
Energy-Aware Data Transfer Algorithms

Ismail Alan, Engin Arslan, Tevfik Kosar
Department of Computer Science & Engineering

University at Buffalo (SUNY), Buffalo, New York 14260
{ialan,enginars,tkosar}@buffalo.edu

ABSTRACT
The amount of data moved over the Internet per year has
already exceeded the Exabyte scale and soon will hit the
Zettabyte range. To support this massive amount of data
movement across the globe, the networking infrastructure as
well as the source and destination nodes consume immense
amount of electric power, with an estimated cost measured
in billions of dollars. Although considerable amount of re-
search has been done on power management techniques for
the networking infrastructure, there has not been much prior
work focusing on energy-aware data transfer algorithms for
minimizing the power consumed at the end-systems. We in-
troduce novel data transfer algorithms which aim to achieve
high data transfer throughput while keeping the energy con-
sumption during the transfers at the minimal levels. Our ex-
perimental results show that our energy-aware data transfer
algorithms can achieve up to 50% energy savings with the
same or higher level of data transfer throughput.

Keywords
Energy-aware data transfers; Energy efficiency; Big-data;
Protocol tuning; Power modeling

1. INTRODUCTION
Global Internet traffic will reach 1.1 Zettabytes (one bil-

lion Terabytes) per year by 2016 [43]. The annual electricity
consumed by these data transfers worldwide is estimated to
be 450 Terawatt hours, which translates to around 90 billion
U.S. Dollars per year [24, 34, 36, 43]. This fact has resulted
in considerable amount of work focusing on power manage-
ment and energy efficiency in hardware and software sys-
tems [12,14,16,17,25,27,31,38,39,46,50] and more recently
on power-aware networking [8, 20,21,28,34].

Most of the existing work on power-aware networking fo-
cuses on reducing the power consumption on networking de-
vices such as the hubs, switches, and routers deployed across
Internet. Well known techniques in this area include putting
idle sub-components such as line cards to sleep mode [23];

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

adapting the rate at which switches forward packets depend-
ing on the traffic rate [35]; developing architectures with
programmable switches [22] and switching layers that can
incorporate different policies [30]; and new power-aware net-
work protocols for energy-efficiency in network design and
routing [13].

Although many studies have been done on power man-
agement techniques for the networking infrastructure, there
has not been much prior work focusing on saving data trans-
fer energy at the end systems (sender and receiver nodes).
There has been studies on Energy Efficient Ethernet [3] for
making ethernet cards more energy efficient, but these were
very limited in the scope since they were only considering the
energy saving of the ethernet card and not the entire end-
system (including the CPU, memory, disk etc). Prior stud-
ies [4,28,34] show that at least one quarter of the data trans-
fer power consumption happens at the end-systems (sender
and receiver nodes) and the rest at the networking infras-
tructure. Significant amount of data transfer energy savings
can be obtained at the end-systems with no or minimal per-
formance penalty. Although network-only approaches are
important part of the solution, the end-system power man-
agement is another key in optimizing energy efficiency of the
data transfers, which should not be ignored.

In our prior work [5], we analyzed various factors that
affect the power consumption in end-to-end data transfers
with a focus on the end-system energy consumption. Dif-
ferent protocol parameters such as TCP pipelining, paral-
lelism and concurrency levels play a significant role in the
achievable network throughput. However, setting the opti-
mal numbers for these parameters is a challenging problem,
since not-well-tuned parameters can either cause underuti-
lization of the network, may increase the power consumption
drastically, or may overload the network and degrade the
performance due to increased packet loss ratio, end-system
overhead, and other factors.

In this paper, we introduce three novel data transfer algo-
rithms which consider energy efficiency during data trans-
fers: i) a Minimum Energy algorithm (MinE) which tries to
minimize the overall energy consumption without any per-
formance concern; ii) a High Throughput Energy-Efficient
algorithm (HTEE) which tries to maximize the through-
put with low energy consumption constraints; and iii) an
SLA-based Energy-Efficient algorithm (SLAEE) which lets
end-users to define their throughput requirements as part
of a service-level agreement while keeping the power con-
sumption at the minimum levels to minimize the cost of the
service provider.

The rest of this paper is organized as follows. In Section
2, we describe these three energy-aware data transfer algo-
rithms in detail. In Section 3, we present our experimental
results and evaluation of these algorithms. In Section 4, we
discuss the effect of these algorithms on network power con-
sumption. Section 5 describes the related work in this area,
and Section 6 concludes the paper.

2. ENERGY-AWARE TRANSFER
ALGORITHMS

In this section, we first describe the application level data
transfer parameters we tune in our proposed data trans-
fer algorithms; then we introduce our techniques to model
and estimate the energy consumption during data transfers.
After giving this background, we present our three novel
energy-aware data transfer algorithms.

2.1 Application-layer Parameter Tuning
Three application-layer parameters which can be used both

to improve the end-to-end data transfer throughput as well
as to control the level of energy consumed during data trans-
fer are: i) pipelining; ii) parallelism; and iii) concurrency.
However setting the optimal numbers for these parameters
is not an easy task since incorrect tuning of parameters can
either cause underutilization of the network or increase the
power consumption unnecessarily [5].

Pipelining addresses the problem of transferring a large
number of small files. With pipelining, you can transfer
multiple files without waiting previous transfer’s acknowl-
edgement message in control channel based transfer proto-
cols. It prevents RTT delays between sender and receiver
nodes and keeps the transfer channel active. The size of
the transferred files should be smaller than the bandwidth-
delay product (BDP) to take advantage of pipelining, oth-
erwise using high level of pipelining would increase energy
consumption without any benefits to the throughput.

Parallelism refers to transferring different portions of the
same file through multiple streams and it can potentially
multiply the throughput of a single stream. But, using too
many simultaneous streams can cause network congestion
and throughput decline. Parallelism is advantageous for
large file transfers when the system buffer size is smaller
than BDP, which is very common in high-bandwidth long
RTT networks.

Concurrency means transferring multiple files at the same
time using different data channels. It can result in better
throughput especially for transfers in which disk IO is the
bottleneck and the end systems have parallel disk systems.
In a already fully utilized network, setting concurrency to
high levels can cause energy loss because high number of
concurrent transfers means increased number of processes
(or threads) at the end systems, which can increase the uti-
lization of system resources needlessly.

2.2 Modeling Data Transfer Energy
Consumption

Measuring the energy consumption of data transfers is a
challenging task due to lack of hardware power monitoring
devices on large-scale systems. Even though one can mea-
sure power consumption of a specific server using a power
meter, it is not always possible to hook up power meters
to all servers involved in a particular study, especially when

they are remote servers operated by other entities. Thus
power models have pivotal role for analyzing and estimating
power consumption of servers.

In our previous work [5], we proposed two power mod-
els to estimate the server power consumption during data
transfers for two different cases of access privileges: (i) the
fine-grained power model requires access to utilization infor-
mation of four system components: CPU, memory, disk and
NIC; (ii) the CPU-based power model only needs utilization
information of the CPU in the target system. Our approach
resembles Mantis [16] in predicting power consumption of
data transfers based on operating system metrics. It is non-
intrusive, models the full-system power consumption, and
provides real-time power prediction. It requires a one time
model building phase to extract power consumption charac-
teristics of the system components. For each system com-
ponent (i.e. CPU, memory, disk and NIC), we measure the
power consumption values for varying load levels. Then,
linear regression is applied to derive the coefficients for each
component metric. The derived coefficients are used in our
power model to predict the total power consumption of the
data transfers.

In short, the equation form of our fine-grained power model
at time t is as follows:

Pt =Ccpu,n × ucpu,t + Cmemory × umemory,t+

Cdisk × udisk,t + Cnic × unic,t

(1)

Ccpu,n = 0.011× n2 − 0.082× n + 0.344 (2)

Pt refers to predicted power consumption of the data trans-
fer at time t. Ccpu, Cmemory, Cdisk and Cnic are the coef-
ficients of CPU, memory, disk and NIC components respec-
tively; and ucpu, umemory, udisk, and unic are the utilization
of the same components. Since we used multi-core processor
servers, the coefficient of the CPU depends on the number
of active cores n during the transfer, as given in Equation 2.

In typical data centers and shared server infrastructures,
accessing the disk, memory and network utilization statis-
tics of specific processes is restricted for end-users. Previ-
ous studies showed that solely CPU-based power prediction
models can perform slightly worse compared to the fine-
grained models [39]. According to our regression analysis,
the correlation between the CPU utilization and the con-
sumed power is 89.71% for data transfers. Hence, we con-
clude that CPU-based models can give us accurate enough
results where fine-grained models are not applicable.

Moreover, we developed a new extendable power model
with the help of the nameplate power value of the CPU com-
ponent. We used the CPU Thermal Design Power (TDP)
value to scale the power drawn by the data transfers at dif-
ferent servers. The CPU based model allows us to predict
power consumption of a server solely based on the CPU
utilization values and calculating a machine-specific CPU
coefficient by using the ratio of the TDP values.

The equation form of the CPU-based power model at time
t is as follows:

Pt = (Ccpu,n × ucpu,t)×
TDPSR

TDPSL
(3)

SL is the local server used to define the CPU-based model,
and SR is the remote server where we want to extend the
CPU-based model. ucpu,t is the CPU utilization of the server
SR for a data transfer at time t.

We evaluated the accuracy of our power models on Intel
and AMD servers while transferring datasets using various
application-layer transfer tools such as scp, rsync, ftp, bbcp
and gridftp. The fine-grained model achieves the highest
accuracy rate for all tools as expected. The accuracy of
model is always above 94% even in the worst case, and the
CPU-based model performs close to the fine-grained model
when it is tested on the server with similar characteristics.
On the other hand, when we extend the CPU-based model
to the AMD server by proportioning its TDP value to Intel
server’s TDP value, the error rate increases by 2-3% com-
pared to fine-grained model. Even though the accuracy of
the CPU-based model is higher, it still remains above 95%
for ftp, bbcp and gridftp and above 92% for the rest [5].

2.3 Minimum Energy Transfer Algorithm
We developed the Minimum Energy (MinE) algorithm

that tunes the above-mentioned transfer parameters to min-
imize the power consumption during data transfers. Instead
of using the same parameter combination for the whole data
set, which can increase the power consumption unneces-
sarily, we initially divide the data sets into three chunks;
Small, Medium and Large based on the file sizes and the
Bandwidth-Delay-Product (BDP). Then, we check whether
each chunk has a sufficient number of files to transfer via the
mergeChunks subroutine. We merge a chunk with another if
it is deemed to be too small to be treated separately. After
the dataset is partitioned into chunks, we calculate the best
possible parameter combinations for the chunks in which
BDP, average file size, and TCP buffer size are taken into
consideration. We calculate the pipelining level based on
BDP and average file size of the chunk (line 8); the paral-
lelism level based on BDP, average file size and TCP buffer
size (line 9). Regarding the value of concurrency, we con-
sider BDP, average file size, and available channel count (line
10) as shown in Algorithm 1. Available channel count is set
to maximum channel count and updated at each step as we
assign channels to chunks.

Pipelining and concurrency are the most effective parame-
ters at network and system utilization for small file transfers,
so it is especially important to choose the best pipelining
and concurrency values for such transfers. Pipelining value
is calculated by dividing BDP to the average file size of the
chunk which returns large values for Small chunks. By set-
ting pipelining to relatively high values, we are transferring
multiple data packets back-to-back that prevents idleness of
the network and system resources, which in turn decreases
the energy consumption. Moreover, we assigned most of the
available data channels to the Small chunk which multiplies
the impact of energy saving when combined with pipelin-
ing [4]. For the parallelism level, we again consider TCP
buffer size, BDP, and average file size. The equation will re-
turn small values for Small chunks which will avoid creating
unnecessarily high number of threads and prevent redundant
power consumption.

As the average file size of the chunks increases, pipelining
value is set to smaller values as it does not further improve
the data transfer throughput. It could even cause perfor-
mance degradation and redundant power consumption by
poorly utilizing the network and system resources. Besides
pipelining, MinE also tries to keep the concurrency level of
Large at minimum since using more concurrent channels for
large files causes more power consumption. The parallelism

Algorithm 1 — Minimum Energy Algorithm

1: function MinimumEnergyTransfer(maxChannel)
2: availChannel = maxChannel
3: BDP = BW ∗ RTT
4: files = fetchFilesFromServer()
5: chunks = partitionFiles(files, BDP)
6: for each chunk small :: large do
7: avgFileSize = findAverage(chunk)

8: pipelining =
l

BDP
avgF ileSize

m
9: parallelism = Max(Min(

l
BDP

bufSize

m
,

l
avgF ileSize

bufSize

m
), 1)

10: concurrency = Min(
l

BDP
avgF ileSize

m
,

l
availChannel+1

2

m
)

11: availChannel = availChannel− concurrency
12: end for
13: startTransfer(chunks)
14: end function

level for Medium and Large chunks will be high if the sys-
tem buffer size is insufficient to fill the channel pipe. After
setting the best parameter combination for each chunk, the
MinE algorithm starts to transfer the chunks concurrently.

2.4 High Throughput Energy-Efficient
Transfer Algorithm

The main purpose of the High Throughput Energy-Efficient
(HTEE) algorithm is finding the best possible concurrency
level to balance the transfer throughput and power consump-
tion levels. The algorithm does not only focus on minimiz-
ing the energy consumption or maximizing the throughput,
rather it aims to find high performance and low power con-
sumption concurrency levels within defined transfer channel
range. While the minimum value for the concurrent num-
ber of the transfer channels is 1 for all environments, the
maximum value might be different due to variability of end
system resource capacities and fairness concerns. Thus, we
let the user to be able to decide the maximum acceptable
number of concurrent channels for a data transfer. We have
chosen concurrency level to tune the throughput, since in
our previous work [5,10] we have observed that concurrency
is the most influential transfer parameter for all file sizes
in most test environments. Even though parallelism also
creates multiple channels similar to concurrency, allotting
channels to multiple file transfer instead of a single one yields
higher disk IO throughput which qualifies concurrency to be
the most effective parameter on transfer throughput.

Similar to MinE algorithm, HTEE algorithm partitions
datasets into three chunks and calculates the best possible
parameter values for pipelining and parallelism using BDP,
TCP buffer size and average file size of the chunks (line 5
in Algorithm 2). We also calculated weight for each chunk
which is relative to the total size and the number of files in a
chunk. Given maximum allowed channel count, weights are
used to determine the number of channels to be allocated for
each chunk. For example, if we have a dataset dominated
by small files, then assigning equal number of channels to
chunks would cause sub-optimal transfer throughput since
large chunks will be transferred faster than smaller chunks
and average transfer throughput will be subjected to small
chunk’s throughput. To solve this problem, we initially cal-
culate the weights of the chunks (in lines 7 and 8) and allo-
cate channels to chunks accordingly (line 12).

In order to quantify energy efficiency, we introduced through-
put/energy ratio as the ratio of transfer throughput to en-
ergy consumption. It quantifies how much data can be trans-

Algorithm 2 — High Throughput Energy-Efficient Algo-
rithm

1: function HTEE Transfer(maxChannel)
2: BDP = BW ∗ RTT
3: files = fetchFilesFromServer()
4: chunks = partitionFiles(files, BDP)
5: calculateParameters()
6: for i = 0; i < chunks.length; i + + do
7: weights[i] = log(chunks[i].size) ∗ log(chunks[i].fCount)
8: totalWeight+ = weights[i]
9: end for
10: for i = 0; i < chunks.length; i + + do
11: weights[i] = weights[i]/totalWeight
12: channelAllocation[i] = bmaxChannel ∗ weights[i]c
13: end for
14: activeChannel = 1
15: energyEfficiency[];
16: while activeChannel <= maxChannel do
17: transfer(activeChannel)
18: energyConsumption = calculate(SystemMetrics)
19: throughput = calculateThroughput()

20: energyEfficiency[i] = throughput
energyConsumption

21: activeChannel+ = 2
22: end while
23: efficentChannelCount = max(energyEfficiency[])
24: transfer(efficentChannelCount)
25: end function

ferred at the cost of unit energy consumption. The HTEE
algorithm starts to transfer files with one active channel,
and increases the channel count till reaching the user de-
fined maximum channel count. Instead of evaluating the
performance of all concurrency levels in the search space,
HTEE halves the search space by incrementing the concur-
rency level by two each time. Each concurrency level is
executed for five second time intervals and then the power
consumption and throughput of each interval are calculated.
Once HTEE examines throughput/energy ratio of all con-
currency levels in the search range, it picks the concurrency
level with maximum throughput/energy ratio to use it for
transferring the rest of the dataset. HTEE differs from
MinE in two ways: (i) HTEE does not impose any restric-
tion on the number of channels to be allocated to the chan-
nels whereas MinE assigns single channel to Large chunk
regardless of its weight; (ii) it evaluates multiple values of
concurrency (the number of channel counts) in order to find
the one which achieves the highest throughput/energy ratio
while MinE transfers whole dataset with a pre-calculated
concurrency values.

2.5 SLA Based Energy-Efficient Transfer
Algorithm

The rapidly advancing and growing pay-as-you-go and low
cost cloud computing services attract more users everyday.
As the usage of such systems increases, the guaranteed reli-
ability and quality of the provided services become more
important, which requires mutually agreed Service Level
Agreements (SLA). Hence, we devised an SLA based Energy
Efficient (SLAEE) algorithm. In this algorithm, we seek a
concurrency level which satisfies the SLA requirement with
the minimal possible energy consumption.

Our algorithm lets the end-users to define their through-
put requirements as a percentage of maximum achievable
throughput in the transfer environment. The algorithm takes
desired throughput value as input and achieves it by tuning
the transfer parameters. While keeping the quality of ser-
vice (transfer throughput in this case) at the desired level,

Algorithm 3 — SLA Based Energy-Efficient Transfer Al-
gorithm

1: function SLA Transfer(SLA Level, maxChannel)
2: BDP = BW ∗ RTT
3: files = fetchFilesFromServer()
4: chunks = partitionFiles(files, BDP)
5: calculateParameters()
6: targetThroughput = maxThroughput ∗ SLALevel
7: concurrency = 1
8: transfer(concurrency)
9: actThroughput = calculateThroughput()
10: if actThroughput <= targetThroughput then
11: concurrency = targetThroughput/actThroughput
12: transfer(concurrency)
13: end if
14: while actThroughput <= targetThroughput do
15: if concurrency < maxChannel then
16: concurrency + +
17: else
18: reArrangeChannels()
19: end if
20: transfer(concurrency)
21: actThroughput = calculateThroughput()
22: end while
23: end function

SLAEE uses a technique similar to MinE to keep the power
consumption at the minimum possible level. After parti-
tioning the dataset, it calculates the best pipelining and
parallelism values using BDP, TCP buffer size and average
file size as in the MinE algorithm. It starts with concur-
rency level one, and if the actual throughput is less than the
SLA requirement, it estimates the desired concurrency level
based on the current and target throughputs (line 11 in Al-
gorithm 3). If the current throughput is still below the tar-
get, then incremental increase is applied to reach the target
throughput until it reaches or exceeds the target (line 14-22).
When assigning the transfer channels to the chunks, SLAEE
gives priority to small chunks similar to the HTEE algorithm
due to the energy consumption concerns. While seeking the
desired concurrency level, it calculates the throughput in ev-
ery five seconds and adjusts the concurrency level to reach
the throughput level promised in the SLA. While increasing
the throughput to the desired level, SLAEE tries to keep the
energy consumption at the minimal levels possible. To do
this, it follows HTEE algorithm’s way of limiting the number
of channels of Large chunks until either reaching the max-
imum allowed concurrency level or target throughput. If
achieved throughput is still below target throughput as the
concurrency level reaches to maximum allowed value, then
SLAEE reassigns channels to chunks such that Large chunks
receive more than one channel (line 18).

3. EXPERIMENTAL RESULTS
The experiments to evaluate our energy-aware data trans-

fer algorithms are conducted on the XSEDE [1], Future-
Grid [2], and DIDCLAB [15] testbeds. Location and specifi-
cations of the used servers as well as the links between them
are presented in Figure 1. In the experiments we transferred
different datasets due to different bandwidth capacities of
the networks. For 10 Gbps networks, the total size of dataset
is 160 GB where file sizes range between 3 MB – 20 GB and
for 1 Gbps networks, the total size of experiment dataset is
40 GB where file sizes range between 3 MB – 5 GB. For both
datasets, around 20% of the files are smaller than 5MB, 20%
between 10MB-100MB, 30% between 100MB-3GB, and the

Figure 1: Network map and specifications of test environ-
ments.

remaining 30% larger than 3GB.
We compared the performance of our energy-aware MinE

and HTEE algorithms with energy-agnostic Single Chunk
(SC) and Pro-active Multi Chunk (ProMC) algorithms [10]
as well as the popular cloud-hosted data transfer service
Globus Online (GO) [6] and the standard Globus GridFTP
client (Globus-url-copy). SC and GO algorithms employ di-
vide and transfer approach to transfer a dataset with mixed
sized files. Dataset is partitioned into groups (a.k.a chunks)
based on file sizes then chunks are transferred one by one
using the parameter combination specific to the chunk type.
They differ in the partitioning method and the way they de-
cide the values of protocol parameters for each group. While
GO uses fixed values to categorize files in to groups (i.e. less
than 50MB, larger than 250MB, and in between) and de-
termine values of protocol parameters (e.g. set pipelining
level 20 and parallelism level 2 for small files), SC takes
network (Bandwidth, RTT) and dataset (average file size,
and number of files) characteristics into account. In order
to do fair comparison, checksum feature is disabled in GO
transfers which is used to enhance data transfer integrity but
causes significant slowdowns in average transfer throughput.
ProMC algorithm also performs dataset partitioning but in-
stead of scheduling each chunk transfer one by one, multiple
chunks are transferred simultaneously in order to alleviate
the effect of low transfer throughput of small chunks over
whole dataset. Finally, Globus-url-copy (GUC) is a com-
mand line GridFTP client that lets user to set protocol pa-
rameters for data transfer, however does not allow to use
different values of protocol parameters for different files in a
dataset. As opposed other algorithms, GUC requires manual
tuning of protocol parameters which necessitates expertise
on the insights of protocol parameters.

SC, ProMC, HTEE, and MinE use a custom GridFTP
client implementation which provides dataset partitioning
and better control of data channels such as reallocating a
channel to a different chunk and incrementing/decrementing
the number of channels (i.e concurrency value) while transfer
is running. Moreover, when more than one data transfer
channel is intended to be opened, the custom client tries
to initiate connections on a single end server even if there
are more than one, while GO and GUC distribute channels
to multiple servers. Distributing channels over multiple end
servers may help to improve reliability and load sharing,

however leads to an increase in power consumption due to
active CPU utilization on multiple servers.

Although concurrency is the most significant parameter,
both SC and ProMC algorithms require user to define the
concurrency level. Thus, their performance depends on con-
currency value defined by the user. Similarly, MinE algo-
rithm takes concurrency level (represented as maxChannel
in Algorithm 1) and applies its channel allocation method.
Thus, we evaluated the performances of SC, ProMC, and
MinE algorithms at different concurrency levels. On the
other hand, HTEE algorithm takes upper bound for the
concurrency level but finds the optimal level itself during
its search phase. Since GO uses fixed value of concurrency,
which is 2 for all chunk types, its performance is independent
of user-defined maximum value of concurrency. For GUC,
we set the value of parallelism, pipelining and concurrency
to 1 and consider it as a base performance for a given data
transfer. This reflect a use case in which a user without
much experience on GridFTP wants to transfer his/her files
via GUC. Thus, GUC performance is also independent of
the concurrency level.

Figure 2 presents comparison of the algorithms based on
their achieved throughput, energy consumption and energy
efficiency in the XSEDE network between the Stampede
(TACC) and Gordon (SDSC) systems where the network
bandwidth is 10 Gbps, the round trip time is 40 ms, and
the maximum TCP buffer size is 32 MB. In accordance with
their objective, ProMC always achieves highest throughput
and MinE achieves lowest energy consumption almost at
all concurrency levels. ProMC can reach up to 7.5 Gbps
transfer throughput and outperforms all other algorithms in
terms of achieved transfer throughput. Interestingly, while
MinE and SC yield close transfer throughput in all concur-
rency levels, SC consumes as much as 20% more energy than
MinE as shown in Figure 2 (b). This strengthens the idea
that in some cases energy consumption can be decreased
even without sacrificing transfer performance. The differ-
ence stem from MinE’s strategy of assigning single chan-
nel to large chunks as large chunks contribute to most of
energy consumption in exchange of increased throughput.
MinE meets the throughput deficit caused by limiting the
number of channels assigned to large chunks by employing
“Multi-Chunk” mechanism as used by ProMC. Further, SC
and GO achieve very close transfer throughput in concur-
rency level 2, however, GO consumes around 60% more en-
ergy because of the difference in implementation of concur-
rency which affects the number of servers involved in a data
transfer. Since XSEDE systems consist of four data transfer
servers, increasing concurrency level from one to two leads
to increase in the number of servers taking part in transfer
from one to two which then causes more energy consumption
as can be seen in Figure 2 (b). Moreover, GUC yields less
transfer throughput than SC for concurrency level one which
implies that although concurrency is the most influential pa-
rameter in transfer throughput, parallelism and pipelining
still can make difference in throughput and energy consump-
tion, thus should be tuned reasonably.

While ProMC’s throughput increases as concurrency level
increases, power consumption follows parabolic pattern and
reaches minimum value at concurrency level 4. This is due
the fact that data transfer servers on XSEDE have four cores
and energy consumption per core decreases as the num-
ber of active cores increases [4]. When concurrency level

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

1 2 4 6 8 10 12

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

Concurrency

a) Throughput

GUC
GO

SC
Min E

Pro MC
HTEE

 15000

 20000

 25000

 30000

1 2 4 6 8 10 12

E
n

e
rg

y
 (

J
o

u
le

)

Concurrency

b) Energy Consumption

GUC
GO

SC
Min E

Pro MC
HTEE

c) Energy Efficiency

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

T
h

ro
u

g
h

p
u

t/
E

n
e

rg
y
 R

a
ti
o

Algorithms

GUC
GO
SC

Min E
Pro MC

HTEE

5 10 15 20

Concurrency

BF

Figure 2: Data transfers between Stampede (TACC) and Gordon (SDSC) @XSEDE.

 100

 200

 300

 400

 500

 600

 700

 800

1 2 4 6 8 10 12

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

Concurrency

a) Throughput

GUC
GO

SC
Min E

Pro MC
HTEE

 1500

 2000

 2500

 3000

1 2 4 6 8 10 12

E
n

e
rg

y
 (

J
o

u
le

)

Concurrency

b) Energy Consumption

GUC
GO

SC
Min E

Pro MC
HTEE

c) Energy Efficiency

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

T
h

ro
u

g
h

p
u

t/
E

n
e

rg
y
 R

a
ti
o

Algorithms

GUC
GO
SC

Min E
Pro MC

HTEE

5 10 15 20

Concurrency

BF

Figure 3: Data transfers between Alamo (TACC) and Hotel (UChicago) @FutureGrid.

goes above 4, then cores start running more data trans-
fer threads which leads to increase in energy consumption
per core. HTEE aims to find the sweet spot where the
throughput/energy (energy efficiency) ratio is maximized. It
searches the concurrency level in the search space, bounded
by 1 and maxChannels, after which throughput increase is
surpassed by energy consumption increase. As given in Al-
gorithm 2, it evaluates the throughput/energy ratio of multi-
ple concurrency levels and picks the concurrency level whose
throughput/energy ratio is the highest and runs the rest
of the transfer with it. Compared to ProMC, HTEE con-
sumes 17% less energy in trade off 10% less throughput for
concurrency level 12 at which ProMC achieves the highest
throughput. In concurrency level 8, ProMC consumes sim-
ilar amount of energy while obtaining 9% less throughput
compared to HTEE which can justify the argument of con-
suming less amount of energy without sacrificing transfer
throughput.

In order to compare the performance of the HTEE algo-
rithm to the ideal case, we ran a brute-force search (BF)
algorithm to find the concurrency level which maximizes
throughput/energy ratio. BF is a revised version of the
HTEE algorithm in a way that it skips the search phase and
runs the transfer with pre-defined concurrency levels. BF
search range is bounded by 20 since the throughput/energy
ratio follows a decreasing pattern after around a value of 12
as shown in Figure 2 (c). The concurrency level which yields
the highest throughput/energy ratio is considered as the
best possible value under these conditions, and the through-
put/energy ratio of all other algorithms are compared to this
value. As a result, we can see that concurrency level cho-
sen by HTEE can yield as much as 95% throughput/energy
efficiency compared to the best possible value obtained by
BF. On the other hand, while MinE is successful in consum-
ing the least amount of energy for each concurrency level,

it can only reach around 70% of the best possible through-
put/energy ratio.

We also tested our energy-aware data transfer algorithms
in the FutureGrid testbed between the Alamo (TACC) and
Hotel (UChicago) systems where the network bandwidth is 1
Gbps, the round trip time is 28 ms, and the maximum TCP
buffer size is 32 MB. GUC again yields the lowest through-
put due to lack of parameter tuning. ProMC, MinE, and
HTEE algorithms yield comparable data transfer through-
put while SC and GO fall behind them. Although the trans-
fer throughput of ProMC, MinE, and HTEE are close to
each other, energy consumption values differ considerably.
ProMC and MinE consume the least amount of energy when
concurrency level is set to 6. As opposed to XSEDE experi-
ments, ProMC and SC achieve their best throughput/energy
ratio in comparatively low concurrency levels which are 6
and 4 respectively. This strengthens the motivation behind
HTEE as it is designed to capture the network-specific sweet
spots in which throughput/energy ratio is maximized. Sim-
ilar to its XSEDE behavior, MinE reaches its maximum
throughput/energy ratio at concurrency level 12 which is
because of its channel allocation method. As opposed to
ProMC and SC, MinE assigns single channel to the large
chunk regardless of the maximum channel count and shares
the rest of the available channels between medium and small
chunks. Hence, it is able to benefit from increased number of
data channels while keeping energy consumption low which
paves the way for higher energy/throughput ratio.

Finally, we tested HTEE and MinE algorithms in a local
area network as presented in Figure 4. Unlike the XSEDE
and FutureGrid experiments, increasing the concurrency level
in the local area degrades the transfer throughput and in-
creases the energy consumption. This is due to having single
disk storage subsystem whose IO speed decreases when the
number of concurrent accesses increases. Since ProMC ag-

 300

 350

 400

 450

 500

 550

 600

1 2 4 6 8 10 12

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

Concurrency

a) Throughput

GUC
GO

SC
Min E

Pro MC
HTEE

 3000

 3200

 3400

 3600

 3800

 4000

 4200

1 2 4 6 8 10 12

E
n

e
rg

y
 (

J
o

u
le

)

Concurrency

b) Energy Consumption

GUC
GO

SC
Min E

Pro MC
HTEE

c) Energy Efficiency

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

T
h

ro
u

g
h

p
u

t/
E

n
e

rg
y
 R

a
ti
o

Algorithms

GUC
GO
SC

Min E
Pro MC

HTEE

5 10 15 20

Concurrency

BF

Figure 4: Data transfers between WS9 and WS6 @DIDCLAB.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

95 90 80 70 50

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

Target Percentage (%)

a) SLA Throughput

Target Throughput
Achieved Throughput

Max. Throughput (Pro MC)

 12000

 14000

 16000

 18000

 20000

 22000

 24000

 26000

95 90 80 70 50

E
n

e
rg

y
 (

J
o

u
le

)

Target Percentage (%)

b) SLA Energy Consumption

Energy Consumption
Max. Throughput (Pro MC)

-1

 0

 1

 2

 3

 4

 5

 6

 7

95 90 80 70 50

D
e

v
ia

ti
o

n
 R

a
ti
o

 (
%

)

Target Percentage (%)

c) SLA Accuracy

Deviation

Figure 5: SLA transfers between Stampede (TACC) and Gordon (SDSC) @XSEDE.

gressively uses the available data transfer channels oblivious
to the type disk subsystem, its throughput performance suf-
fered the most. All algorithms achieve their best through-
put/energy ratio at concurrency level 1 in the local area as
expected. While HTEE yields significant benefit in XSEDE
and FutureGrid, it performs little worse than other algo-
rithms in the local area since it spends some time in large
concurrency levels during its search phase. However, it is
worth to mention that all other algorithms perform better
than HTEE if they are run at concurrency level one. This
requires the user to be able to tune concurrency level man-
ually while HTEE can find optimal concurrency level with
the cost of a reasonable overhead. All algorithms except GO
are able to achieve above 90% energy efficiency since there
is not a way to considerably improve transfer throughput by
setting protocol parameters in local area network with single
storage subsystem. Since concurrency value is not tunable in
GO, its performance suffers as increasing concurrency level
causes less throughput and high energy consumption.

We tested our SLA-based Energy-Efficient (SLAEE) trans-
fer algorithm with different levels of throughput targets pro-
portioned to the maximum throughput achieved by ProMC
algorithm at concurrency levels 12, 12, and 1 for XSEDE,
FutureGrid and DIDCLAB experiments respectively. In this
algorithm, x% target percentage means SLAEE tries to achieve
transfer throughput more than x% of the maximum through-
put possible (i.e. with at most 100% – x% performance loss).
For example, maximum throughput achieved by ProMC in
XSEDE network is around 7500 Mbps, so 95% target per-
centage corresponds to 7125 Mbps or more transfer rate.

SLAEE is able to deliver all SLA throughput requests ex-
cept 95% target throughput percentage at the XSEDE net-
work since SLAEE is unable to reach the requested through-
put on this network even after reaching the maximum level
of concurrency. As presented in Figure 2 (b), after con-

currency level four, energy consumption starts to increase.
Thus, achieving SLA target throughput with minimum pos-
sible concurrency level will minimize energy consumption.
SLAEE is able to achieve all SLA expectations within 7%
deviation rate as shown in Figure 5 (c). Since the effect
of each new channel creation on throughput is higher when
the total number of channels is small, accuracy decreases as
SLAEE is expected to provide low transfer throughput. Fig-
ure 5 (b) depicts energy consumption comparison between
ProMC and SLAEE. SLAEE can deliver requested through-
put while decreasing the energy consumption by up to 30%.
Hence, if customers are flexible in transferring their data
with some reasonable delay, SLAEE algorithm helps the
service providers to cut from the energy consumption con-
siderably. Finally, the service providers can possibly offer
low-cost data transfer options to their customers in return
for delayed transfers.

Since the maximum achievable throughput of the Future-
Grid and DIDCLAB testbeds is 1 Gbps, the accuracy of
SLAEE differs in these testbeds. While SLAEE can deliver
requested throughput with as low as 5% deviation ratio for
most cases in FutureGrid, the deviation ratio jumps to 25%
when requested throughput is 50% of the maximum through-
put as shown in Figure 6 (c). This is because of achieving
more than 50% of the maximum throughput with the mini-
mum value on concurrency level which is 1. Hence, SLAEE
does its best and picks the concurrency value 1 to transfer
the dataset. On the other hand, SLAEE obviates redun-
dant energy consumption compared to ProMC by keeping
concurrency level low. The saving in energy consumption
ranges between 11% to 19% as the requested throughput
ranges between 95% and 50% of the maximum throughput.
For the LAN experiments @DIDCLAB, neither throughput
nor energy consumption can be improved with useful rea-
son as concurrency level one is the optimal level both for

 300

 400

 500

 600

 700

 800

95 90 80 70 50

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

Target Percentage (%)

a) SLA Throughput

Target Throughput
Achieved Throughput

Max. Throughput (Pro MC)

 1800

 2000

 2200

 2400

 2600

 2800

95 90 80 70 50

E
n

e
rg

y
 (

J
o

u
le

)

Target Percentage (%)

b) SLA Energy Consumption

Energy Consumption
Max. Throughput (Pro MC)

-5

 0

 5

 10

 15

 20

 25

 30

95 90 80 70 50

D
e

v
ia

ti
o

n
 R

a
ti
o

 (
%

)

Target Percentage (%)

c) SLA Accuracy

Deviation

Figure 6: SLA transfers between Alamo (TACC) and Hotel (UChicago) @FutureGrid.

 0

 100

 200

 300

 400

 500

 600

 700

95 90 80 70 50

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

Target Percentage (%)

a) SLA Throughput

Target Throughput
Achieved Throughput

Max. Throughput (Pro MC)

 2000

 2500

 3000

 3500

 4000

95 90 80 70 50

E
n

e
rg

y
 (

J
o

u
le

)

Target Percentage (%)

b) SLA Energy Consumption

Energy Consumption
Max. Throughput (Pro MC)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

95 90 80 70 50

D
e

v
ia

ti
o

n
 R

a
ti
o

 (
%

)

Target Percentage (%)

c) SLA Accuracy

Deviation

Figure 7: SLA transfers between WS9 and WS6 @DIDCLAB.

throughput and energy consumption. That’s also why devi-
ation ratio reaches up to 100% as shown in Figure 7 (c).

4. EFFECT ON NETWORK ENERGY
CONSUMPTION

Besides the energy consumption at the end-systems, the
data transfers also cause considerable amount of energy con-
sumption at the networking infrastructure (i.e. hubs, switches,
routers etc). Although our proposed algorithms primarily
aim to reduce the energy consumption at the end-systems
during data transfers, it is vital to analyze the effect of these
algorithms on the energy consumption of the networking
infrastructure as well. Our algorithms simply tune three
application-layer transfer parameters (parallelism, pipelin-
ing, and concurrency) and do not cause any changes either
in the networking configuration, the end-to-end routing, the
number of switches and routers involved in the data trans-
fer, or the number of active ports on the switches. In our
case, the only cause of possible power consumption varia-
tion in the networking infrastructure could be as a results
of changing the instant port utilization at certain switches,
since our algorithms change the rate at which the data is
pushed over the network.

Despite the increasing attention on power-aware network-
ing, the energy consumption of specific network devices at
varying level of port utilization is still not clearly defined by
the vendors. Network device vendors generally list power
consumption of a network device when port utilization is
50% and 100%. However, neither power consumption val-
ues for the rest of the utilization values nor a formula to de-
rive power consumption at certain utilization level are pro-
vided. A research by Mahadevan et al. [34] claims there
is a significant difference between the reported maximum
power consumption by the vendors and the actual measured

Max

0 100

P
o
w

e
r

C
o
n
s
u
m

p
ti
o
n
 (

W
a
tt
)

Data Traffic Rate (%)

Non-linear
Linear

State-based

Figure 8: The relation between the data transfer rate vs.
network device power consumption based on three different
models.

power consumption. Hence, it is hard to find exact power
consumption values for different network traffic rates unless
directly measuring via internal sensors or external power
meters. Taking these into consideration, we evaluated the
power consumption of network devices under different uti-
lizations through three different approaches: (i) non-linear
approach in which the power consumption and port utiliza-
tion follow a non-linear relation similar to a study by Ma-
hadevan et al. in which they measured the power consump-
tion of edge switches under different traffic rates [34]; (ii)
linear approach in which the power consumption and the
data traffic relation is formulated by linear equations [45];
and (iii) state-based approach in which the power consump-
tion increases only at certain throughput rates [9, 41]. High
level representation of these cases are depicted in Figure 8.

Network devices have both static (a.k.a idle) and dynamic

Source

Internet2

Edge
Switch Destination

Enterprise
Switch

Edge
Router

Edge
Switch

Enterprise
Switch

Edge
Router

Gordon (SDSC) Stampede (TACC)

Enterprise
Switch

Metro
Router

Source

Edge
Switch

Destination

Edge
Switch

Hotel (UC) Alamo (TACC)

Metro
Router

Metro
Router

Source
Edge

Switch Destination

LAN

a) XSEDE

b) FutureGrid c) DIDCLAB

Internet2

WS9 WS6

Figure 9: Overview of the networking infrastructure of XSEDE, FutureGrid and DIDCLAB testbeds respectively.

power consumption components. Static (idle) power con-
sumption is the power consumption of a network device
when there is no data flow over the device. Dynamic power
consumption refers to the increase in the power usage by
means of increasing the data rate on the device. Finally,
the total energy consumption ET of a network device over
a period of time T is defined as:

ET = PiT + PdTd (4)

where Pi and Pd refer to the idle and dynamic power con-
sumption respectively. Pd is calculated by subtracting the
idle power from the total instantaneous power, which mea-
sures the net increase in the power consumption. Finally, Td

refers to the time period during which the network device is
operated at a data transfer rate d.

While the idle power consumption of the network devices
will be the same for all three estimation approaches, dy-
namic power consumption will differ. Then, the difference
of the power consumption calculation with three methods
boils down to the difference in dynamic power consumption.
In the non-linear case, power consumption and data transfer
rate follow a sub-linear relation as presented in Figure 8 in
which the data transfer rate grows faster than the power con-
sumption. If we assume a network device consumes p power
per second for data transfer rate d, then pD

d
joule energy will

be consumed to transfer a dataset with total size D. On the
other hand, when the data transfer rate is increased to 4d,
instantaneous power consumption becomes 2d (in a square
root relation between the power consumption and the data
rate). Since the transfer time reduces to D

4d
, the total energy

consumption becomes 2p{ D
4d
} which is half of the base case.

In the linear approach, let say network device consumes p
power per second when data transfer rate is d. For a dataset
with size D, it will take D

d
seconds to complete the transfer.

Then, dynamic energy consumption will be pD
d

joule. When
data transfer rate is quadrupled (4d) by means of protocol
parameters optimization, dynamic power consumption will
increase to 4p because of linear relationship between the
data rate and the power consumption as shown in Figure8.
Transferring dataset with size D at 4d throughput rate will
take D

4d
seconds. Energy consumption, then, will be 4p{ D

4d
}

which is equal to the case where data rate is d. Hence, in
the linear approach, total energy consumption will be same

Device Pp(nW) Ps−f (pW)
Enterprise Ethernet Switch 40 0.42
Edge Ethernet Switch 1571 14.1
Metro IP Router 1375 21.6
Edge IP Router 1707 15.3

Table 1: Per-packet power consumption coefficients of net-
working devices for load dependent operations.

regardless of transfer rate. The state-based approach follows
same behavior with linear case as fitted regression line of
state-based case is also linear.

In our study, we also quantified the power consumption of
network devices using recently developed power models by
Vishwanath et al. [45] which uses linear regression to model
various switches and routers. They formulated the power
consumption of networking devices as follows:

P = Pidle + packetCount× (Pp + Ps−f) (5)

where Pidle refers to the base power consumption of the
device when there is no load. Pp is the per-packet processing
power consumption and Ps−f is the per-packet store-forward
power consumption. In our study, we just considered load-
dependent part of this equation since the idle power con-
sumption is independent of the algorithm type.

We calculated the energy consumption of networking de-
vices using the coefficients listed in Table 1. Figure 9 shows
the high level overview of the network configurations of the
testbeds used in the experiments. As shown in the figure,
there are different number of switches and routers between
the source and destination nodes in each testbed. The num-
ber and type of the network devices on the transfer route
affects the total energy consumption of the networking de-
vices as well as the amount of processed data. Figure 10
presents the decomposition of the total data transfer energy
consumption into its two high level components which are
the end-system consumption and the network infrastructure
consumption for the HTEE algorithm. At all testbeds, the
end-systems consume much more power than the network in-
frastructure when only load-dependent energy consumption
is taken into consideration. As the number of metro routers
— which consume the most power as given in Table 1 — in
the path increases, the proportion of the network infrastruc-

 0

 20

 40

 60

 80

 100

XSEDE FutureGrid DIDCLAB

E
n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n
 (

%
)

Testbeds

End-system
Network

21 kJ

10 kJ

2.2 kJ

1.7 kJ

3.6 kJ

0.4 kJ

Figure 10: Power consumption of end-systems vs network
devices.

ture energy consumption increases too as it can be seen in
the FutureGrid case. In DIDCLAB, since there is only one
switch between the source and destination servers, the net-
work power consumption is much less than the end-systems
power consumption. Due to the load-agnostic design of most
of the network devices, change in the power consumption of
a through data transfer is fractional. The idle power con-
sumption constitutes as high as 70-80% [42,44] of their total
power consumption.

In conclusion, our energy-aware data transfer algorithms
will not only result in a decrease in energy consumption at
the end systems, but there will also be additional energy con-
sumption decrease at the network infrastructure if dynamic
power consumption follows a sub-linear relation with the
data transfer rate. On the other hand, if the dynamic power
consumption follows a linear relation with the data trans-
fer rate, then the total power consumption at the network-
ing infrastructure will neither increase nor decrease. Since
the protocol parameter optimization at the end-systems will
save energy at the end-systems in the either case, we will
still be saving energy when end-to-end system is considered.

5. RELATED WORK
To the best of our knowledge, this is the first work fo-

cusing on energy-aware data transfer algorithms for mini-
mizing the energy consumption at the end-systems. On the
other hand, there has been other studies in the literature
focusing on network throughput optimization and reducing
the power consumption on networking devices (i.e. ethernet
cards, switches,routers etc.).

The work on network throughput optimization focuses on
tuning transfer parameters such as parallelism, pipelining,
concurrency and buffer size. The first attempts to improve
the data transfer throughput at the application layer were
made through buffer size tuning. Various dynamic and static
methods were proposed to optimize the buffer size [29,37,40].
However, Lu et al. [33] showed that parallel streams can
achieve a better throughput than buffer size tuning and
then several others [7,26,49] proposed throughput optimiza-
tion solutions by means of tuning parallel streams. An-
other transfer parameter used for throughput optimization
was pipelining, which helped in improving the performance
of transferring large number of small files [11, 18, 19]. Liu
et al. [32] optimized network throughput by concurrently

opening multiple transfer sessions and transferring multiple
files concurrently. They proposed increasing the number of
concurrent data transfer channels until the network perfor-
mance degrades. Globus Online [6] offers fire-and-forget file
transfers through thin clients over the Internet. It parti-
tion files based on file size and transfer each partition using
partition-specific protocol parameters. However, the proto-
col tuning Globus Online performs is non-adaptive; it does
not change depending on network conditions and transfer
performance.

The work on power-aware networking focuses on saving
energy at the networking devices. Gupta et al. [24] were
among the earliest researchers to advocate conserving en-
ergy in networks. They suggested different techniques such
as putting idle sub-components (i.e. line cards, etc.) to
sleep [23], which were later extended by other researchers.
S. Nedevshi et al. [35] proposed adapting the rate at which
switches forward packets depending on the traffic load. IEEE
Energy Efficient Ethernet task force proposed the 802.3az
standards [3] for making ethernet cards more energy effi-
cient. They defined a new power state called low power idle
(LPI) that puts ethernet card to low power mode when there
is no network traffic. Other related research in power-aware
networking has focused on architectures with programmable
switches [22] and switching layers that can incorporate dif-
ferent policies [30]. Barford et al. proposed power-aware
network protocols for energy-efficiency in network design
and routing [13].

We argue that although network-only approaches are part
of the solution, the end-system power management is a key
in optimizing energy efficiency of the data transfers, which
has been long ignored by the community. In or previous
work [48], we proposed network-aware data transfer opti-
mization by automatically detecting performance bottlenecks
and improving throughput by utilizing network and end-
system parallelism. PCP [47] algorithm is proposed to find
optimal values for transfer parameters such as pipelining,
concurrency and parallelism. In another study [10], we pre-
sented four application level dynamic data transfer algo-
rithms that tune the transfer parameters heuristically for
reaching optimum network throughput but we did not con-
sider the power consumption of these algorithms. In [4], we
analyzed how each data transfer parameter may affect both
the throughput and the power consumption in the end-to-
end data transfers.

6. CONCLUSION
In this paper, we introduced three novel data transfer al-

gorithms which consider energy efficiency during data trans-
fers: i) a minimum energy algorithm which tries to minimize
the energy consumption without any performance concern;
ii) a high throughput energy-efficient algorithm which tries
to maximize the throughput with low energy consumption
constraints; and iii) an SLA-based energy-efficient algorithm
which lets end-users to define their throughput requirements
while keeping the power consumption at minimum levels.
These algorithms provide the ability to intelligently and dy-
namically select the ideal set of transfer parameters for high
performance, low cost (in terms of energy) data transfers.
Our experimental results show that our energy-aware data
transfer algorithms can achieve up to 50% energy savings
with the same or higher level of data transfer throughput.
Considering the vast amount of electric power consumed

during world-wide data transfer every year, these energy-
aware data transfer algorithms would be of crucial impor-
tance to decrease this cost.

Acknowledgment
This project is partially supported by National Science Foun-
dation (NSF) under award number CNS-1131889 (CAREER).

7. REFERENCES
[1] The extreme science and engineering discovery

environment (xsede). https://www.xsede.org/.

[2] Futuregrid testbed. http://www.futuregrid.org.

[3] IEEE energy efficient ethernet standards.
10.1109/IEEESTD.2010.5621025, Oct. 2010.

[4] I. Alan, E. Arslan, and T. Kosar. Energy-aware data
transfer tuning. In Cluster, Cloud and Grid Computing
(CCGrid), 2014 14th IEEE/ACM International
Symposium on, pages 626–634. IEEE, 2014.

[5] I. ”Alan, E. Arslan, and T. Kosar.
”energy-performance trade-offs in data transfer tuning
at the end-systems”. Sustainable Computing:
Informatics and Systems, 2014.

[6] B. Allen, J. Bresnahan, L. Childers, I. Foster,
G. Kandaswamy, R. Kettimuthu, J. Kordas, M. Link,
S. Martin, K. Pickett, and S. Tuecke. Software as a
service for data scientists. Communications of the
ACM, 55:2:81–88, 2012.

[7] E. Altman and D. Barman. Parallel tcp sockets:
Simple model, throughput and validation. In
Proceedings of IEEE INFOCOM, 2006.

[8] G. Ananthanarayanan and R. Katz. Greening the
switch. In In Proceedings of HotPower, December
2008.

[9] S. Antonakopoulos, S. Fortune, and L. Zhang.
Power-aware routing with rate-adaptive network
elements. In GLOBECOM Workshops (GC Wkshps),
2010 IEEE, pages 1428–1432. IEEE, 2010.

[10] E. Arslan, B. Ross, and T. Kosar. Dynamic protocol
tuning algorithms for high performance data transfers.
In Euro-Par 2013 Parallel Processing, pages 725–736.
Springer, 2013.

[11] J. Bresnahan, M. Link, R. Kettimuthu, D. Fraser, and
I. Foster. Gridftp pipelining. In Proceedings of
TeraGrid, 2007.

[12] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: a
framework for architectural-level power analysis and
optimizations. In Proceedings of the 27th annual
international symposium on Computer architecture,
ISCA ’00, pages 83–94, New York, NY, USA, 2000.
ACM.

[13] J. Chabarek, J. Sommers, P. Barford, C. Estan,
D. Tsiang, and S. Wright. Power awareness in network
design and routing. In In Proceedings of IEEE
INFOCOM, April, 2008.

[14] G. Contreras and M. Martonosi. Power prediction for
intel xscale R© processors using performance monitoring
unit events. In ISLPED’05, pages 221–226, 2005.

[15] DIDCLab. Data intensive distributed computing
laboratoy. http://www.didclab.org.

[16] D. Economou, S. Rivoire, C. Kozyrakis, and
P. Ranganathan. Full-system power analysis and

modeling for server environments. In Proc. of
Workshop on Modeling, Benchmarking, and
Simulation, 2006.

[17] X. Fan, W.-D. Weber, and L. A. Barroso. Power
provisioning for a warehouse-sized computer. ACM
SIGARCH Computer Architecture News, 35(2):13–23,
2007.

[18] K. Farkas, P. Huang, B. Krishnamurthy, Y. Zhang,
and J. Padhye. Impact of tcp variants on http
performance. Proceedings of High Speed Networking, 2,
2002.

[19] N. Freed. SMTP service extension for command
pipelining. http://tools.ietf.org/html/rfc2920.

[20] E. Goma, M. C. A. L. Toledo, N. Laoutaris, D. Kosti,
P. Rodriguez, R. Stanojev, and P. Y. Valentin.
Insomnia in the access or how to curb access network
related energy consumption. In In Proceedings of
ACM SIGCOMM 2011.

[21] A. Greenberg, J. Hamilton, D. Maltz, and P. Patel.
The cost of a cloud: Research problems in data center
networks. In In ACM SIGCOMM CCR, January 2009.

[22] A. Greenberg, P. Lahiri, D. A. Maltz, P. Patel, and
S. Sengupta. Towards a next generation data center
architecture: Scalability and commoditization. In In
ACM PRESTO, pages 57ÃŘ62, 2008.

[23] M. Gupta and S. Singh. Energy conservation with low
power modes in ethernet lan environments. In IEEE
INFOCOM (MiniSymposium) 2007.

[24] M. Gupta and S. Singh. Greening of the internet. In

ACM SIGCOMM, pages 19ÃŘ26, 2003.

[25] S. Gurumurthi, A. Sivasubramaniam, M. J. Irwin,
N. Vijaykrishnan, and M. Kandemir. Using complete
machine simulation for software power estimation:
The softwatt approach. In Prpc. of 8th
High-Performance Computer Architecture Symp.,
pages 141–150, 2002.

[26] T. J. Hacker, B. D. Noble, and B. D. Atley. Adaptive
data block scheduling for parallel streams. In
Proceedings of HPDC ’05, pages 265–275.
ACM/IEEE, July 2005.

[27] K. Hasebe, T. Niwa, A. Sugiki, and K. Kato.
Power-saving in large-scale storage systems with data
migration. In IEEE CloudCom 2010.

[28] B. Heller, S. Seetharaman, P. Mahadevan,
Y. Yiakoumis, P. Sharma, S. Banerjee, and
N. McKeown. Elastictree: Saving energy in data
center networks. In Proceedings of NSDI 2010.

[29] M. Jain, R. S. Prasad, and C. Dovrolis. The tcp
bandwidth-delay product revisited: network buffering,
cross traffic, and socket buffer auto-sizing. 2003.

[30] D. A. Joseph, A. Tavakoli, and I. Stoica. A
policy-aware switching layer for data centers. In
SIGCOMM CCR 38(4):51ÃŘ62, 2008.

[31] R. Koller, A. Verma, and A. Neogi. Wattapp: an
application aware power meter for shared data centers.
In Proceedings of the 7th international conference on
Autonomic computing, pages 31–40. ACM, 2010.

[32] W. Liu, B. Tieman, R. Kettimuthu, and I. Foster. A
data transfer framework for large-scale science
experiments. In Proceedings of DIDC Workshop, 2010.

[33] D. Lu, Y. Qiao, P. A. Dinda, and F. E. Bustamante.

Modeling and taming parallel tcp on the wide area
network. In Parallel and Distributed Processing
Symposium, 2005. Proceedings. 19th IEEE
International, pages 68b–68b. IEEE, 2005.

[34] P. Mahadevan, P. Sharma, S. Banerjee, and
P. Ranganathan. A power benchmarking framework
for network devices. In In Proceedings of IFIP
Networking, May 2009.

[35] S. Nedevschi, L. Popa, G. Iannaccone, S. Ratnasamy,
and D. Wether-all. Reducing network energy
consumption via rate-adaptation and sleeping. In
Proceedings Of NSDI, April 2008.

[36] U. of Minnesota. Minnesota internet traffic studies
(mints), 2012.

[37] R. S. Prasad, M. Jain, and C. Dovrolis. Socket buffer
auto-sizing for high-performance data transfers.
Journal of GRID computing, 1(4):361–376, 2003.

[38] F. Rawson and I. Austin. Mempower: A simple
memory power analysis tool set. IBM Austin Research
Laboratory, 2004.

[39] S. Rivoire, P. Ranganathan, and C. Kozyrakis. A
comparison of high-level full-system power models.
HotPower, 8:3–3, 2008.

[40] J. Semke, J. Mahdavi, and M. Mathis. Automatic tcp
buffer tuning. ACM SIGCOMM Computer
Communication Review, 28(4):315–323, 1998.

[41] L. Shang, L.-S. Peh, and N. K. Jha. Dynamic voltage
scaling with links for power optimization of
interconnection networks. In High-Performance
Computer Architecture, 2003. HPCA-9 2003.
Proceedings. The Ninth International Symposium on,
pages 91–102. IEEE, 2003.

[42] Y. Shang, D. Li, and M. Xu. A comparison study of
energy proportionality of data center network
architectures. In Distributed Computing Systems
Workshops (ICDCSW), 2012 32nd International
Conference on, pages 1–7. IEEE, 2012.

[43] C. Systems. Visual networking index: Forecast and
methodology, 20130.2018, June 2014.

[44] W. Van Heddeghem, F. Idzikowski, E. Le Rouzic,
J. Y. Mazeas, H. Poignant, S. Salaun, B. Lannoo, and
D. Colle. Evaluation of power rating of core network
equipment in practical deployments. In Online
Conference on Green Communications (GreenCom),
2012 IEEE, pages 126–132. IEEE, 2012.

[45] A. Vishwanath, K. Hinton, R. Ayre, and R. Tucker.
Modelling energy consumption in high-capacity
routers and switches. 2014.

[46] S. V. Vrbsky, M. Galloway, R. Carr, R. Nori, and
D. Grubic. Decreasing power consumption with energy
efficient data aware strategies. FGCS,
29(5):1152–1163, 2013.

[47] E. Yildirim, J. Kim, and T. Kosar. How gridftp
pipelining, parallelism and concurrency work: A guide
for optimizing large dataset transfers. In High
Performance Computing, Networking, Storage and
Analysis (SCC), 2012 SC Companion:, pages 506–515.
IEEE, 2012.

[48] E. Yildirim and T. Kosar. Network-aware end-to-end
data throughput optimization. In Proceedings of
Network-Aware Data Management Workshop (NDM
2011).

[49] E. Yildirim, D. Yin, and T. Kosar. Balancing tcp
buffer vs parallel streams in application level
throughput optimization. In Proceedings of DADC
Workshop, 2009.

[50] J. Zedlewski, S. Sobti, N. Garg, F. Zheng,
A. Krishnamurthy, and R. Y. Wang. Modeling
hard-disk power consumption. In FAST 2003.

