mazCC, cluster.ccest)

14: end for

15: for each cluster in clusters do

16: cluster.weight = cluster.totalSize x —=2UL

17: totalWeight += cluster.weight

18: end for

19: for each cluster in clusters do)

20: cc’ = min(cluster.ccest, | maxCC * %J)

21: transfer(cluster, cc’, cluster.pest, cluster.ppest) > Async
operation

22: end for

23: end function

determine the cluster’s achievable throughput under cur-
rent network load. Each sample transfer may move one
or more files depending on file size. ST refers to sample
transfer throughput for a file cluster. In order to minimize
the overhead of the sample transfers (step 2 in Figure 1),
Scheduler takes advantage of the heuristic algorithm [20]
to determine the parameter values of the sample transfers.
Although the heuristic algorithm may pick sub-optimal
values, it generally perform better than using default or
random values. We assess the cost of the sample transfers
in detail in Section 2.3.

After real-time probing is completed, Scheduler passes
throughput information to Optimizer along with the dataset
characteristics and network settings (line 11). Optimizer
calculates and returns the values of the protocol parameters
(CCest, Pests PPYest) along with unit throughput, UT (line 11).
UT refers to throughput of a file cluster if it is run with
concurrency value 1. It is used to determine the concurrency
values of the clusters when they are transferred simultane-
ously. While Optimizer finds the optimal values assuming
that each cluster will run separately, Scheduler prefers to
run multiple clusters simultaneously to benefit from multi-
cluster approach as presented in our earlier work [20]. As
opposed to parallelism and pipelining, concurrency val-
ues estimated by Optimizer may need to be adapted to
multi-cluster transfer scheme. Even though concurrency has
significant impact on throughput (especially when parallel
file systems are in use), it incurs the highest overhead at
the end systems and network by creating many processes
and data channels. Thus, it may not be desirable to open
as many channels (concurrency) as each cluster asks. To
overcome this inconsistency, Scheduler computes the maxi-
mum concurrency (maxCC) of all clusters (line 13) which is
then distributed among the clusters based on their weights
(line 20). Weight of a cluster is proportional to its size and
inversely proportional to its unit throughput (line 16) such
that clusters that are large in total size or inherently slow
would receive more channels.

To give an example of channel distribution, assume that
we have three file clusters in a given dataset and each

3

cluster’s size is 1 GB. Also assume that Optimizer returned
(7,1,10,100), (4,3,1,200), and (3,5,0,400) for the three clusters
as (cc,p,pp,UT) combination. Then, SUT will be 700 and
maxCC will be 7 (maximum of (7,4,3)). Based on weight
calculation equation shown in line 16, 7x, 3.5x, and 1.75x
weights will be assigned to clusters respectively since the
cluster sizes are same in this case. Finally, when the max-
imum concurrency is distributed among clusters based on
the respective weights, the first cluster will receive four
concurrency, the second cluster will receive two concur-
rency and the last one will receive one concurrency. Since
parallelism and pipelining values returned by Optimizer
are used as is, the final transfer parameter values for the
clusters will be (4,1,10), (2,3,1), and (1,5,0). Once the final
parameter values are determined, Scheduler runs all three
clusters concurrently.

2.1.1 Adaptive Sample Transfers

Two approaches have been proposed so far for running
sample transfers. These are fixed data size [25] and fixed
time duration [28] based sampling methods. In the first
method, a fixed-size (e.g., 1 GB) portion of a original dataset
is used to run sample transfers, however it requires an up-
front work to identify the optimal data size [29] which may
not be feasible for every transfer operation. Yet, intuitive
choice of data size may lead to sub-optimal results as small
values would cause low accuracy and large values would
result in high delay. On the other hand, fixed-time approach
requires a fine tuning of time duration that sample transfers
will run, otherwise it may also result in poor accuracy or
take too long to run.

HARPuses an adaptive sample transfer method, in
which Scheduler starts transferring an entire dataset and
monitors instantaneous transfer throughput at certain inter-
vals. If throughput of any two consecutive monitor intervals
are closer than a threshold, then Scheduler exits sample
transfer phase and takes the average of the two consecutive
intervals’ throughput as throughput of the sample transfer.
Instead of using static values for threshold (which needs to
be adapted to different network bandwidths), we define the
threshold in terms of percentage of last monitor interval.
That is, if the ratio of previous interval’s throughput to
current interval’s throughput is less than a threshold value,
then we assume that transfer throughput is converged.

We evaluated three values for the threshold in Fig-
ure 2(a) and Figure 2(b) for Small and Large file types under
different monitor intervals (1, 3, 5 seconds) using Comet
and Stampede end-systems on XSEDE. As the threshold
increases, the sample transfer time shortens in exchange for
higher error rates for both file types. 5% threshold with 3
seconds monitor interval is able to achieve around 10% error
rate with less than 10 seconds delay. Compared to fixed-
size sampling approach, it is 2-4X faster and more accurate.
In Figure 2(c), we have tested 5% threshold under heavy
background traffic. Although sample times and error rates
increase a little bit, it is still able to achieve less than 15%
error rate in 15 seconds which is almost twice better than
fixed-size method. We validated that 5% threshold with 3
seconds monitor interval returns similar results in local area
experiments but omitted due to space limitation.

16

[15% —— 15% ——

Time (sec)
o
Time (sec)

14 110% —x— X 14 110% —x—

12 1 5% 1 12 1 5%

10} 1 10 1
L] 8]

6| 1 S 1

s — 4 = f

|

Time (sec)

Small Files —+—
Large Files ——

2 2
50 T T T T T 30
40 -
30

20 + "’/‘_/)\x

10 -

|

Error Rate (%,
Error Rate (%)

25 9
20 9
15 9
10 ¢ — 4

N/

QOONPOO=NWRGO

15}

%)

Error Rate (%
n w
(=] o

N
@

o

1 2 3 4 5 1 2
Monitor Interval (sec)

(a) Small Files

Monitor Interval (sec)

(b) Large Files

o

3 4 5

2 3 4 5
Monitor Interval (sec)

(c) Heavy Background Traffic, 5% Threshold

Fig. 2: Adaptive sample transfers can achieve higher accuracy within shorter amount of time.

2.2 Optimizer

Optimizer aims to estimate the optimal values for the trans-
fer parameters for an intended data transfer with the help
of historical data and sample transfers. Thus, it heavily
depends on the quality and quantity of the historical dataset
to make the best decisions. Quality stands for how well the
dataset captures variation in the network and dataset char-
acteristics such as file size and background traffic. Quantity
is important to detect outliers and derive accurate models.

2.2.1 Data Collection

We collected historical data on XSEDE [30], a production-
level high-speed shared WAN, and DIDCLAB at UB, a
dedicated LAN. The network and storage configurations of
the used systems are given in Table 2. Four different file
sizes are used which are Tiny (varying from 1MB to 5MB
with a total of 10GB), Small (15MB-30MB with a total of
20GB), Medium (50MB-200MB with a total of 40GB), and
Large (1GB-5GB with a total of 98GB).

XSEDE DIDCLAB

Specs Stampede-Gordon | WS1-WS-2 EC2
Bandwidth (Gbps) 10 1 10
RTT (ms) 40 0.2 100
TCP Buffer Size (MB) 32 4 60
BDP (MB) 48 0.02 125
File System Lustre NES SAN
Max File System I/0
Throughput (Mbps) 9600 720 2560

TABLE 2: Network specifications of the test environments.

In order to observe the effects of the transfer parameters
under different network loads, we tested the same param-
eter combinations under three network conditions; light,
medium, and heavy background traffic. Although we can
control background traffic in LAN experiments, we do not
know the exact background traffic in a shared production
network, XSEDE. However, we observed higher and more
stable throughput values when we run transfers in the
night hours. Thus, historical data is collected in the night
hours of the day to minimize the effect of external load.
Moreover, we repeated each entry at least five times at
different dates so that any outliers can be detected and
neglected easily during the modeling phase. Different back-
ground traffics are generated by running multiple memory-
to-memory transfers in the background. Light background
traffic means no synthetic traffic is generated by us. On the
other hand, we created 8-stream and 32-stream memory-
to-memory transfers for medium and heavy background

traffic cases, respectively. Over a 12-week period, we col-
lected statistics for 21K data transfers. Since we only kept
metadata (i.e., number of files, average file size, date etc.) of
these transfers, the amount of storage to store this data is
around 4MB. Even though we did not experience a storage
limitation in our experiments, one can define a time limit
to remove old entries and keep the historical data size at a
certain range in case of continuous data collection.

2.2.2 Data Filtering and Grouping

When Optimizer receives a request from Scheduler which
consists of dataset characteristics, network settings, and
sample transfer throughputs, it first filters similar entries
from the data store where the historical data is kept. Since it
is possible that the data store may not have exactly match-
ing entries for a given dataset/network setting, Optimizer
uses a weighted cosine-similarity (shown in Equation 1) to
measure similarities between the historical data entries and
transfer tasks.

SUERILY
cos(0) = nl:l = 1)
;||A?|| ;HB?H

Cosine-similarity measures similarity between two non-
zero vectors. In Equation 1, A and B are the two vectors
and cosine-similarity calculates a similarity value based on
closeness of vector elements in same positions. In the context
of data transfers, the feature vector consists of dataset and
network settings of the transfers e.g., bandwidth, round-
trip-time, %, file cluster type (Tiny, Small, etc.), file
size, and file count. Since TCP buffer size must be equal
to bandwidth delay product (BDP) to fully utilize network
bandwidth, buﬁ@% is used to determine if the maximum
allowed buffer size is sufficient. If not, parallelism can be
used to overcome this limitation by opening multiple TCP
connections, so aggregate buffer size can be equal to BDP.
Even though some of the features are related to each other,
such as the cluster type and the file size, we want to be as
much specific as possible in terms of similarity detection.
For example, if BDP is 40 MB, then files with 1 MB and 1
KB sizes will be assigned to the Tiny cluster and files with
1 GB size will be assigned to the Large cluster according to
our dataset partitioning method. On the other hand, if we
just use file sizes to calculate similarities, files with 1 MB
size will have same similarity value when compared to files

o o Group 1 o o o o
f(ce.p.pp) (cc.pupp) ppp)
PP
hlee.p.pp) /1(“2»1’2’1’%) (€Cy,PoopPy)
: cc,p, CCy, Py PP o

=) SN : SN f;(PPP):> FzPa PPJ)[:> (ENNVASSN > (CC, P, PP)
Group K \ \: .
|_Transfer LogB |

Transfer Log B filee,p.pp) (ccopppy) R
1P PPy

B N N o o

Fig. 3: Flow of operations in HARP’s Optimizer.

with 1 KB and 1 GB sizes as both are in the same distance
(log(10°) — log(10®) = log(10%) — log(10°)). However, we
want files with 1 KB size to receive higher similarity values
since they are assigned to the Tiny cluster as 1 MB files
by dataset partitioning. To address such misclassification,
we evaluate some features in multiple ways to achieve a
more accurate similarity detection. Moreover, we normalize
feature vectors of historical data entries to the keep values in
close range, otherwise one feature may overweight the sim-
ilarity value if its range is much larger than others. Finally,
since each feature has a different impact on file transfer
throughput, we assigned weights to them based on our
initial effort to apply regression to the entire historical data.
Although the accuracy of the regression was low, it gives
a clue about the weight of each property on the achieved
transfer throughput. Hence, we used (2,2,10,10,3,1) weight
vector for the feature set (Bandwidth, RTT, buﬁg%, clus-
ter type, file size and file count). Since there are other factors
aside from dataset characteristics and network settings that
affect the transfer throughput (e.g., background traffic and
disk I/O performance), Optimizer runs an additional step
of categorization using the results of the sample transfers,
which is explained in Section 2.2.4.

Once Optimizer calculates the similarity value for each
entry in the historical data by comparing them against the
given transfer task, it picks the entries with similarity values
larger than a threshold. We initialize the threshold value to
0.99 and decrease it until we have at least 6K entries. Since
cosine-similarity does not consider background traffic, the
selected entries may contain transfers with different back-
ground traffic. To identify entries with different background
traffic, we grouped the set of entries that are not only same
regarding to dataset and network characteristics but also
collected at approximate times with the assumption that
they are exposed to similar background traffic. Although it
is possible that some of the entries collected at similar time
periods are exposed to different background traffic due to
transient traffic events, those will be identified as outliers
and ignored in the modeling phase.

2.2.3 Regression Analysis and Nonlinear Equation Solver

After similar entries are grouped based on time informa-
tion, entries within a group will have same network and
dataset metrics but different transfer parameters. Hence,
we can ignore dataset and network metrics and derive
a model on this data that relates the transfer parameters
to the transfer throughput as shown in Equation 2. T'hr;
refers to the equation derived for i‘" historical data group
where 1 < ¢ < k and £k is equal to the total number

95
—
90
° 85
I}
=]
3 80
o » Latency
g & 4
é Eeo >(//
8 250
< 7 5l
o Blye e L,
| 1 3Degr%4 5 6
60
1 2 3 4 5 6
Degree

Fig. 4: Higher degree polynomial regressions return higher
accuracy in return for longer computation time.

Model R-square | Residual Variance
Linear Regression (LR) 0.503 740492.9
2n4_degree Polynomial 0.632 547987.2
374-degree Polynomial 0.672 488244.8
4" -degree Polynomial 0.674 486482.1
Piecewise LR 0.618 356017.2
HARP 0.824 197223.3

TABLE 3: Goodness of fit for different models.

of historical data groups. By grouping entries based on
the similarity in network/dataset metrics and background
traffic, we can decrease the number of input parameters in
the model which improves the regression accuracy. In order
to validate the regression models, we divide each group into
two subgroups as training (70%) and validation (30%) sets.

We compared several degrees of polynomial regression
in terms of accuracy (on training data) and speed in Fig-
ure 4. According to the results, as we increase the degree of
polynomial regression, the R? value increases as well as the
time to compute the model. So, we start with degree two to
compute regression for each group and increase the degree
until R? for training and validation data goes above 0.7. If
R? is still not larger than 0.7 for training and validation
data of a group even for quartic (4'"-order) polynomial
regression, then we classify the group as an outlier and
ignore it. We observed that quadratic or cubic regressions
satisfy the accuracy requirements for the most groups.

We compared the HARP’s modeling approach against
other regression techniques that try to fit a model on whole
historical data in Table 3. While nonlinear polynomial re-
gressions improve the accuracy of the fit over linear regres-
sion, they still fail to achieve R? higher than 0.7 and result in
large residual variance due to not being able to incorporate
background traffic into the model. While piecewise linear

regression decreases the residual variance to some extent
compared to the nonlinear regressions, R? still stays less
than 0.7. On the other hand, HARP is able to achieve much
higher R? and significantly lower residual variance.

Ti = fi(ce,p, pp))
After polynomial equations are derived for each group of
historical data, { f1, f2, ..., fx }, Optimizer evaluates them for
the values used in the sample transfers to find the estimated
throughputs, {T1,7%,...,T% } as shown in Equation 3. ¢; refers
to the difference between throughput estimated by f; and
obtained by the actual sample transfer, Thr,.. In order to
prioritize historical data entries that are exposed to the back-
ground traffic similar to the instant one, Optimizer assigns
weights to the equations based on their accuracy in esti-
mating throughput of the sample transfers. One approach
to determine the weights would be to use values that are
reversely proportional to €, however it would be vulnerable
to small variations. For example, 1220 Mbps would have
double weight over 1250 Mbps if sample transfer through-
put, Three, is 1230 Mbps while they both should have
similar weight since the differences are very close. Thus,
we classify the equations {fi, fa,..., fx} into subgroups
based on respective € values using a density based clus-
tering technique, DBScan. DBScan finds core points from
the list {€1, €1, ...c}, and then adds the nearby points to
the clusters of core points. Each equation in a subgroup
is given a same weight and the weight of a subgroup is
calculated from the list {2°,2!,...,2t71} after subgroups
are sorted in descending order based on e values where
t refers to the total subgroups extracted by DBScan. The
subgroup weights play a significant role in (i) distinguish-
ing historical data collected under different background
traffics and (ii) compensating similarity based filtering for
possible misclassification due to unacknowledged factors
of data transfers such as background traffic. We observed
that DBScan generally returns 4-6 groups. While we only
have three background traffic categories, additional groups
are created since similarity analysis selects entries that are
not only different in terms of background traffic but also in
terms of network and dataset settings.

€i = Taet — fi(cco, po, PPo) (3)

T; = fi(cci, pi, ppi) (4)
After the weights of the subgroups are found, Optimizer
finds the values of transfer parameters for each correspond-
ing equation that returns the highest throughput using
the non-linear optimization solver with Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithm [31]. BEGS seeks a sta-
tionary point (cc;,p;,pp;) using a hill scan optimization
technique for the maximum throughput, T'max;, as shown
in Equation 4.

2.2.4 Parameter Relaxation and Combiner

Once the corresponding parameter values for the maximum
throughput are found for each equation f;, 1 < i < k,
Optimizer runs the relaxation process during which the val-
ues of the parameters are lowered as long as the estimated
throughput stays within a reasonable range as shown in
Equation 5. For example, pipelining has either no or little

6

contribution to the throughput of large files, but nonlinear
equation solver may estimate large pipelining value for a
marginal gain. However, small improvement in the transfer
throughput may cause a significant increase in power con-
sumption at the end servers and network equipment [32],
[33]. In our earlier work [28], we have shown that one
can achieve a similar transfer throughput while consuming
up to 30% less energy by tuning the transfer parameters.
Moreover, using very large concurrency and parallelism
values would lead to a significant resource allocation for
a single transfer task (by creating many threads and pro-
cesses) which is undesirable in shared networks. Hence, the
relaxation process tries to identify the sweet spot for the
parameter values in which a reasonable throughput can be
achieved with a minimal system overhead.

pp; < ppi | filcci, pinpp;) = Tmax; > ppy * Tmazx;
p; < pi| fileei, pg, pp;) = Tmax; > p, * Tmax; ®)

"

ce; < cc; | filee;, pipp;) = Tmaz; > pee * Tmazx:

k / k /
B CC; * W; _ p; * W5
CCqvg = Pavg =
: Wtotal X Wtotal
=1 =1

k ’
_ pp; * W;
PPavg = E i
i—1 Wtotal

i

(6)

In the relaxation phase, Optimizer evaluates smaller
values for each parameter until the estimated throughput
is larger than certain percentage of the original throughput.
Let’s assume values (32,20,24) are calculated as optimal
values for concurrency, parallelism and pipelining for an
equation f such that f(32,20,24) = T'max. The relaxation
process evaluates smaller values for pipelining starting
from 1, while keeping parallelism and pipelining the same,
until the projected throughput, T'maz’, becomes equal or
slightly larger than the certain percentage of the initially
estimated throughput (T'maz’ > p * T'mazx). For example,
if f(32,20,24) = 5600 and pp, = 0.9, then the relaxation
process will search for the minimum pipelining value pp’
that satisfies f(32,20,pp’) > 5600 x 0.9. We observed that
p = 0.99 works well enough for pipelining to detect high
pipelining value estimations by non-linear programming
solver for a small throughput gain.

We evaluated different p values for concurrency and
parallelism while keeping the threshold for pipelining at
0.99 as shown in Figures 5. In the Figures 5(a) and 5(b), y-
axis represents transfer throughput which is proportional
to maximum throughput achieved among all relaxation
values. X-axis shows the p values for concurrency and
parallelism. Although the effect of using small threshold
values for parallelism does not seem to be obvious in
the Light Traffic case, it is easily noticeable in the Heavy
Traffic case. Moreover, while parallelism has little impact
on throughput of Small file types under light background
traffic, its impact becomes significant as background traffic
increases as shown in Figure 5(b). Figure 5(c) shows the
number of network flows opened for different relaxation
thresholds. Although disabling relaxation process or using
large threshold values would yield high transfer through-
put, it would create too many network connections and
processes which would increase the load on network and

7 < - Tiny ——
- ANy N £ 600 Small —+— |
® 80 1 < 80 \ 5 Medium
g q s o
< < \ A L 5 Large
2 L —r x \ N
©] o
g 60 g 60 \k:/ S G
5 5 N 3
g . ~N—— & L, Z 300 \
2 Ed 2
N N] /
g Tiny —— g Tiny —— & 200 1
= 20 Small —— = 20 Small —— E J .
Medium Medium Z 100 y \ N Y
o L_Large o L Large LY NN NS AN
© 0 0 0 0 0 0o 0o 0 0 0 0 O O O O © 0 0 0 0 0 0 0 0 0 0 O O O O O © 0 0 0 0 0o 0 0 0 0 0 0 O O O O
DR LRRULELEYLL, N SRR DR R UL XN, DR DRV, R,
2 %o 0 0 9, 0, 0,0 % 9 0 0 " o N0 o AR A RN AR AN A RN AR A RN AR AN AR AN
20 %0 % %@ > g, e > g, e 5 2 %0 % %@ > g, e > g, e s e %0 % % % @ > g, e > g, e &

Poc~ Pp

(a) Throughput (Light Traffic)

(b) Throughput (Heavy Traffic)

Poc— Pp Pec = Pp

(c) # of Flows (Heavy Traffic)

Fig. 5: Effect of different relaxation ratios for concurrency-parallelism pair for different file sizes in WAN (Stampede-Comet).

Ty Speed-up (%) | Ts Slowdown (%) Six 1(IB)C(1 : Sthrro)
10 50 90
0 30 60
10 10 30
30 50 40
30 30 30
30 10 20
50 50 30
50 30 24
50 10 18

TABLE 4: Minimum cluster size for HARP to pay off.

end system devices. Thus, we aimed to find a relaxation
threshold that would achieve a reasonable throughput with-
out causing too much overhead on network devices and
servers. Hence, we picked 0.7-0.7 threshold combination
for concurrency and parallelism which achieved 60% or
more of maximum throughput while keeping the number of
flows and processes at a reasonable scale. We also confirmed
that 0.7-0.7 threshold combination works well in local area
experiments as well.

2.3 Cost Analysis of HARP

HARP runs sample transfers and applies data modeling in
the real-time so it comes with an overhead. To minimize the
overhead, we overlap the transfer sampling process with the
optimization process at the best effort. Instead of waiting
for each file cluster’s sample transfer to be completed, we
run Optimizer for a cluster as soon as its sample transfer
is completed so that Scheduler and Optimizer can operate
simultaneously. For example, once Scheduler finishes the
sample transfer for the Small cluster, it starts running the
sample transfer for the Medium cluster. While the sample
transfer for the Medium cluster is running, it passes the sam-
ple transfer throughput of the Small cluster to Optimizer so
that it can compute and return the transfer parameter values
in the meantime. Since Optimizer can finish the calculations
in around 2-3 seconds for each cluster, the bottleneck in the
pipelined process becomes the sample transfers. Then, the
overall cost boils down to the cost of the sample transfers
plus running Optimizer for the last cluster.

D

to = 7

0 ThT‘() ()
D—-Ds Dg

ty = 8

H= e T 7€ ®

D — (15 Th?“s)

ThT’H

g = +15+c¢)
Equation 7 shows the duration of a data transfer when
HARP is not used. D refers to the total data size and T hr
refers to the achieved throughput. When HARP is used, the
duration of the the data transfer is determined by Equation 8
in which Dy refers to the data size of a sample transfer and
Thry and Thrg refers to the throughput values obtained
in the sample transfer and actual transfer, respectively. ¢
refers to the cost of Optimizer for running the optimization
process for the last file cluster. As explained in Section 2.1.1,
when the adaptive sampling approach is used with 5%
threshold and 3-second monitoring interval, the sampling
process f finishes in 15 seconds in the worst case scenario.
Thus, Th becomes 15 and sample transfer data size, Dg,
becomes 15 * T'hrg. Hence, tg reduces to Equation 9.

In Table 4, we calculated the minimum data size D
values needed for HARP to amortize the cost it induces (aka
to = tg) under the different Thry speed-ups and Thrg
slowdowns. Ty Speed-up column represents M
which stands for the throughput gain when HARP is used.
Although the gain will be much higher when HARP is
compared with Globus Online [23] and PCP [25], we com-
pared HARP against the heuristic algorithm (ProMC) we
proposed in the previous work [20] which outperforms
Globus Online and PCP by a significant margin. Ts Slow-
down column represents the ratio of transfer throughput
decrease during the sample transfers. Since we transfer each
file cluster separately in the sampling phase, the throughput
is generally smaller than ProMC which transfers multiple
clusters simultaneously. For example 30% slowdown means
Thrg = (1 — 0.3) * Thro. Min Cluster Size column is repre-
sented in T hrqg since Thrg and Thrg values also measured
in Th’l"().

In the worst case scenario, the gain of HARP is 10%
and the sample transfers are 50% slower than Thry, the
minimum file cluster size that HARP pays off the cost is
90 * Thry. It will become 67 GB when Thry is 6 Gbps.
The minimum cluster size to benefit from HARP reduces
as the throughput gain increases or the sample transfer
slowdown reduces. Our observations on the tests we ran
in XSEDE, AWS and DIDCLAB networks reveals that slow-
down ratios mostly stay less than 50% and the gain ratio
ranges from 10% to 80%. Hence, the results we present in
Section 3 show that HARP mostly outperforms the heuristic

9000
GO ——
PCP ——

ProMC
HARP

8000
7000
6000

5000

/
L

4000

Throughput (Mbps)

3000

P

/’/

2000

1000

Tiny Small Medium

File Type

Large

Fig. 6: Single type file transfers between Stampede (TACC)
and Gordon (SDSC) on XSEDE.

algorithms under the light traffic and improves the over-
all throughput significantly under the medium and heavy
background traffic cases. Furthermore, we explore an online
tuning approach in Section 3.2 which eliminates the delay
for running optimization process for the last cluster (c) as
well so that the cost of HARP reduces even further.

3 EXPERIMENTAL ANALYSIS

We compared HARP against Globus Online [23], Single
Cluster [20], ProActive Multi-Cluster [20], and PCP [25].
Globus Online (GO) separates transfer datasets into clusters
based on file size and uses predefined values for the transfer
parameter values for each cluster. Single Cluster (SC) algo-
rithm, similarly, separates the dataset based on file size and
transfers them one by one using the parameter values found
by heuristics. ProActive Multi-Cluster (ProMC) creates file
clusters and determines the values of the transfer param-
eters similar to SC, but instead of transferring the clusters
one by one, it transfers all of them at the same time in order
to minimize the effect of small clusters on overall transfer
throughput. PCP employs a divide-and-transfer approach
similar to SC and GO. It determines the transfer parameter
values by running several sample transfers. Similar to SC
and Globus Online, it transfers clusters one by one. One
chunk at-a-time policy coupled with too many sample trans-
fers degrades PCP’s overall performance significantly.

We tested HARP in the networks we had collected
historical data (e.g., Stampede-Gordon and WS1-WS2)
as well in the networks we had not (e.g., Gordon-
Stampede, Bluewaters-Stampede, SuperMic-Bridges, and
Cloud). Datasets used in the experiments are different from
the ones used in the historical data collection process. While
datasets in data collection process are homogeneous (e.g.,
10000 x 1 MB files are used to represent the Tiny cluster),
the experiment datasets are heterogeneous (i.e., contain both
small and large files). Additionally, file sizes in a file type are
determined randomly such that we do not assume any file
size distribution within a group as well. All experiments are
repeated at least five times.

We first transferred datasets that are composed of only
one type of file size; either all large or all small files. Figure 6
shows the comparison of GO, SC, ProMC, PCP, and HARP.
The size of the datasets are 45 GB and 92 GB for small and

8

large files, respectively. While SC and ProMC achieve a simi-
lar throughput for small file transfers, they differ in large file
transfers because of the way SC calculates the concurrency
level of a cluster. While ProMC uses the maximum allowed
concurrency value (in this case it is 10), SC may prefer using
less since it determines the value of concurrency by taking
the minimum of what it calculates and what is given by the
user as an upper bound. It decides to use the concurrency
value 2 for large files, thus yields lower throughput than
ProMC. PCP performs worse than SC for small files which
is due to the overwhelming effect of the sample transfers.
While, HARP outperforms ProMC by around 25% for small
files, it obtains 5% less throughput than ProMC for medium
and large files. Digging into details, we found out that Op-
timizer estimates the concurrency value in 10-13 range for
large files which is close to what ProMC is set to run in this
experiment. Although HARP yields a bit higher throughput
after Optimizer estimates concurrency, due to sampling and
optimization overhead, it falls slightly behind ProMC. It is
worth to note that, while ProMC performs close to HARP in
this experiment, one has to know what concurrency value
to pass to ProMC which requires a domain expertise.

Figures 7(b) and 7(c) are the results obtained in the net-
works where the historical dataset contains exact matching
entries. We have tested the algorithms under three different
network loads (light, medium, and high). In both networks,
the throughput of the most algorithms decreased by 50-
300% as the network load increases.

Algorithms that transfer one cluster at a time (GO, PCP,
and SC) exhibit poor performance on XSEDE because their
overall performance is pulled down by the throughput of
small file transfers. GO, PCP, and SC achieve less than 3
Gbps under light background traffic. On the other hand,
multi-cluster algorithms (ProMC, and HARP) are able to de-
liver around 7 Gbps. As discussed in Section 2.3, HARP re-
quires data size to be greater than certain amount to out-
perform the ProMC. The size of dataset used in Figure 7(b)
was 130 GB which is only enough to cover the overhead
imposed by HARP. When we increase the dataset size to
260 GB, throughput of HARP reached to 8 Gbps as its
overhead is alleviated by the increase in transfer duration.
We omitted this comparison due to space limitation. Unlike
light background traffic case, HARP gains 36% and 48%
more throughput than ProMC even for smaller dataset size
(130 GB) under the medium and heavy background traffic
conditions by taking the advantage of the historical transfer
information. The reason why ProMC performs worse as
the network load varies is that its parameter estimation
approach is oblivious to network traffic which fails as the
network condition differs from its expectation. One may
claim that ProMC can perceive the network load by running
sample transfers, however, without historical data, it cannot
interpret the probing results. A simple way to interpret
probing is done by PCP algorithm which runs several
probings and increments the parameter values until the
probing throughput decreases. However, results show that
it fails to achieve high transfer throughput since too many
probings are required to find the optimal values, which
negatively affect its overall performance. The throughput of
SC is dropped drastically from 3.2 Gbps to 750 Mbps as the
network load increases. Similarly, throughput of GO suffers

8000

3000

GO —— GO —— \ GO ——
27000 PCP —e— PCP —e— PCP —e—
SC SC 600 SC
ProMC 2500 ProMC ProMC
8000 HARP _ HARP _ N HARP
% @ %
g 8 & 500
£ 5000 £ 2000 g
3 4000 2 3 400
E 2 1500 E
3 3000 3 3
£ 2 £ 300 N
2000 _
| ——————— 1000 —— 200
1000 \

Light Medium

Background Traffic
(a) Stampede - Gordon (XSEDE)

Heavy Light

Background Traffic
(b) Gordon-Stampede (XSEDE)

100
Medium

Background Traffic
(c) WS1-WS2 (DIDCLAB)

Medium Heavy Light Heavy

Fig. 7: HARP adapts the transfer parameters to varying background traffic and yields higher transfer throughput.

2200

GO ——
PCP —+—
2000 sc
ProMC
__ 1800 HARP
[}
g
s 1600
32 1400
)
g 1200 >
= \
1000 . ——
800
Light Medium Heavy

Background Traffic

Fig. 8: HARP outperforms ProMC in all traffic types in
Cloud experiments. The difference goes up to 30% under
heavy background traffic.

significantly. PCP is able to adapt the transfer parameters
values and outperform SC and GO under the high network
loads. However, the overhead of sampling and “one cluster
at a time” policy limits its overall performance to less than
1 Gbps in congested network conditions.

We picked two DIDCLAB servers (WS-1 and WS-2) to
test HARP in a LAN with a single-disk storage subsys-
tem. Figure 7(c) presents the performance comparison of
different algorithms. When the background traffic is light,
SC performs better than ProMC since opening too many
processes (aka concurrency) to execute disk I/O opera-
tions deteriorates the I/O throughput while not improv-
ing network throughput. However, as background traffic
increases, opening many connections helps to obtain higher
network throughput. HARP yields 650 Mbps throughput
under the light background traffic which is limited by the
storage performance. On the contrary, network throughput
becomes the bottleneck when the network is highly con-
gested. Hence, HARP achieves a higher end to end transfer
throughput by adapting the transfer parameter values to
varying network conditions.

Since heuristic algorithms do not take storage perfor-
mance metrics into account when calculating protocol pa-
rameters, they fail to perform well when disk I/O through-
put decreases as the number of concurrent file transfers in-
creases. Hence, HARP can outperform heuristic algorithms
with the help of historical data even when there is a rela-
tively small dataset. When there is no background traffic,
HARP achieves 13% higher throughput than ProMC. As the
network load increases, HARP obtains 47% and 37% more

9000

GO ——
SC —w—
8000 ProMC 1
HARP
7000
[%)
&
s 6000
3 5000
<
[=2]
3 4000
£
3000
2000 \
1000 . .
Light Medium Heavy

Background Traffic

Fig. 9: HARP achieves 23% to 30% speed-up over ProMC
in Dark Energy Survey data transfer under medium and
heavy background traffic.

than ProMC for the medium and high background traffic
cases.

In order to test the effectiveness of HARP for networks
that have no matching entries in the historical data, we run
experiments on XSEDE and Amazon EC-2. Although the
same pair of servers are used in XSEDE experiments, we
have transferred dataset in a reverse direction of historical
data entries. Namely, historical data has the logs for the
transfers that are sourced from Stampede and destined to
Gordon. In this experiment, Gordon is used as a source and
Stampede became the destination. Although it may seem
identical to the Stampede-Gordon transfers, the results show
that the maximum achievable throughput is different than
the Stampede-Gordon transfers. This is because (i) these
sites exhibit different performance results for disk read and
write operations and (ii) available network bandwidth is not
the same in both directions. Hence, the Gordon-Stampede
transfers can be used to show how HARP performs on the
networks that the historical data have similar but not exactly
the same entries.

While the Stampede-Gordon transfers experienced 50-
300% as network load increases, the impact stayed around
10-100% for the Gordon-Stampede transfers as shown in
Figure 7(a). HARP and PCP were affected the least by
the increased network traffic compared to the heuristics
since they probe network status at the beginning of transfer
and picks the parameter values accordingly. For example,
HARP obtained 13% more throughput than ProMC under
the light background traffic. The difference increased to
24% as the throughput of ProMC dropped by 24% un-

der the heavy background traffic while the throughput of
HARP only dropped by 11%.

Finally, we tested HARP in Amazon EC-2 where we used
two c3.8xlarge instances and Provisioned IOPS EBS storage
volumes with disk read /write speed of 320 MB/s as shown
in Table 2. However, we observed 265 MB/s maximum disk
throughput. Similar to XSEDE experiments, the algorithms
that transfer multiple clusters simultaneously (ProMC and
HARP) performed better than the single cluster algorithms
at all background traffic loads as shown in Figure 8. Similar
to the Gordon-Stampede experiments, the results are not
affected as much as Stampede-Gordon experiments by the
increased network loads since the transfer performances are
again limited by disk I/O throughput.

Due to the similarities in network settings, cosine-
similarity favors XSEDE transfers over LAN transfers when
filtering similar entries in historical data. Since the EC-
2 experiments resemble to XSEDE network in the context
of yielding higher disk I/O throughput as the number of
concurrent transfers increases and having a smaller buffer
size than BDP, the models derived using XSEDE entries
work well in the EC-2 experiments. Hence, HARP outper-
forms ProMC by 5% in the light background traffic case.
The difference reaches to 34% and 32% under the medium
and high network loads as ProMC fails to adapt the transfer
parameter values to varying system load.

Optimizing Dark Energy Survey Data Transfer

Dark Energy Survey [34] captures pictures of space to probe
the dynamics of the expansion of the Universe and the
growth of large-scale structure. It collects 200-300 GB of
data each day which is transferred from observatory in
Chile to collaborating research institutions in America and
Europe. We took one day worth of data which consists of
428 files, sizes range from 270 MB to 730 MB, and transferred
from Stampede (TACC) and Gordon (SDSC) under different
background traffic conditions.

Figure 9 shows the performance results for Globus
Online, heuristics (SC and ProMC), and HARP. SC and
Globus Online yileds 2-3x less throughput than ProMC
and HARP due to the underestimation of transfer pa-
rameters. ProMC and HARP perform similar under the
light background traffic as they both estimate using similar
parameter values and obtain close-to-maximum transfer
throughput. However, as the background traffic increases
ProMC is again affected significantly and obtains 23% and
30% less throughput than HARP.

3.1 The accuracy of the Model

Table 5 shows average values of the parameters for transfers
in Wide Area and Local Area networks under Light (L)
and Medium (M) background traffic conditions. Since the
transfer parameters have different impact on different file
sizes, we have gathered the transfer parameters for each file
type separately.

HARP is able to differentiate WAN and LAN transfers
by estimating high concurrency values for the WAN trans-
fers and low concurrency values for the LAN transfers. It
also calculates high concurrency values for the small file
types and high parallelism values for the large file types.

10

Although Nonlinear Equation Solver, in general, tends to
estimate high concurrency and parallelism values, the re-
laxation process decreases them a bit to avoid overloading
network and end systems. In addition, it picks higher par-
allelism values when networks are congested in order to
increase its bandwidth share by creating more connections.

After the filtering process of Optimizer selects similar
entries from historical data and the grouping operation
categorizes them, we allot 30% of each group as valida-
tion data and use the rest to train the model. To measure
the correctness of the derived model, we first calculate
the optimal parameter values using training data. Assume
that it returns (Cctrainingaptrainingapptraining) for corre-
sponding throughput T'hri;qining. Then, we use validation
data and apply polynomial regression to derive model,
ftest, and find its optimal parameter values and estimated
throughput, Thrics:. Then, instead of directly comparing
throughputs Thrirqining and T'hres:, we calculate through-
PUt Thrprojected = ftest(cctrainingaptrainingapptrm’ning) in
order to compute how well the training data parameters
do in validation data model. Direct throughput comparison
may not be accurate because test data and training data
might have been exposed to different background traffic,
thus maximum throughput of the two model could be
different even if the optimal parameters are the same. So, we
calculate the validation accuracy as ‘T}W";‘S}‘L;ff:’::““d‘ . We
also listed estimation accuracy which meastires closeness
of estimated throughput to the actual transfer throughput.
Estimation accuracy might not be a good metric to judge the
model since actual throughput of a network may change
over time even though the optimal parameters stays the
same.

Validation accuracy of HARP is always above 85% which
indicates success of regression analysis in modeling transfer
throughput. While the estimation accuracy is more sta-
ble and comparatively high in LAN, it is worse in the
WAN experiments since it is an uncontrolled environment
so resource capacities might have changed between data
collection and experimenting periods. Looking into deeper
why estimation accuracy is 41% for Tiny file type in WAN
experiment, we have discovered that, while the maximum
throughput of the Tiny cluster in historical data never
reaches beyond 4 Gbps, we observed 5.5 Gbps in test exper-
iments. Thus, the estimation accuracy highly depends on
consistency of historical data with current network status.
This can easily be handled by logging every real time
transfer so that the historical data always keep up-to-date
information.

3.2 Online Tuning

Since some transfers can take tens of minutes, hours or
even days, it is inevitable that background traffic changes
while these transfer are running. Figure 10 shows achiev-
able memory-to-memory transfer throughput between two
XSEDE site pairs for a week period. Memory-to memory
transfers help to eliminate the effect of file system related
congestion on transfer throughput. So, the only factor that
may cause throughput variation is background traffic. We
used two parallel streams for BlueWaters-Comet transfer
and four parallel streams in SuperMIC-Bridges in order to

11

Stampede-Gordon (WAN)

WSI-WS2 (LAN)

File Type Tiny Small Medium Large Tiny Small Medium Large
Traffic LI M|L | M|L| M M| L | M|L| M|L|M|L|M
Concurrency | 24 | 25 | 22 | 22 | 10 | 10 | 12 | 10 | 6 4 2 1 1 1 2 1
Parallelism 0 O (11|10 |18 | 19 | 15 | 19 | 3 6 7 |11] 9 13 110 | 9
Pipelining 5 4 0 0 0 0 1 2 1 1 2 1 2 2 1

Validation
Accuracy (%)

95 | 96 | 94 | 93 | 90 | 85 | 93

91 | 90 | 86 | 93 | 91 | 90 | 88 | 88 | 88

Estimation
Accuracy (%)

41 | 62 | 78 | 77 | 81 | 73 | 85

86 | 84 | 79 | 91 | 76 | 90 | 91 | 87 | 86

TABLE 5: Sample transfer metrics and accuracy values of HARP under Light (L) and Medium (M) background traffics.

1200

1000 /] \nf
-)
S 800
g 1200 —T \/_jw
3 600 , o R / \]
e
[e)] 600 4
§ 400 / 400 |
< 720 \ 4
- / e
200 ’C/ % T % %Y Y % %

0
IS
N S TSP E PSSP SIS

N \q/ N RN NS QQ NN

I SIS B T SR A AR L A
B N LU LN U
Time

(a) BlueWaters-Comet

450 T T T . . .
Supermic-Bridges ——
l\
400 \
@ 350
s \ (f
S 300 \ m
§ 250 \ \\ B8N
=2 S~ B "
3 200 ~
£ ~ “
£ 150 T~ I
100
50
O O O O O O O O O & O &
QQQ \q/Q QQQ \q/Q N \q/Q N \q/Q QQQ Q/Q N \q/Q QQQ

A > 9> o° "b"b
N IR NI O IR AR AR L LR
6“’\@’\0\@\6“;6‘;6‘;6"\‘*’\%\‘3%\‘3

Time
(b) SuperMIC-Bridges

Fig. 10: Online Tuning detects increasing background traffic and increases the number of flows for higher throughput

overcome buffer size limitations. Although both transfers
are run simultaneously, since they do not share a common
link, they do not compete with each other. In Figure 10(a),
it can be seen that, while throughput is more or less stable
in short time periods (within hours), it varies significantly
over time. Similar behavior can be observed in Figure 10(b)
as throughput fluctuates between 120 Mbps and 410 Mbps.
While some days’ traffic pattern is similar, there is no
definitive pattern to predict the future traffic. Hence, one-
time sampling at the beginning of the transfer will not work
well for long running transfers. Therefore, we extended
HARP with online tuning which periodically monitors the
transfer throughput and calculates new parameter values
based on the observed background traffic.

Online Tuning also helps to eliminate the need for a spe-
cial sampling phase since we can start with some initial val-
ues until new parameter values are calculated by Optimizer.
Eliminating the sampling phase mitigates the connection
setup/teardown cost that sample transfers induce. Also,
Scheduler does not have to wait for Optimizer to finish its
operation as they can work simultaneously. Online tuning
lets Scheduler measure the transfer throughput in certain
monitor intervals and conveys it to Optimizer. Optimizer
then can run the modeling and parameter estimation opera-
tions to estimate new values for the parameters. Meanwhile,
Scheduler does not have to wait for Optimizer, since the
results of Optimizer can be applied in the next interval.
That is, while Scheduler is in interval M I, 1, Optimizer can
calculate the parameter values based on previous interval

M1, and newly proposed values can be applied at the end
of the interval M I; ;.

Since it is possible that some throughput variations
may happen even when background traffic is the same,
we consider last k¥ monitor intervals when making a deci-
sion on whether or not to update the parameter values to
avoid transient fluctuations. After at least k£ periods have
passed and Optimizer consistently suggests using different
parameter values, then Scheduler updates the parameter
values. Among the three transfer parameters, pipelining
is the easiest parameter to update the value as it does
not require a connection setup/teardown. On the other
hand, concurrency means establishing a new connection
between source and destination servers which may take
a couple of seconds due to slow authentication process.
While parallelism should not require a new connection, the
current implementation lets its value to be set only when
connection is first established. Hence, we have to close an
existing connection and establish a new one with an up-
dated parallelism value. Since connection setup/teardown
is a costly operation, we update the concurrency and paral-
lelism values only if there is at least two differences between
old and new values such that an expected gain pays off the
induced cost. For example, if we are currently running a
transfer with a concurrency level 4 and Optimizer returns
5 in the last k periods, then Scheduler will not apply it.
While the right value for k may affect the accuracy and
stability of online tuning, we observed that £ = 4 works
well in the experiments as it is large enough to avoid instant

8000 60

HARP ——

HARP w/ OT —+— |
HARP Flows — — 1 5g
HARP w/ OT Flows = = =

7000

6000 ;

Background Traffic Starts 1 40
//)\
4000 / [\ %0
'
3000 .
0L\ S A, 1%
2000 V
'
1000 ("

0 100 200 300 400 500 600
Time (sec)

(a) Small Files

5000

Number of Flows

Throughput (Mbps)

12

10000

80

HARP ——
HARP w/ OT —+— | 70
HARP Flows — —
8000 HARP w/ OT Flows = = = - 60
) A [E S S »
g : _ 150 3
= 6000 [f Heavy Background Traffic Start: [
5 '] S
£ AN “ 3
g’ 4000 . S 130 E
E -'_.%A_________ 3
ol _\L 120
2000 /-
[L.l \ ~—— 10
0 = 0
0 100 200 300 400 500 600

Time (sec)

(b) Large Files

Fig. 11: Online Tuning detects increasing background traffic and increases the number of flows for higher throughput

8000 80
———

7000 7—-/—"———-:\'\;'—— — 70

6000 /_— 60

50

5000 :
.
4000 '
:
3000 v

2000

S

40

30

\
Number of Flows

Heavy Background Traffic End:

?4/7‘ HARP 2
1000 - e HARP w/OT —— | ;o

. e HARP Flows — —
HARP w/ OT F[OWS == 0

0 50 100 150 200 250 300
Time (sec)

(a) Small Files

!

Throughput (Mbps)

0

8000 80

i N\
o N\ o
\ 40
e """'x‘\ l 30

A

6000

60

[
'
'
¥
'
[
'
g
'

5000

4000

3000

Throughput (Mbps)
Number of Flows

=<

' g
2000 N _,/ Heavy Background Traffic Ends 20
JI/ HARP H/Ag$
W —_—
oz HARP Flows — — | 10
0 —— HARP w/ OT Flows = = = 0
0 50 100 150 200 250 300 350 400 450 500

Time (sec)

(b) Large Files

Fig. 12: Online Tuning detects decreasing background traffic and decreases the number of flows to minimize network

overhead

throughput variations and small enough to catch prolonged
background traffic changes.

Figure 11 and 12 show the comparison of instantaneous
throughput of HARP [35] and HARP with online tuning
(HARP w/ OT) for transfers in the XSEDE network. In
order to emulate dynamic network conditions, we transi-
tioned background traffic from: light to heavy (Figure 11)
and heavy to light (Figure 12) some time after transfers
started. Transitions are marked with a solid vertical line.
“Heavy Background Traffic Starts” and “Heavy Background
Traffic Ends” texts mark the start and the end of heavy
background traffic which is controlled manually. We also
tracked the number of active TCP flows used in transfers
to have an idea about how much overhead is imposed to
network in different scenarios. Flow numbers are calculated
by multiplying concurrency and parallelism values.

Although we smoothed the instant throughput, it can be
seen in the Figure 11(a) that HARP’s throughput decreases
a bit around the 30" second. This is because of the the
way HARP is designed to operate. It first runs the sample
transfers and conveys the results to Optimizer Scheduler sits
idle while Optimizer is working on estimating the optimal
values. This idle time can be eliminated with the help of
online tuning since we do not need a separate sampling
phase anymore. Rather, Optimizer and Scheduler can work
simultaneously and Scheduler can apply any proposed
changes in the next interval.

Since online tuning requires at least four consecutive
intervals of consistent input from Optimizer to apply pro-
posed changes, there is a delay between the start of heavy
background traffic and OT’s reaction as in Figure 11(a)
and 11(b). While Scheduler does not require the same exact
values to be returned by Optimizer in the four consecutive

periods, it expects to receive consistently larger or smaller
values (compared to currently used ones) for a parameter
in order to make sure that higher or lower values are not
caused by a transient traffic.

HARP without OT estimates parameter values only once
right after the sample transfer and keeps the same values
throughout the transfer. So, the number of network flows
changes once and only after sample transfers. On the other
hand, when OT is enabled, HARP can react to varying
background traffic as many times as possible so the number
of flows may change multiple times. By adapting parameter
values to varying background traffic conditions HARP with
OT achieves 30-40% higher overall throughput and com-
pletes the transfers 160-185 seconds faster.

If HARP starts to run when background traffic is heavy,
it estimates higher parameter values to obtain high transfer
throughput as shown in Figure 12. However, as background
traffic decreases, the benefit of using high parameter val-
ues starts disappearing. For example, running the transfer
with large parameter values under low background traf-
fic achieves around 2-5% more throughput for large files
(Figure 12(b)) while it causes 15% decrease for small files
(Figure 12(a)). Decreasing the number of flows as back-
ground traffic transitions from heavy to light leads to a
higher instantaneous transfer throughput for small files due
to parallelism value. When background traffic is heavy, large
parallelism values help to achieve higher transfer through-
put by increasing its share in the network bandwidth. On
the contrary, it causes a decrease in throughput when back-
ground traffic is low since the overhead of using parallelism
is not accommodated by a throughput increase when the
current throughput is already high. Thus, HARP with OT
outperforms HARP despite using smaller number of flows.

As a result, online tuning does not only help to keep the
number of flows minimal in return for a small performance
sacrifice for large files, but also obtains higher throughput
by using a smaller parallelism level for small files.

4 RELATED WORK

Liu et al. [15] developed a tool which optimizes multi-
file transfers by opening multiple GridFTP threads. The
tool increases the number of concurrent flows up to the
point where the transfer performance degrades. Their work
only focuses on concurrent file transfers, and other transfer
parameters are not considered. Globus Online [23] offers
fire-and-forget file transfers through thin clients over the
Internet. The developers mention that they set the pipelin-
ing, parallelism, and concurrency parameters to specific
values for three different file sizes (i.e., less than 50MB,
larger than 250MB, and in between). However, the protocol
tuning Globus Online performs is non-adaptive; it does not
consider real-time background traffic conditions.

Other approaches aim to improve the transfer through-
put by opening flows over multiple paths between end-
systems [36], however there are cases where individual data
flows fail to achieve optimal throughput because of the end-
system bottlenecks. Several others propose solutions that
improve utilization of a single path by means of parallel
streams [22], [37], [38], pipelining [24], and concurrent trans-
fers [13], [14]. Although using parallelism, pipelining, and
concurrency may improve throughput in certain cases, an
optimization algorithm should also consider system config-
uration, since the end-systems may present factors (e.g., low
disk I/O speeds or over-tasked CPUs) which can introduce
bottlenecks.

Yildirim et al. [39], Yin et al. [40], and Kim et al. [41]
proposed highly-accurate predictive models solely based
on real-time probing which would require as few as three
sampling points to provide very accurate predictions for the
parallel stream number giving the highest transfer through-
put. These models have proved to provide higher accuracy
compared to existing similar models in the literature [38],
[42]. Later, Yildirim et al. presented the PCP algorithm to
dynamically tune parameter values of data transfer [25].
PCP categorizes files into three groups based on file size
(small, medium, and large) and then run sample transfer for
each file group to determine parameter values that would
return higher transfer throughput. Although PCP does not
require historical data to operate and it can adapt itself to
varying network conditions, it requires too many sample
transfers to adapt to the dynamically changing network
environment.

In our earlier work, we proposed heuristic algo-
rithms [20] to determine the best parameter combination by
using network and dataset characteristics. Nine et al. de-
veloped ANN+OT [26] which uses historical data to derive
model that relates transfer metrics to transfer throughput. It
then runs real-time probing in order to capture the current
network status. None of the existing approaches can per-
form accurate optimization for mixed datasets, which is one
of the primary contributions of HARP. HARP also performs
combined offline and online optimization, utilizing both

13

historical data analysis and real-time probing, taking the
changes in the background traffic into consideration.

5 CONCLUSIONS

In this paper, we presented a dynamic end-to-end data
transfer optimization algorithm based on historical data
analysis and real-time background traffic probing, called
HARP. Most of the existing work in this area is solely based
on real-time network probing or static parameter tuning,
which either cause too much sampling overhead or fail to
accurately predict the optimal transfer parameters. Combin-
ing historical data analysis with real-time sampling enables
HARRP to tune the application-layer data transfer parameters
accurately and efficiently to achieve close-to-optimal end-
to-end data transfer throughput with very low overhead.
HARP uses historical data to derive network specific models
of transfer throughput based on protocol parameters. Then
by running sample transfers, we capture current load on
the network which is fed into these models to increase
the accuracy of our predictive modeling. Our experimental
analyses over a variety of network settings show that HARP
outperforms existing solutions by up to 50% in terms of the
achieved throughput. We also extended HARP with online
tuning to be able to react to the varying network conditions
by adapting the transfer parameter values. We observed
that online tuning improves HARP’s performance by up
to 40% under unpredictable and varying background traffic
conditions.

ACKNOWLEDGMENTS

This project is in part sponsored by the National Science
Foundation (NSF) under award number OAC-1724898. It
uses XSEDE resources for some of the experiments, which is
supported by NSF under award number ACI-1548562.

REFERENCES

[1] N.Cardwell, Y. Cheng, C.S. Gunn, S. H. Yeganeh, and V. Jacobson,
“Bbr: Congestion-based congestion control,” Queue, vol. 14, no. 5,
p. 50, 2016.

[2] M.Dong, Q.Li, D. Zarchy, P. B. Godfrey, and M. Schapira, “Pcc: Re-
architecting congestion control for consistent high performance.”
in NSDI, 2015, pp. 395-408.

[3] R.Karrer, J. Park, and J. Kim, “Tcp-rome:performance and fairness
in parallel downloads for web and real time multimedia streaming
applications,” in In Technical Report, Deutsche Telekom Laboratories,
2006.

[4] J. Crowcroft and P. Oechslin, “Differentiated end-to-end internet
services using a weighted proportional fair sharing tcp,” SIG-
COMM Comput. Commun. Rev., vol. 28, no. 3, Jul. 1998.

[5] G. Kola and M. K. Vernon, “Target bandwidth sharing using
endhost measures,” Perform. Eval., vol. 64, no. 9-12, Oct. 2007.

[6]]. Lee, D. Gunter, B. Tierney, B. Allcock, J. Bester, J. Bresnahan,
and S. Tuecke, “Applied techniques for high bandwidth data
transfers across wide area networks,” in International Conference
on Computing in High Energy and Nuclear Physics, April 2001.

[7] G. Kola, T. Kosar, and M. Livny, “Run-time adaptation of grid
data-placement jobs,” Scalable Computing: Practice and Experience,
vol. 6, no. 3, pp. 33-43, September 2005.

[8] N. Freed, “SMTP service extension for command pipelining,”
http:/ /tools.ietf.org /html/rfc2920.

[9] K. Farkas, P. Huang, B. Krishnamurthy, Y. Zhang, and J. Padhye,
“Impact of tcp variants on http performance,” Proceedings of High
Speed Networking, vol. 2, 2002.

[10] T.J. Hacker, B. D. Noble, and B. D. Atley, “Adaptive data block
scheduling for parallel streams,” in Proceedings of HPDC ’05.
ACM/IEEE, July 2005, pp. 265-275.

(11]

(12]

(13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

[32]

R. P. Karrer, J. Park, and J. Kim, “Tcp-rome:performance and
fairness in parallel downloads for web and real time multimedia
streaming applications,” in Technical Report. Deutsche Telekom
Laboratories, September 2006.

D. Lu, Y. Qiao, and P. A. Dinda, “Characterizing and predicting
tep throughput on the wide area network,” in Proceedings of ICDCS
‘05. IEEE, June 2005, pp. 414-424.

T. Kosar and M. Livny, “Stork: Making data placement a first class
citizen in the grid,” in Proceedings of ICDCS’04, March 2004, pp.
342-349.

T. Kosar and M. Balman, “A new paradigm: Data-aware schedul-
ing in grid computing,” Future Generation Computing Systems,
vol. 25, no. 4, pp. 406—413, 2009.

W. Liu, B. Tieman, R. Kettimuthu, and I. Foster, “A data transfer
framework for large-scale science experiments,” in Proceedings of
DIDC Workshop, 2010.

R. S. Prasad, M. Jain, and C. Davrolis, “Socket buffer auto-sizing
for high-performance data transfers,” Journal of Grid Computing,
vol. 1(4), pp. 361-376, Aug. 2004.

A. Morajko, “Dynamic tuning of parallel/distributed applica-
tions,” Ph.D. dissertation, Universitat Autonoma de Barcelona,
2004.

T. Ito, H. Ohsaki, and M. Imase, “On parameter tuning of data
transfer protocol gridftp for wide-area networks,” International
Journal of Computer Science and Engineering, vol. 2(4), pp. 177-183,
Sep. 2008.

K. M. Choi, E. Huh, and H. Choo, “Efficient resource management
scheme of tcp buffer tuned parallel stream to optimize system per-
formance,” in Proc. Embedded and ubiquitous computing, Nagasaki,
Japan, Dec. 2005.

E. Arslan, B. Ross, and T. Kosar, “Dynamic protocol tuning algo-
rithms for high performance data transfers,” in Proceedings of the
19th International Conference on Parallel Processing, ser. Euro-Par’13.
Berlin, Heidelberg: Springer-Verlag, 2013, pp. 725-736.

E. Yildirim and T. Kosar, “Network-aware end-to-end data
throughput optimization,” in Proceedings of the first international
workshop on Network-aware data management, ser. NDM "11. New
York, NY, USA: ACM, 2011, pp. 21-30. [Online]. Available:
http:/ /doi.acm.org/10.1145/2110217.2110221

E. Yildirim, D. Yin, and T. Kosar, “Balancing tcp buffer vs parallel
streams in application level throughput optimization,” in Proceed-
ings of DADC Workshop, 2009.

B. Allen, J. Bresnahan, L. Childers, I. Foster, G. Kandaswamy,
R. Kettimuthu, J. Kordas, M. Link, S. Martin, K. Pickett, and
S. Tuecke, “Software as a service for data scientists,” Communi-
cations of the ACM, vol. 55:2, pp. 81-88, 2012.

J. Bresnahan, M. Link, R. Kettimuthu, D. Fraser, and 1. Foster,
“Gridftp pipelining,” in Proceedings of TeraGrid, 2007.

E. Yildirim, E. Arslan, J. Kim, and T. Kosar, “Application-level
optimization of big data transfers through pipelining, parallelism
and concurrency,” Cloud Computing, IEEE Transactions on, vol. PP,
no. 99, pp. 1-1, 2015.

M. S. Q. Z. Nine, K. Guner, and T. Kosar, “Hysteresis-based
optimization of data transfer throughput,” in Proceedings of the
Fifth International Workshop on Network-Aware Data Management,
ser. NDM "15. New York, NY, USA: ACM, 2015, pp. 5:1-5:9.
[Online]. Available: http://doi.acm.org/10.1145/2832099.2832104
R. Kettimuthu, G. Vardoyan, G. Agrawal, and P. Sadayappan,
“Modeling and optimizing large-scale wide-area data transfers,”
in Cluster, Cloud and Grid Computing (CCGrid), 2014 14th IEEE/ACM
International Symposium on, May 2014, pp. 196-205.

I. Alan, E. Arslan, and T. Kosar, “Energy-aware data transfer
algorithms,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. ACM,
2015, p. 44.

E. Yildirim,]J. Kim, and T. Kosar, “Modeling throughput
sampling size for a cloud-hosted data scheduling and
optimization service,” Future Gener. Comput. Syst., vol. 29,
no. 7, pp. 1795-1807, Sep. 2013. [Online]. Available:
http://dx.doi.org/10.1016/j.future.2013.01.003

XSEDE, “Extreme Science and Engineering Discovery Environ-
ment,” http://www.xsede.org/.

D. E Shanno, “On broyden-fletcher-goldfarb-shanno method,”
Journal of Optimization Theory and Applications, vol. 46, no. 1, pp.
87-94, 1985.

I. Alan, E. Arslan, and T. Kosar, “Energy-performance
trade-offs in data transfer tuning at the end-systems,”

14

Sustainable Computing: Informatics and Systems, vol. 4, no. 4,
pp- 318 — 329, 2014, special Issue on Energy Aware Resource
Management and Scheduling (EARMS). [Online]. Available:
http:/ /www.sciencedirect.com/science/article/pii/52210537914000456

[33] I Alan, E. Arslan, and T. Kosar, “Energy-aware data transfer
tuning,” in Cluster, Cloud and Grid Computing (CCGrid), 2014 14th
IEEE/ACM International Symposium on. IEEE, 2014, pp. 626-634.

[34] “Dark Energy Survey,” https://www.darkenergysurvey.org/.

[35] E. Arslan, K. Guner, and T. Kosar, “Harp: Predictive transfer
optimization based on historical analysis and real-time probing,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’16.
Piscataway, NJ, USA: IEEE Press, 2016, pp. 25:1-25:12. [Online].
Available: http://dl.acm.org/ citation.cfm?id=3014904.3014938

[36] G.Khanna, U. Catalyurek, T. Kurc, R. Kettimuthu, P. Sadayappan,
I. Foster, and J. Saltz, “Using overlays for efficient data transfer
over shared wide-area networks,” in Proceedings of SC, Piscataway,
NJ, USA, 2008.

[37] T.]. Hacker, B. D. Noble, and B. D. Athey, “Adaptive data block
scheduling for parallel tcp streams,” in Proceedings of HPDC, 2005.

[38] D.Lu, Y. Qiao, P. A. Dinda, and F. E. Bustamante, “Modeling and
taming parallel tcp on the wide area network,” in Proceedings of
IPDPS, 2005.

[39] E.Yildirim, D. Yin, and T. Kosar, “Prediction of optimal parallelism
level in wide area data transfers,” IEEE TPDS, vol. 22(12), 2011.

[40] D. Yin, E. Yildirim, and T. Kosar, “A data throughput prediction
and optimization service for widely distributed many-task com-
puting,” IEEE TPDS, vol. 22(6), 2011.

[41] J. Kim, E. Yildirim, and T. Kosar, “A highly-accurate and low-
overhead prediction model for transfer throughput optimization,”
Cluster Computing, vol. 18, no. 1, pp. 41-59, 2015. [Online].
Available: http://dx.doi.org/10.1007 /s10586-013-0305-4

[42] T. J. Hacker, B. D. Noble, and B. D. Atley, “The end-to-end
performance effects of parallel tcp sockets on a lossy wide area
network,” in Proc. of IPDPS, 2002.

Engin Arslan is an Assistant Professor in the
Department of Computer Science and Engineer-
ing, University of Nevada, Reno. He received
his BS degree of Computer Engineering from
Bogazici University, MS degree from University
at Nevada, Reno and PhD degree from Com-
puter Science and Engineering at University at
Buffalo, SUNY. He was Postdoctoral Research
Associate at National Center for Supercomput-
ing Applications before joining to UNR. His re-
search interests include high performance net-
works, data intensive distributed computing, distributed systems, com-
puter networks, and cloud computing.

Tevfik Kosar is an Associate Professor in the
Department of Computer Science and Engineer-
ing, University at Buffalo. Prior to joining UB,
Kosar was with the Center for Computation and
Technology (CCT) and the Department of Com-
puter Science at Louisiana State University. He
holds a B.S. degree in Computer Engineering
from Bogazici University, Istanbul, Turkey and an
M.S. degree in Computer Science from Rensse-
/- laer Polytechnic Institute, Troy, NY. Dr. Kosar has
received his Ph.D. in Computer Science from the
University of Wisconsin-Madison. Dr. Kosar's main research interests
lie in the cross-section of petascale distributed systems, eScience,
Grids, Clouds, and collaborative computing with a focus on large-scale
data-intensive distributed applications. He is the primary designer and
developer of the Stork distributed data scheduling system, and the
lead investigator of the PetaShare distributed storage network. Some
of the awards received by Dr. Kosar include NSF CAREER Award, IBM
Research Award, Google Research Award, LSU Rainmaker Award, LSU
Flagship Faculty Award, Baton Rouge Business Report’s Top 40 Under
40 Award, and 1012 Corridor’s Young Scientist Award.

