
HARP: Predictive Transfer Optimization Based on
Historical Analysis and Real-time Probing

Engin Arslan, Kemal Guner, Tevfik Kosar
Department of Computer Science & Engineering

University at Buffalo (SUNY), Buffalo, New York 14260
{enginars, kemalgne, tkosar}@buffalo.edu

Abstract—Increasingly data-intensive scientific and commer-
cial applications require frequent movement of large datasets
from one site to the other. Despite the growing capacity of the
networking capacity, these data movements rarely achieve the
promised data transfer rates of the underlying physical network
due to the poorly tuned data transfer protocols. Accurately and
efficiently tuning the data transfer protocol parameters in a
dynamically changing network environment is a big challenge
and still an open research problem. In this paper, we present pre-
dictive end-to-end data transfer optimization algorithms based on
historical data analysis and real-time background traffic probing,
dubbed HARP. Most of the existing work in this area is solely
based on real time network probing, which either cause too
much sampling overhead or fail to accurately predict the correct
transfer parameters. Combining historical data analysis with real
time sampling enables our algorithms to tune the application level
data transfer parameters accurately and efficiently to achieve
close-to-optimal end-to-end data transfer throughput with very
low overhead. Our experimental analysis over a variety of
network settings shows that HARP outperforms existing solutions
by up to 50% in terms of the achieved throughput.

I. INTRODUCTION

As the trend towards data-intensive applications continues,
the users have to put a great effort into efficiently moving large
datasets between different sites. The effective use of the avail-
able network bandwidth and optimization of the data transfer
throughput has been crucial for the end-to-end performance of
most commercial and scientific applications despite the multi-
gigabit optical network offerings. The majority of the users fail
to obtain even a fraction of the theoretical speeds promised by
the existing networks but still pay high costs due to issues such
as sub-optimal end-system and network protocol tuning.

Most of the existing work on data transfer tuning and opti-
mization is at the low-level, including design of new transport
protocols [8], [9], [17], [23] as well as adapting and changing
an existing transport protocol for better performance [22],
[26]. At a higher level, other techniques have been developed
simply by using the existing underlying protocol intact, and
tuning it at the application level. One common way to address
protocol tuning at the application level is through the tuning of
parameters such as pipelining [10], [11], parallelism [5], [9],
[14], [18], [26], [28], [34], concurrency [24], [25], [27], and
buffer size [7], [15], [16], [30], [32]. These parameters can be
tuned at the application level without the need for changing

underlying transfer protocols and can significantly improve the
end-to-end data transfer performance [4], [37].

While significant performance gain can be achieved by
tuning application level protocol parameters, optimal value
of these transfer parameters varies depending on the dataset
(i.e. file size and the number of files), network (i.e. band-
width, round-trip-time, and background traffic on network),
and end-system characteristics (i.e file system and transfer
protocol chosen). Thus, finding the best combination for these
parameters is a challenging task. For instance, pipelining helps
transferring multiple files back-to-back without waiting for
the acknowledgement message in the control channel, but
the size of the transferred files must be small to benefit
from it. Pipelining may even cause throughput decrease when
set to high values for large files. Instead, the large files
would benefit from being divided into smaller chunks and
being transferred over the network through multiple parallel
streams. Similarly, both small and large files would benefit
from concurrency, meaning simultaneously transferring mul-
tiple files over different transfer streams/channels. On the
other hand, opening too many connections to transfer a single
file (parallelism) or multiple files (concurrency) would also
degrade the throughput by increasing network congestion and
causing oversubscription in the file system. Optimal values
for these parameters would depend on many factors described
above. In our previous work, we have developed heuristic-
based dynamic optimization algorithms [4] to determine the
best combination of these parameters by using network and
dataset characteristics (i.e bandwidth, round-trip-time, and
average file size etc.).

In this paper, we present predictive end-to-end data trans-
fer optimization algorithms based on historical data analysis
and real-time background traffic probing (HARP). We use
historical data to derive network specific models of transfer
throughput based on protocol parameters. Then by running
sample transfers, we capture current load on the network which
is fed into these models to increase the accuracy of our pre-
dictive modeling. Combining historical data analysis with real
time sampling enables our algorithms to tune the application
level data transfer parameters (i.e. parallelism, pipelining, and
concurrency) accurately and efficiently to achieve close-to-
optimal end-to-end data transfer throughput with very low
sampling overhead. Our experimental analysis over a variety

SC16; Salt Lake City, Utah, USA; November 2016
978-1-4673-8815-3/16/$31.00 c©2016 IEEE

 0 5 10 15 20 25 30 35 0
 5

 10
 15

 20
 25

 30
 35

 0
 5

 10
 15
 20
 25
 30
 35

P
ip

e
lin

in
g

(a) Small Files

Concurrency

Parallelism

P
ip

e
lin

in
g

 0
 500
 1000
 1500
 2000
 2500
 3000
 3500

 0 5 10 15 20 25 30 35 0
 5

 10
 15

 20
 25

 30
 35

 0
 5

 10
 15
 20
 25
 30
 35

P
ip

e
lin

in
g

(b) Medium Files

Concurrency

Parallelism

P
ip

e
lin

in
g

 500
 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000

 0 5 10 15 20 25 30 35 0
 5

 10
 15

 20
 25

 30
 35

 0
 5

 10
 15
 20
 25
 30
 35

P
ip

e
lin

in
g

(c) Large Files

Concurrency

Parallelism

P
ip

e
lin

in
g

 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

Fig. 1: Throughput variation as the parameter values change (between Stampede (TACC) and Gordon (SDSC) at XSEDE).

 0 5 10 15 20 25 30 35 0
 5

 10
 15

 20
 25

 30
 35

 0
 5

 10
 15
 20
 25
 30
 35

P
ip

e
lin

in
g

(a) Small Files

Concurrency

Parallelism

P
ip

e
lin

in
g

 0
 500
 1000
 1500
 2000
 2500
 3000

 0 5 10 15 20 25 30 35 0
 5

 10
 15

 20
 25

 30
 35

 0
 5

 10
 15
 20
 25
 30
 35

P
ip

e
lin

in
g

(b) Medium Files

Concurrency

Parallelism

P
ip

e
lin

in
g

 0
 500
 1000
 1500
 2000
 2500
 3000
 3500
 4000

 0 5 10 15 20 25 30 35 0
 5

 10
 15

 20
 25

 30
 35

 0
 5

 10
 15
 20
 25
 30
 35

P
ip

e
lin

in
g

(c) Large Files

Concurrency

Parallelism

P
ip

e
lin

in
g

 0
 1000
 2000
 3000
 4000
 5000
 6000

Fig. 2: Throughput variation as the parameter values change (between Stampede (TACC) and Blacklight (PSC) at XSEDE).

of network settings shows that HARP outperforms existing
solutions by up to 50% in terms of achieved throughput.

The rest of this paper is organized as follows: Section
II presents our system design and the proposed algorithms;
Section III discusses the evaluation of our model; Section
IV describes the related work in this field; and Section V
concludes the paper with a discussion on the future work.

II. MOTIVATION

The tunable transfer parameters such as pipelining, paral-
lelism, and concurrency play a significant role in improving the
achievable transfer throughput. However, setting the optimal
levels for these parameters is a challenging task and an
open research problem. Poorly-tuned parameters can either
cause underutilization of the available network bandwidth or
overburden the network links and degrade the performance
due to increased packet loss, end-system overhead, and other
factors.

Among these parameters, pipelining targets the problem of
transferring a large numbers of small files. In most control
channel-based transfer protocols, an entire transfer must com-
plete and be acknowledged before the next transfer command
is sent by the client. This may cause a delay of more than
one round-trip-time (RTT) between the individual transfers.
With pipelining, multiple transfer commands can be queued
up at the server, greatly reducing the delay between transfer
completion and the receipt of the next command. Parallelism
sends different chunks of the same file over parallel data
streams (typically TCP connections), and can achieve high
throughput by aggregating multiple streams and getting a
larger share of the available network bandwidth. Concurrency
refers to sending multiple files simultaneously through the
network using different data channels, and is especially useful
for increasing I/O concurrency in parallel disk systems.

The effect of the transfer parameters (concurrency, paral-
lelism, pipelining) on the data transfer throughput is shown
in Figures 1 and 2. The values of these parameters are
changed between 1 and 32, and the colors represent the
throughput obtained for a given parameter combination (the
color code is given in the figure). In both Figures 1 and 2, the
highest throughput is obtained in the rightmost column where
concurrency level is set to 32. However, the parallelism and
pipelining values for the maximum throughput differ based
on the file size. Moreover, parameter values that yield the
maximum throughput differ as the source and destination pair
changes. For example, the maximum throughput in Figure 1
(a) is observed at (32,1,16). However, same values in Figure 2
(a) yields 12% less than the maximum throughput. Similarly,
the values of maximum point in Figure 1 (a) yields 12%
less throughput than the maximum in Figure 2 (a). The loss
in throughput reaches up to 25% when highest throughput
parameter values of the large dataset in Stampede-Blacklight
pair is applied to Stampede-Gordon pair. The loss in through-
put exacerbates when the optimal parameter values found in
one setting are used in a totally different setting, such as the
best parameter combination found in a network with enhanced
distributed storage subsystem applied to a network with a
single disk storage subsystem.

In addition to being dependent on network and storage
subsystem specifications, the optimal parameter values are also
affected by the background traffic on the network. Figure 3
shows how transfer throughput changes with different param-
eter value combination when network has more background
traffic than Figure 2 (c). While highest throughput is achieved
when values (32,8,32) are used under light background traffic,
(32,16,4) achieved the best throughput under heavy network
traffic. The best parameter combination for light background

 0 5 10 15 20 25 30 35 0
 5

 10
 15

 20
 25

 30
 35

 0
 5

 10
 15
 20
 25
 30
 35

P
ip

e
lin

in
g

Small Files

Concurrency

Parallelism

P
ip

e
lin

in
g

 0

 500

 1000

 1500

 2000

 2500

Fig. 3: Throughput variation as the parameter values changes
for transfers between Stampede (TACC) and Blacklight (PSC)
at XSEDE with medium background traffic.

traffic obtained 53% less throughput than the maximum ob-
served under heavy background traffic. Hence, in order to find
the best parameter combination that maximizes the achieved
transfer throughput, (i) network and end-system settings (i.e.,
bandwidth, RTT, storage I/O throughput etc.), (ii) dataset
characteristics (i.e., file size and file count), and (iii) the current
system load have to be taken into consideration.

III. OVERVIEW OF HARP

HARP combines three approaches of application-level data
transfer tuning and optimization: i) heuristics; (ii) real-time
probing; and (iii) historical data analysis. Heuristic algo-
rithms [2], [4] compute transfer parameters through calcula-
tions on the dataset and network metrics. For example, the
value of pipelining is calculated by dividing the bandwidth-
delay-product (BDP) to the average file size so that it will
return large values for small files and small values for
large files which aligns with the purpose of pipelining [6].
However, heuristics fail to capture the dynamic changes in
the network and end-system specific settings, including the
real-time background traffic. Real-time probing based ap-
proaches [36], [37] find optimal values of protocol parameters
by running a sequence of sample transfers (probes) using
different metric values. They take a portion of the original
dataset and transfer it with initial metric value (generally
1), followed by a series of sample transfers with increased
values (2, 4, 8, etc.) until the observed throughput stops
increasing. Although real-time probing has an advantage of
capturing the instantaneous network load, it may bring too
much probing overhead to accurately discover the optimal
values of parameters. Finally, historical data methods [19],
[31] model data transfer throughput based on dataset, network,
and protocol parameter metrics. In order to capture change in
the network load, they either rely on recent historical data [19]
or run sample transfers [31]. HARP runs sample transfers
similar to probing based solutions, but the number of sample
transfers are way less than it is in probing based algorithms.
HARP benefits from heuristic solutions to determine parameter
values of sample transfers. Since poor choice of parameter
values in sample transfer may affect overall throughput, taking
advantage of heuristic algorithms may alleviate the sample

Historical	
Data

Transfer	 sample	
files

• Network	characteristics
• Sample	transfer	throughput

Qu
er
y	
sim

ila
r	

en
tr
ie
s

Li
st
	o
f	s
im

ila
r	

en
tr
ie
s

5

Transfer	 rest	of	
files	w/	optimal	
parameter

Scheduler

Transfer	 request
• List	of	files

1

4

Optimizer

2
7

3

6

Fig. 4: Flow of operations in HARP.

overhead. Finally, HARP models transfer throughput similar
to historical data based solutions. While models driven by
Kettimuthu et al. [19] and Nine et al. [31] require offline
analysis and can work well only for networks for which they
are trained, HARP requires no prior data analysis and can
be applied to different networks with the help of extensible
similarity detection algorithm.

HARP is composed of two main modules which are Sched-
uler and Optimizer as shown in Figure 4. When a data transfer
request is submitted to the Scheduler, it first categorizes files in
the transfer request into groups based on the file size. Then, it
runs one sample transfer for each file group to capture the
load on the network (step 2) as well as the effect of the
network load on the file groups. Once the sample transfer
throughputs are obtained (step 3), it passes this information
along with the network/dataset characteristics (step 4) to
Optimizer to determine the similar entries in the historical
data (step 5). Then, Optimizer identifies similar entries (step
6 and 7) and runs regression analysis to derive an equation
that relates transfer parameters to the transfer throughput.
Then, the derived model is solved for the maximum value
(i.e transfer throughput) and corresponding parameter values
are obtained. After parameter values are found, parameter
relaxation process is used to lower the values of parameters
while keeping the estimated throughput in a reasonable range.
Finally, it returns the parameter combinations to Scheduler
to schedule the transfer of the rest of the dataset with the
calculated parameter values.
A. Transfer Scheduler

HARP’s Scheduler is responsible for managing data transfer
executions between end points. It first divides files into groups
(aka chunks) according to the file size (Tiny, Small, Medium,
and Large) (line 3 of Algorithm 1). Then, it runs one sample
transfer for each chunk to learn about achievable throughput of
each chunk. ST [i] refers to sample transfer throughput for i. In
order to minimize the overhead of sample transfers, Scheduler
takes advantage of heuristics [4] to determine the parameter
values of the sample transfer. Although heuristic calculations
may pick suboptimal values, it is mostly better than default
or random values. Regarding the size of dataset used in the
sample transfers, we simply used 2 ∗ Bandwidth(MB) as a
baseline with the additional assumption of having at least two

Algorithm 1 – Scheduler of HARP

1: function TRANSFER(source,destination,BW,RTT, algorithm)
2: allF iles = getListOfFiles()
3: chunks = partitionFiles(allF iles)
4: for i = 0; i < chunks.length; i + + do
5: sampleFiles = chunks[i].split(SAMPLING SIZE)
6: (cc, p, pp) = findParamsV iaHeuristic(sampleFiles, BW,RTT)
7: ST [i] = transferChunk(sampleFiles, cc, p, pp)
8: end for
9: maxCC = 1

10: TT = 0
11: for i = 0; i < chunks.length; i + + do
12: ccest[i], pest[i], ppest[i], UT [i] = runOptimizer(ST [i],

BW,RTT,metadata(chunk[i]))
13: TT += UT [i]
14: maxCC = max(maxCC, ccest[i])
15: end for
16: for i = 0; i < chunks.length; i + + do
17: weight[i] = chunks[i].size ∗ TT

UT [i]

18: totalWeight += weight[i]
19: end for
20: for i = 0; i < chunks.length; i + + do
21: cc′ = max(ccest[i],

⌊
maxCC ∗ weight[i]

totalWeight

⌋
)

22: startTransfer(chunks[i], cc′, pest[i], ppest[i]) . Asynchronous
operation

23: end for
24: end function

files in the dataset to be able to try concurrency value greater
than one. Using too small dataset in sample transfers might
cause misleading results since dataset might fall short to reach
the maximum achievable throughput. Yet, too large dataset
might deteriorate overall transfer throughput by taking long
time to finish if the parameter values used in sample transfer
turns to be far from the optimal values. However, optimization
of sampling transfer size is not in the domain of this work so
HARP uses a meaningful predefined value.

After real-time probing is completed, Scheduler sends the
results to Optimizer along with the dataset and network
settings (line 12). Optimizer returns values for protocol pa-
rameters (ccest, pest, ppqest) along with unit throughput, UT
(line 12). UT refers to throughput of a chunk if it is run with
concurrency value 1. It is used to determine how channels
will be distributed among chunks when chunks are run si-
multaneously. While Optimizer finds optimal values assuming
each chunk will run separately, Scheduler prefers to run
multiple chunks simultaneously to benefit from multi-chunk
approach as presented in our earlier work [4]. While we can
use parallelism and pipelining values returned by Optimizer,
concurrency must be adapted to multi-chunk transfer scheme.
Even though concurrency has significant impact on throughput
(especially in when parallel file systems are in use), it also
causes the highest overhead at the end systems and network
by creating multiple processes. Thus, it may not be possible,
yet undesirable, to open as many channels (concurrency) as
each chunk asks. To overcome this inconsistency, Scheduler
computes the maximum concurrency (maxCC) of all chunks
(line 14) which is then distributed among chunks based on
their weights (line 21). Weight of a chunk is proportional to
size of a chunk and inversely proportional to ratio to UT

TT where
TT refers to sum of all UT s (line 17). Once parameter values
of chunks are determined, Scheduler runs them concurrently.

Specs XSEDE DIDCLAB EC2
Stampede-Gordon WS1-WS-2 I1-I2

Bandwidth (Gbps) 10 1 10
RTT (ms) 40 0.2 100

TCP Buffer Size (MB) 32 4 60
BDP (MB) 48 0.02 125
File System Lustre NFS SAN

Max File System 1200 90 320Throughput (MB)

TABLE I: Network specifications of the test environment.

B. Optimizer

Optimization module of HARP aims to determine the opti-
mal parameter values for the transfer metrics for an intended
data transfer with the help of historical data. Thus, it heavily
depends on the quality and quantity of dataset to make the
best decisions. Quality stands for how well the dataset captures
variation in the network such as the background traffic on the
network. Quantity is important (i) to detect outliers and (ii) to
derive accurate models.

Data Collection: We collected our historical transfer data
on XSEDE [35], a production-level high-speed WAN, and
DIDCLAB at UB, a dedicated LAN, networks. The network
and storage configurations are given in Table I. Four different
file sizes are used which are Tiny (varying from 1MB to 5MB
with a total of 10GB), Small (varying from 15MB to 30MB
with a total of 20GB), Medium (50MB-200MB with a total of
40GB), and Large (1GB-5GB with a total of 98 GB). Example
historical data entries are given in Table II in which we kept
dataset and network configurations fixed and changed protocol
metric values, one at a time.

To see the effect of protocol metrics under different net-
work loads, we tested same parameter combinations under
different network loads; light, medium, and heavy background
traffic. Although we can control background traffic in LAN
experiments, we cannot know the exact background traffic
in a shared production network, such as XSEDE. However,
we observed higher and more stable throughput values when
we run transfers in the night hours. Thus, data entries are
collected in the night hours of the day to minimize the
effect of external load. Moreover, we repeated each entry
at least five times at different dates so that any outliers can
be detected and neglected easily. For the medium and heavy
background traffic cases, we synthetically created background
traffic by running multiple memory-to-memory transfers in the
background during the data collection. Over a 12-week period,
we collected statistics on 21K data transfers. Since we only
kept metadata (number of files, average file size, date etc.)
of data transfers, the amount of storage to store historical
data was around 4MB. Even though we did not experience
storage limitation in our experiments, one can put a time limit
to remove old entries and keep historical data size at a certain
level.

1) Data Filtering and Grouping: When Optimizer receives
a request from Scheduler which consists of a dataset, network
characteristics and sample transfer throughputs, the first oper-
ation it does is to filter similar entries from the data store
where historical data is kept. Since it is possible that the

Entry Source Destination Bandwidth RTT Avg File Number of Parallelism Concurrency Pipelining Throughput
Number (Gbps) (ms) Size (B) files (Gbps)

1 Stampede Gordon 10 40 3150088 3409 1 1 1 491.0
2 Stampede Gordon 10 40 3150088 3409 1 1 2 958.1
...

...
...

...
...

...
...

...
...

...
...

216 Stampede Gordon 10 40 3150088 3409 32 32 32 2827.6
217 Dicdlab-ws1 Dicdlab-ws2 1 0.2 652486 3293 1 1 1 386.8
218 Dicdlab-ws1 Dicdlab-ws2 1 0.2 652486 3293 32 16 32 454.2

...
...

...
...

...
...

...
...

...
...

...
432 Dicdlab-ws1 Dicdlab-ws2 1 0.2 652486 3293 1 1 1 640.9

TABLE II: Example of historical data entries.

Filtering	

Transfer	Log	1	

Grouping	

Regression	Analysis	

.	

.	

.	

Transfer	Log	1	

Transfer	Log	A	

Transfer	Log	B	

Transfer	Log	M	

Group	1	

f1(cc, p, pp)
f2 (cc, p, pp)
f3(cc, p, pp)
!
fk (cc, p, pp)

Transfer	Log	2	

Transfer	Log	3	

Transfer	Log	M	

N
onlinear	Equa?on	Solver	

(cc1, p1, pp1)
(cc2, p2, pp2)
(cc3, p3, pp3)
!
(cck, pk, ppk)

Relaxa?on	

(cc'1, p
'
1, pp

'
1)

(cc'2, p
'
2, pp

'
2)

(cc'3, p
'
3, pp

'
3)

!

(cc'k, p
'
k, pp

'
k)

.	

.	

.	

Com
biner	

(cc, p, pp)

Transfer	Log	1	

Transfer	Log	2	

Transfer	Log	3	

Transfer	Log	N	

Group	K		

.	.	

.	.	
.	
.	

.	

.	

.	

Fig. 5: Flow of operations in HARP’s Optimizer.

data store may not have exactly matching entries for a given
dataset/network characteristics, Optimizer uses a weighted
cosine-similarity function (shown in Equation 1) to measure
the similarity of historical data entries to the intended transfer.

cos(θ) =

n∑
i=1

‖Ai‖‖Bi‖√
n∑

i=1

‖A2
i ‖
√

n∑
i=1

‖B2
i ‖

(1)

Cosine-similarity uses set of features and calculates the degree
of alikeness based of how the features of objects are close
to each other. In Equation 1, A and B refers to values for
feature set of two instances. In the context of data transfer,
feature set consists of dataset and network settings of trans-
fers e.g. bandwidth, round-trip-time, bandwidth−delay−product

buffer−size ,
chunk type (Tiny, Small, etc.), file size, and file count.
bandwidth−delay−product

buffersize is used to determine if use of parallel
streams would help to overcome TCP buffer size limitation.
Even though some of the features are related to each other, e.g.
chunk type and file size, we wanted to be as much specific
as possible in terms of similarity detection. For example, if
BDP is 40 MB, 1MB and 1KB sized files will be put into
Tiny chunk and 1GB will be in Large chunk according to
our dataset partitioning method. However, if we just use file
size to compare similarities, 1MB file size will have same
similarity value when compared to 1KB and 1GB files. To
address such misclassification, we evaluate some features in
multiple ways to have more accurate similarity detection.
Moreover, we normalize feature vectors of historical data
entries to try to keep ranges of properties as close as possible
otherwise, one property may overweight the similarity value
if value of a property is larger than others. Finally, since each
feature has different impact on file transfer throughput, we

assigned weights to them based on our initial effort to apply
regression to whole historical data. Although the accuracy
of the regression is low, it gives a clue about the weight
of each property on achieved transfer throughput. Hence, we
used (2,2,10,10,3,1) weight values for the feature set Band-
width, RTT, BDP

buffersize , chunk type, file size and file count),
respectively. Since there are other factors aside from dataset
and network characteristics that affect transfer throughput (e.g
background traffic, disk I/O performance etc.), Optimizer runs
additional step of categorization using the results of sample
transfers which is explained in Section III-B3.

Once Optimizer calculates similarity value (according to
the intended transfer) for each entry in the historical data,
it picks entries with similarity value larger than the threshold.
We initialized the threshold value to 0.99 and decreased it
until we have at least 3K entries. Since cosine-similarity
does not consider background traffic, the selected entries will
have transfers with different background traffic. To overcome
hidden variable problem, we grouped set of entries that are
not only same in regard to dataset and network characteristics
but also collected at approximate times. For example, first 216
entries in Table II will be grouped as a one set of experiments
because they are all run in around same time (which can be
inferred by time of transfer) and have same values for dataset
and network settings. Although it is possible that while any
of 216 entries are running, background traffic may change
drastically, those will be identified and ignored in the modeling
phase. During data collection, we ran each dataset with all
possible combination of parameter values (from (1,1,1) to
(32,32,32)). Thus, when we group historical data entries based
on data collection time, each group will have 216 entries. Thus,
Optimizer will have at least 15 groups (set of entries) (3K/
216) at the end of similarity detection phase.

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1 2 3 4 5 6

R
-s

q
u

a
re

Degree

Tiny
Small

Medium
Large

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

 1 2 3 4 5 6
T

im
e
 (

m
s
)

Degree

Latency

Fig. 6: Comparison of multiple degrees of polynomial regres-
sion

2) Regression Analysis and Nonlinear Equation Solver:
After similar entries are filtered, a model is driven for each
group of entry using polynomial regression that relates transfer
protocol parameters to transfer throughput as in Equation 2.
Thri refers to the equation derived for ith historical data
group where 1 < i < N and N is the total number of
historical data groups after filtering phase. Since entries in
a group shares same network and dataset characteristics but
differ in values of protocol parameters, we can derive a
model on this data that relates protocol parameters to transfer
throughput as shown in Equation 2. By grouping entries with
similar network and dataset metrics, we can decrease the
number of input parameters to the model which leads to higher
success in fitting regression. We compared several degrees
of polynomial regression in terms of accuracy and speed in
Figure 6. According to the results, cubic polynomial regression
appears to be well suited as it yields R2 values around 0.9 for
all file types and can be computed relatively faster. Although
hexic regression can increase R2 to 0.95, time to derive it is
more than four of cubic regression’s. Thus, we have derived
cubic polynomial equations to relate protocol parameters to
transfer throughput. Since historical data may contain outliers,
we discarded groups whose derived regression has R2 value
smaller than 0.6.

Ti = fi(cc, p, pp) (2)
After cubic polynomial equations are derived for each group

of historical data, f1, f2, ..., fk, Optimizer evaluates them for
the values used in sample transfers to find the estimated
throughputs, T1,T2,...,Tk as shown in Equation 3. εi refers
to the difference between throughputs estimated by fi and
obtained by the actual sample transfer, Thract. In order to
prioritize historical data entries that are exposed to similar
background traffic compared to current traffic, Optimizer as-
signs weights to the equations based on their accuracy in
estimating throughput of sample transfers. In order to assign
weights to equations, we classify them into groups using
density based clustering technique, DBScan based on ε values.
Each equation in a class is assigned a same weight (w) and the
weight of a class is calculated as 20, 21, ..., 2k−1 where classes
are sorted in descending order based on ε values. Weights play
significant role in (i) distinguishing historical data collected

under different background traffics and (ii) compensating
similarity based filtering for possible misclassification due to
unacknowledged factors of data transfers such as background
traffic. We have observed that DBScan generally return 4-6
groups.

εi = Tact − fi(cc0, p0, pp0) (3)

After weights of equations are found, Optimizer finds
parameter combination for each equation that returns the
highest throughput using the non-linear programming solver
(fmincon of Matlab). It scans solution space for the variables,
(cci, pi, ppi), that returns maximum throughput, Tmaxi, as
shown in Equation 4. Optimizer combines the values found
by each equation by taking weighted average as shown in
Equation 5.

3) Variable Relaxation and Combiner: Once corresponding
parameter values for maximum throughput are found for each
fi. 1 < i < k, Optimizer runs relaxation process during
which the values of parameters are lowered if change in the
estimated throughput stays within a reasonable range. For
example, pipelining has very little contribution, if not none,
to the throughput on large files, but the optimal point may
estimate large pipelining value for a marginal gain. Optimizing
cost of energy consumption can be shown as another reason for
the importance of relaxation process as it is shown that [1],
marginal increase in transfer throughput by means of using
large values of parameter values may lead to considerable
increase in power consumption.

In the relaxation phase, Optimizer evaluates smaller values
for each parameter until the new estimated throughput is larger
than certain percentage of the original estimated throughput.
Assume (32, 20,24) is calculated as optimal values for con-
currency, parallelism and pipelining for an equation f and
(32, 20, 24) returns Tmax as a throughput. The relaxation
process will evaluate smaller values for concurrency starting
from 31, while keeping parallelism and pipelining same, until
f(cc′, 20, 32) returns Tmax

′
where Tmax′ < ρ ∗Tmax. We

have used 0.9 for values for ρ as it appeared to be sufficient to
successfully identify marginal contributions parameters. Once
cc’ is determined, Tmax is updated to T ′max and relaxation
process is then applied to parallelism and pipelining as well.
Since we apply relaxation for each parameters one by one,
final Tmax

′
would be 0.72 ∗ Tmax.

Tmaxi = fi(cci, pi, ppi) (4)

ccavg =

N∑
i=1

cci ∗ wi

wtotal
pavg =

N∑
i=1

pi ∗ wi

wtotal

ppavg =

N∑
i=1

ppi ∗ wi

wtotal

(5)

Cost Analysis of HARP: HARP runs sample transfers and
applies data modeling on the fly so comes with an overhead.
To minimize the overhead, we pipelined the transfer sampling
process with optimization process at the best effort. Instead
of waiting for each chunk’s sample transfer to be completed,

TH Gain TS Slowdown DS Min. Chunk
(%) (%) (×BW) Size (×BW)
10 80 2 43
10 50 2 30
10 30 2 12.8
30 50 2 13.3
30 30 2 7.1
50 50 2 10
50 30 2 5.7

TABLE III: Cost analysis of HARP under different scenarios

we run Optimizer for a chunk as soon as its sample transfer
is completed so that Scheduler and Optimizer can operate
simultaneously. For example, once Scheduler finishes sample
transfer for small chunk, it starts running sample transfer
for medium chunk. While sample transfer for medium chunk
runs, it passes sample transfer throughput of small chunk to
Optimizer so that it runs calculations and returns values for
protocol parameters. Since Optimizer can finish an estimation
calculations in around two seconds for each chunk, the bot-
tleneck in the pipelined process becomes the sample transfers.
Then, the overall cost boils down to the cost of the sample
transfers plus running Optimizer for the last chunk.

t0 =
D

Thr0
(6)

tH =
D −DS

ThrH
+

DS

ThrS
+ c (7)

Equation 6 shows the duration of the data transfer when
HARP is not used. D refers to data size and Thr0 refers to
the obtained throughput. When HARP is used, the duration of
the data transfer is determined by Equation 7 in which DS

refers to the data size of the sample transfer and ThrH and
ThrS refers to the throughputs obtained in sample transfer
and actual dataset transfers, respectively. c refers to the cost
of Optimizer for running the optimization process for the last
chunk.

In Table III, we analyzed the cost of HARP for different
values of ThrH , ThrS and DS . We calculated the mini-
mum chunk size for HARP to amortize the cost it induces.
TH Gain column represents ThrH−Thr0

Thr0
which stands for

throughput gain when estimated parameter values are used.
Although the gain will be much higher when HARP is
compared with Globus Online [2] and PCP [36], we compared
HARP against heuristics we porposed in our earlier work [4]
which outperform Globus Online and PCP by a significant
margin. TS Slowdown column represents the ratio of transfer
throughput decrease when sample transfers run. For example
80% slowdown means ThrS = (1 − 0.8) ∗ Thr0. DS and
Min Chunk Size columns are represented in bandwidth type
which refers to bandwidth of the network in bytes. For 10
Gbps network, DS equals to 2.5 GB (2 ∗ 10

8).
In the worst case scenario, the gain of HARP is 10% and

the sample transfers are 80% slower than Thr0, minimum
chunk size that HARP amortizes the cost is 43 ∗ BW . The
minimum chunk size to benefit from HARP reduces as the
the throughput gain increases or sample transfer slowdowns
reduces. Our observations on the tests we ran in XSEDE,

AWS and DIDCLAB networks, we observed that slowdown
mostly stays lower that 50% and the gain ranges from 10% to
80%. Hence, the results we present in Section IV show that
HARP mostly outperforms the heuristic algorithms under light
traffic and improves the overall throughput significantly under
medium and heavy background traffic cases.

IV. EXPERIMENTAL ANALYSIS

We compared HARP against heuristic (Globus Online [2],
Single Chunk, and ProActive Multi-Chunk [4]), probing
based [36], and hysteresis based [31] algorithms. Globus
Online (GO) separates dataset into chunks based on file size
and uses predefined values for protocol parameters for each
chunk’s transfer. Single Chunks (SC), again, separates dataset
based file size and transfers them one by one with the protocol
parameter values found by simple arithmetic calculations using
dataset and network metrics. ProActive Multi-Chunk (ProMC)
creates chunks and determines values of protocol parameters
similar to SC, but instead of transferring each chunk by itself,
it runs multiple chunks at the same time in order to minimize
the effect of small files on overall transfer throughput. Since
SC and ProMC require user input for upper bound of concur-
rency level of a transfer, we have set it to 10 as they seem
to be performing the best when maximum concurrency is set
to 10 [4]. PCP [36] employs a divide-and-transfer approach
similar to SC and GO. It determines protocol parameters by
running several sample transfers. Finally, ANN+TO models
transfer throughput based on historical data and runs sample
transfer to learn the current load on the network. Similar to
SC and Globus Online, it transfers chunks one by one due to
which its overall performance for dataset with mixed data files
is dominated by the throughput of small files.

We tested HARP both at the networks for which historical
data have and have not matching entries in terms of source-
destination pairs of data transfers. Datasets used in the ex-
periments are different from the ones used in historical data
collection process. While datasets in data collection process
are homogeneous (e.g. 10000 of 1 MB files are used for
small file types), experiment datasets are generated such that
while all file types (small, large etc.) exist, file sizes in a file
type are determined randomly. Our experiments on XSEDE
(from Stampede to Gordon) and DIDCLAB networks are the
ones historical data have matching entries and another XSEDE
(from Gordon to Stampede) and AWS experiments are the
ones historical data does not have entries with same network
settings . We also included Maximum throughput in the results
which refers to the highest observed throughput for a given
network and dataset either in experiments and historical data.
All the experiments are run at least five times.

We first experimented with transfer of datasets that only
have one type of file size; either all large or small files.
Figure 7 shows the comparison of GO, ANN+OT, SC, ProMC,
and HARP. Size of datasets are 45 GB and 92 GB for small and
large files, respectively. While SC and ProMC achieve similar
throughput for small file transfer, they differ in large file
transfer. This is because of the way SC calculates concurrency

 0

 1000

 2000

 3000

 4000

 5000

 6000

G
O

PC
P

AN
N
+O

T

SC ProM
C

H
AR

P

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

Algorithms

Small Files

Maximum

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

G
O

PC
P

AN
N
+O

T

SC ProM
C

H
AR

P

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

Algorithms

Large Files

Maximum

Fig. 7: Single type file transfers between Stampede (TACC) and Gordon (SDSC) on XSEDE.

level of a chunk. While ProMC uses all available channels
(in this case it is 10), SC may prefer using less number of
channels than available. SC determines the number of channels
by taking minimum of what it calculates and what is given by
user as upper bound. SC calculates more than 10 channels for
small files so, it uses concurrency value 10 as we set upper
bound to 10. On the other hand, it estimates concurrency
value 2 for large files thus, yields lower throughput than
ProMC. While ANN+OT performs worse than SC in small file
transfers, it outperforms SC by 32% in large file transfers since
it predicts concurrency value larger than what SC calculates.
PCP also performs worse than SC for small files which is
due to overwhelming effect of sample transfers. Even though
it also runs sample transfers for large files, small files are
more sensitive to values of concurrency and pipelining than
large files. When small values of concurrency and pipelining
are used during probing process, it takes long time to finish
transfer which affects overall transfer considerably. Moreover,
HARP outperforms SC and ProMC by around 25% for small
files. However, HARP outperforms ProMC only around 5% for
large files. Digging into details, we found out that Optimizer
estimates concurrency level in 10-13 range for large files
which is close to what ProMC is set to run in this experiment.
Although HARP yields higher throughput after Optimizer
estimates concurrency, due to overhead of sampling and opti-
mization process, its becomes marginal. It is worth to note that
while ProMC performs close to HARP in this experiment, one
has to know what concurrency value to pass to ProMC which
requires some degree of knowledge on transfer parameters
as well as dataset characteristics. Finally, HARP outperforms
ANN+OT for both small and large files which proves that
HARP does better job in modelling and finding best values of
optimal parameters.

Figures 8 and 9 are the results that we obtained in the net-
works that historical dataset contains exact matching entries.
We have tested algorithms under three different network loads
(light, medium, and high background traffic as described in
“Data Collection” section). In both networks, the performance
of most algorithms decreased by 50-300% as network load
increases.

Algorithms that transfers one chunk at a time (GO,
ANN+OT, PCP, and SC) exhibit poor performance in XSEDE

because their overall performance is pulled down by the
throughput of small file transfers. While the maximum transfer
throughput is observed as high as 8 Gbps,GO, ANN+TO, PCP,
and SC achieve less than 3 Gbps under light background
traffic. On the other side, multi-chunk algorithms (ProMC,
and HARP) are able to deliver ∼7Gbps. As discussed in
Section III-B3, HARP-requires data size to be greater than
certain amount to outperform the heuristics. The size of
dataset used in Figure 8 was 130GB which is only enough
to cover the overhead imposed by HARP. When dataset size
is increased to 260GB, throughout of HARP reached to 8
Gbps as HARP’s overhead is alleviated by the increase in
overall transfer duration. Unlike light background traffic case,
HARP gains 36% and 48% more throughput than ProMC even
for smaller dataset size (130GB) under medium and heavy
background traffic cases by taking advantage of historical
transfer information. The reason why ProMc performs worse
as the network load varies is its traffic-agnostic parameter
estimation approach. One may claim that ProMC can learn
about network load by running sample transfers. However,
without having historical information, it cannot interpret prob-
ing results. A simple way to interpret probing is done by
PCP algorithm which runs several probings and increments
parameter values until probing throughput decreases. However,
results show that it fails to capture high overall transfer
throughput as the number of probings becomes high to ac-
curately identify “right value” for parameters. The throughput
of SC algorithm is dropped drastically from 3.2 Gbps to 750
Mbps as network load increases. Similarly, throughput of GO
suffers significantly as network traffic increases. ANN+OT and
PCP are able to adapt protocol parameters accordingly and
outperform SC and GO under high network loads. However,
overhead of sampling and “one chunk at a time” policy limits
their overall performance to less than 1 Gbps in heavier
network loads.

We picked two DIDCLAB servers (WS-1 and WS-2) to test
HARP in a LAN with single disk storage subsystem. Figure 9
presents the performance comparison of algorithms. When
background traffic is low (Figure 9 (a)), SC algorithm performs
better than ProMC since opening multiple processes to handle
disk I/O operations deteriorates the disk I/O performance while
not improving network throughput. However, as background

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

G
O

PC
P

AN
N
+O

T

SC ProM
C

H
AR

P

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

Algorithms

Light Background Traffic

Maximum

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

G
O

PC
P

AN
N
+O

T

SC ProM
C

H
AR

P

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

Algorithms

Medium Background Traffic

Maximum

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

G
O

PC
P

AN
N
+O

T

SC ProM
C

H
AR

P

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

Algorithms

Heavy Background Traffic

Maximum

Fig. 8: Comparison of algorithms for data transfers between Stampede (TACC) and Gordon (SDSC) on XSEDE.

 500

 550

 600

 650

 700

 750

 800

G
O

PC
P

AN
N
+O

T

SC ProM
C

H
AR

P

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

Algorithms

Light Background Traffic

Maximum

 150

 200

 250

 300

 350

 400

 450

G
O

PC
P

AN
N
+O

T

SC ProM
C

H
AR

P

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

Algorithms

Medium Background Traffic

Maximum

 180

 200

 220

 240

 260

 280

 300

 320

 340

 360

 380

G
O

PC
P

AN
N
+O

T

SC ProM
C

H
AR

P

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

Algorithms

Heavy Background Traffic

Maximum

Fig. 9: Comparison of algorithms for data transfers between WS-1 and WS-2 on DIDCLAB.

traffic increases (Figure 9 (b) and (c)), multi chunk transfer
helps obtaining higher network throughput. In Figure 9 (a),
we can see that HARP-yields 650 Mbps throughput which
is bounded by disk I/O throughput. On the contrary, network
throughput becomes the bottleneck when network is highly
congested. Hence, HARP achieves bigger end to end transfer
throughput by adapting protocol parameters to varying net-
work conditions.

Since heuristic algorithms are unaware of disk subsystems
when calculating protocol parameters, they pick parameter
values solely based on network and end system configurations.
However, this simple heuristic approach might be misleading
when transfer throughput is limited by disk I/O performance
and disk I/O throughput decreases as the number of active
threads increases. Hence, HARP can outperform heuristic
algorithms even when relatively small dataset with the help
of historical data. When there is no background traffic (Figure
9 (a)), HARP achieves 13% higher throughput than ProMC.
As the network load increases, HARP achieves 47% and 37%
more of ProMC’s throughput for medium and high network
load experiments. ANN+OT outperforms heuristics under all
network loads but falls short to compete with HARP-since
uses single chunk approach.

In order to test the effectiveness of HARP for networks
that have no matching entries in historical data, we have
run experiments on XSEDE and Amazon EC2. Although
same pair of servers are used in XSEDE experiments, we
have transferred dataset in a reverse path of historical data
entries. Namely, historical data has the logs for transfer that
are sourced from Stampede and destined to Gordon. In this
experiment, Gordon is used as a source and Stampede became

the destination. Although it may seem to be identical of
Stampede-Gordon transfers, the results shows us that the
maximum achievable throughput is different than Stampede-
Gordon transfers basically due to (i) end system storage speeds
are different for read and write operations, (ii) at any given
time free network bandwidth is less than what is observed in
reverse direction. Hence, Gordon-Stampede is a good example
to see how HARP performs on the networks that have a similar
but not exact entries in historical data.

As opposed to Stampede-Gordon transfers, Gordon-
Stampede transfers are more disk I/O bound which can be de-
duced by looking at throughput change as the background traf-
fic increases. While throughput decrease ranges in 50-300%
in Stampede-Gordon transfers as network load increases, it
stayed around 10-100% in Gordon-Stampede transfers. HARP,
ANN+OT, and PCP are affected the least by increased network
traffic compared to heuristics since they probe network status
at the beginning of transfer and picks parameter values ac-
cordingly. For example, HARP gained 13% more throughput
than ProMC under light background traffic. The improvement
ratio increased to 24% as throughput of ProMC dropped by
24% under heavy network throughput while throughput of
HARP only dropped by 11%. Moreover, the difference be-
tween maximum observed throughput and throughput obtained
by HARP increased when compared to earlier experiments.
This is an expected behavior since Optimizer selects logs
of Stampede-Gordon transfers during modeling phase and
optimal values for protocol metrics for Gordon-Stampede
transfers are not the best ones for Stampede-Gordon transfers
as explained in Section II.

Finally, we tested HARP in Amazon EC2 for which we

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

GO PCP ANN+OT SC ProMC HARP

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

Algorithms

Light Background Traffic

Maximum

 500

 1000

 1500

 2000

 2500

 3000

 3500

GO PCP ANN+OT SC ProMC HARP

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

Algorithms

Medium Background Traffic

Maximum

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

GO PCP ANN+OT SC ProMC HARP

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

Algorithms

Heavy Background Traffic

Maximum

Fig. 10: Comparison of algorithms for data transfers between Gordon (SDSC) and Stampede (TACC) on XSEDE.

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

G
O

PC
P

AN
N
+O

T

SC ProM
C

H
AR

P

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

Algorithms

Light Background Traffic

Maximum

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

G
O

PC
P

AN
N
+O

T

SC ProM
C

H
AR

P

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

Algorithms

Medium Background Traffic

Maximum

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

G
O

PC
P

AN
N
+O

T

SC ProM
C

H
AR

P

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

Algorithms

Heavy Background Traffic

Maximum

Fig. 11: Comparison of algorithms for data transfers between two c3.8xlarge instances on AWS EC2.

used two c3.8xlarge instances with network specification given
in Table I. We have used Provisioned IOPS EBS storage
volume as it offers the highest disk I/O throughput (around
320 MB/s). However, we were able to achieve around 265
MB/s disk throughput because of file operation overheads as
a result of having too many small files. Similar to XSEDE
experiments, algorithms that transfer multiple chunks simul-
taneously (ProMC and HARP) performed better than single
chunk algorithms at all background traffic loads as shown
in Figure 11. Similar to the Gordon-Stampede experiments,
transfer throughputs are not as much affected as Stampede-
Gordon experiments by increased network load since transfer
throughputs are again limited by disk I/O throughput.

Due to similarities in network settings, cosine-similarity fa-
vors WAN transfer logs over LAN transfer logs when filtering
similar entries in historical data. Since EC2 network resembles
to XSEDE network in context of yielding higher disk I/O
throughput as the number of concurrent transfer increases and
having a smaller buffer size than BDP, XSEDE entries-based
derived model works well in EC2. Hence, HARP outperforms
ProMC by 5% in no background traffic case. The difference
reaches to 34% and 32% under medium and high network
loads as ProMC fails to adapt protocol parameters to varying
system load.

A. Accuracy of the Model

Table IV shows values of the parameters for transfers in
Wide Area and Local Area networks under different back-
ground traffic cases. Since transfer parameters have different
impacts on different file sizes, we have gathered transfer
parameters for each file type separately.

Optimizer is able to differentiate WAN and LAN transfers
by picking high concurrency values for WAN transfers and low
concurrency values for LAN transfers. For different file size in
WAN and LAN transfers, it calculates high concurrency values
for small file types and high parallelism values for large file
types which seem to be the case also in Figures 1, 2, and 3.
Although the optimal values for concurrency and parallelism
might be determined as 32 in Nonlinear Equation Solver,
Relaxation process decreases them a bit to avoid overloading
network and end systems. In addition, it mostly picks higher
parallelism values as network becomes more congested in
order to receive higher share in network resources.

After Filtering process of Optimizer selects similar entries
from historical data and Grouping categorizes them, we allot
30% of all groups as test data and use the rest to train
the model. To measure correctness of the derived model, we
first calculate optimal parameter values using training data.
Let’s say it returns (cctraining, ptraining, pptraining) for cor-
responding throughput Thrtraining. Then, we use test data and
apply polynomial regression to derive model, ftest, and find
optimal parameter values, (cctest, ptest, pptest), and estimated
throughput, Thrtest. Then, instead of directly comparing
throughputs Thrtraining and Thrtest, we calculated through-
put Thrprojected = ftest(cctraining, ptraining, pptraining) in
order to project how close parameters of training data are
to the optimal parameters of test data. Direct throughput
comparison may not be accurate because test data and training
data might have been exposed to different background traffic,
thus maximum throughput of two sets of data might be
different even if optimal parameters are same. So, to measure
correctness of regression analysis, we calculated validation

Stampede-Gordon (WAN) WS1-WS2 (LAN)
File Type Tiny Small Medium Large Tiny Small Medium Large
Traffic Light Medium Light Medium Light Medium Light Medium Light Medium Light Medium Light Medium Light Medium
Concurrency 24 25 22 22 10 10 12 10 6 4 2 1 1 1 2 1
Parallelism 0 0 11 10 18 19 15 19 3 6 7 11 9 13 10 9
Pipelining 5.5 4 0 0 0 0 0 1 2 1 1 2 1 2 2 1
Validation 95 96 94 93 90 85 93 91 90 86 93 91 90 88 88 88Accuracy (%)
Estimation 41 62 78 77 81 73 85 86 84 79 91 76 90 91 87 86Accuracy (%)

TABLE IV: Sample transfer metrics and accuracy values from HARP’s Optimizer

accuracy as |Thrtest−Thrprojected|
Thrprojected

. We also listed estimation
accuracy which measures closeness of estimated throughput to
the actual throughput. Estimation accuracy might not be a good
metric to judge the model since actual throughput of a network
may change over time even though optimal parameters stays
same.

Validation accuracy of HARP is always above 85% which
indicates success of regression analysis in modelling transfer
throughput. While accuracy of throughput estimation in LAN
is more stable and comparatively high, it is worse in WAN ex-
periments since it is an uncontrolled environment so resource
capacities might have changed between data collection and
experimenting periods. Looking into deeper why estimation
accuracy is 41% for Tiny file type in WAN experiment, we
have discovered that while maximum throughput of Tiny files
in historical data never reaches beyond 4 Gbps, we have
observed 5.5 Gbps in test experiments. Thus, the accuracy
of throughput estimation highly depends on consistency of
historical data with current network status. This can easily be
handled by logging every real time transfer so that historical
data can hold up-to-date information.

V. RELATED WORK

Liu et al. [27] developed a tool which optimizes multi-
file transfers by opening multiple GridFTP threads. The tool
increases the number of concurrent flows up to the point where
the transfer performance degrades. Their work only focuses on
concurrent file transfers, and other transfer parameters are not
considered.

Globus Online [2] offers fire-and-forget file transfers
through thin clients over the Internet. The developers mention
that they set the pipelining, parallelism, and concurrency
parameters to specific values for three different file sizes
(i.e. less than 50MB, larger than 250MB, and in between).
However, the protocol tuning Globus Online performs is non-
adaptive; it does not consider real-time background traffic
conditions.

Other approaches aim to improve the transfer throughput by
opening flows over multiple paths between end-systems [20],
[33], however there are cases where individual data flows
fail to achieve optimal throughput because of the end-system
bottlenecks. Several others propose solutions that improve
utilization of a single path by means of parallel streams [3],
[12], [29], [37], pipelining [6], [10], [11], and concurrent
transfers [24], [25], [27]. Although using parallelism, pipelin-

ing, and concurrency may improve throughput in certain
cases, an optimization algorithm should also consider system
configuration, since the end-systems may present factors (e.g.,
low disk I/O speeds or over-tasked CPUs) which can introduce
bottlenecks.

Yildirim et al. [38], Yin et al. [39], and Kim et al. [21] pro-
posed highly-accurate predictive models solely based on real-
time probing which would require as few as three sampling
points to provide very accurate predictions for the parallel
stream number giving the highest transfer throughput. These
models have proved to provide higher accuracy compared to
existing similar models in the literature [13], [29].

Later, Yildirim et al. presented the PCP algorithm to dy-
namically tune parameter values of data transfer [36]. PCP
categorizes files in dataset into three groups based on file
size (small, medium, and large) and then run sample transfer
for each file group to determine parameter values that would
return higher transfer throughput. Series of sample transfers
are run to determine so-called optimal value of a parameter.
Although PCP does not require historical data to operate and
it can adapt itself to varying network conditions, too many
sample transfers are required to determine “optimal” value.
Even though original dataset is used during sample transfers,
overall transfer throughput are affected by sample transfer
throughputs a lot as shown in Evaluation section.

In our earlier work we have proposed heuristic algo-
rithms [4] to determine the best parameter combination by us-
ing network and dataset characteristics (i.e bandwidth, round-
trip-time, and average file size etc.). Nine et al. developed
ANN+OT [31] which uses historical data to derive model that
relates transfer metrics to transfer throughput. It then runs real
time probing in order to capture current network status.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented predictive end-to-end data trans-
fer optimization algorithms based on historical data analysis
and real-time background traffic probing, called HARP. Most
of the existing work in this area is solely based on real
time network probing, which either cause too much sampling
overhead or fail to accurately predict the correct transfer
parameters. Combining historical data analysis with real time
sampling enables HARP to tune the application level data
transfer parameters accurately and efficiently to achieve close-
to-optimal end-to-end data transfer throughput with very low
overhead. HARP uses historical data to derive network specific

models of transfer throughput based on protocol parameters.
Then by running sample transfers, we capture current load
on the network which is fed into these models to increase
the accuracy of our predictive modeling. Our experimental
analysis over a variety of network settings shows that HARP
outperforms existing solutions by up to 50% in terms of the
achieved throughput.

As a future work, we plan to form an active feedback loop
for the throughput modeling to offer a dynamically evolving
model based on current network conditions. This will let us
detect and fix incorrect metric estimations if the Optimizer
fails to find the correct entries in the first round of modeling. It
will also facilitate adaptation to the changing system dynam-
ics such as instantaneous changes in the background traffic
while the transfer is running. We also plan to investigate the
optimal sampling frequency and the sampling size. Although
HARP already tries to minimize the probing overhead, the size
and frequency of sampling can still affect the overall transfer
throughput as discussed in Cost Analysis section.

REFERENCES

[1] ALAN, I., ARSLAN, E., AND KOSAR, T. Energy-aware data transfer
algorithms. In Proceedings of Supercomputing (2015).

[2] ALLEN, B., BRESNAHAN, J., CHILDERS, L., FOSTER, I., KAN-
DASWAMY, G., KETTIMUTHU, R., KORDAS, J., LINK, M., MARTIN,
S., PICKETT, K., AND TUECKE, S. Software as a service for data
scientists. Communications of the ACM 55:2 (2012), 81–88.

[3] ALTMAN, E., AND BARMAN, D. Parallel tcp sockets: Simple model,
throughput and validation. In Proceedings of IEEE INFOCOM (2006).

[4] ARSLAN, E., ROSS, B., AND KOSAR, T. Dynamic protocol tuning al-
gorithms for high performance data transfers. In Proceedings of the 19th
International Conference on Parallel Processing (Berlin, Heidelberg,
2013), Euro-Par’13, Springer-Verlag, pp. 725–736.

[5] BALAKRISHMAN, H., PADMANABHAN, V. N., SESHAN, S., STEMM,
M., AND KATZ, R. H. Tcp behavior of a busy internet server: Analysis
and improvements. In Proceedings of INFOCOM ’98 (March 1998),
IEEE, pp. 252–262.

[6] BRESNAHAN, J., LINK, M., KETTIMUTHU, R., FRASER, D., AND
FOSTER, I. Gridftp pipelining. In Proceedings of TeraGrid (2007).

[7] CHOI, K. M., HUH, E., AND CHOO, H. Efficient resource management
scheme of tcp buffer tuned parallel stream to optimize system perfor-
mance. In Proc. Embedded and ubiquitous computing (Nagasaki, Japan,
Dec. 2005).

[8] CROWCROFT, J., AND OECHSLIN, P. Differentiated end-to-end internet
services using a weighted proportional fair sharing tcp. SIGCOMM
Comput. Commun. Rev. 28, 3 (July 1998).

[9] EGGERT, L., HEIDEMANN, J., AND TOUCH, J. Effects of ensemble-tcp.
SIGCOMM Comput. Commun. Rev. 30, 1 (Jan. 2000).

[10] FARKAS, K., HUANG, P., KRISHNAMURTHY, B., ZHANG, Y., AND
PADHYE, J. Impact of tcp variants on http performance. Proceedings
of High Speed Networking 2 (2002).

[11] FREED, N. SMTP service extension for command pipelining.
http://tools.ietf.org/html/rfc2920.

[12] HACKER, T. J., NOBLE, B. D., AND ATHEY, B. D. Adaptive data block
scheduling for parallel tcp streams. In Proceedings of HPDC (2005).

[13] HACKER, T. J., NOBLE, B. D., AND ATLEY, B. D. The end-to-end
performance effects of parallel tcp sockets on a lossy wide area network.
In Proc. of IPDPS (2002).

[14] HACKER, T. J., NOBLE, B. D., AND ATLEY, B. D. Adaptive data block
scheduling for parallel streams. In Proceedings of HPDC ’05 (July
2005), ACM/IEEE, pp. 265–275.

[15] HASEGAWA, G., TERAI, T., OKAMOTO, T., AND M, M. Scalable
socket buffer tuning for high-performance web servers. In International
Conference on Network Protocols(ICNP01) (2001), p. 281.

[16] ITO, T., OHSAKI, H., AND IMASE, M. On parameter tuning of data
transfer protocol gridftp for wide-area networks. International Journal
of Computer Science and Engineering 2(4) (Sept. 2008), 177–183.

[17] KARRER, R., PARK, J., AND KIM, J. Tcp-rome:performance and fair-
ness in parallel downloads for web and real time multimedia streaming
applications. In In Technical Report, Deutsche Telekom Laboratories
(2006).

[18] KARRER, R. P., PARK, J., AND KIM, J. Tcp-rome:performance and fair-
ness in parallel downloads for web and real time multimedia streaming
applications. In Technical Report (September 2006), Deutsche Telekom
Laboratories.

[19] KETTIMUTHU, R., VARDOYAN, G., AGRAWAL, G., AND SADAYAP-
PAN, P. Modeling and optimizing large-scale wide-area data transfers.
In Cluster, Cloud and Grid Computing (CCGrid), 2014 14th IEEE/ACM
International Symposium on (May 2014), pp. 196–205.

[20] KHANNA, G., CATALYUREK, U., KURC, T., KETTIMUTHU, R., SA-
DAYAPPAN, P., FOSTER, I., AND SALTZ, J. Using overlays for efficient
data transfer over shared wide-area networks. In Proceedings of SC
(Piscataway, NJ, USA, 2008).

[21] KIM, J., YILDIRIM, E., AND KOSAR, T. A highly-accurate and low-
overhead prediction model for transfer throughput optimization. Cluster
Computing 18, 1 (2015), 41–59.

[22] KOLA, G., KOSAR, T., AND LIVNY, M. Run-time adaptation of grid
data-placement jobs. Scalable Computing: Practice and Experience 6,
3 (September 2005), 33–43.

[23] KOLA, G., AND VERNON, M. K. Target bandwidth sharing using
endhost measures. Perform. Eval. 64, 9-12 (Oct. 2007).

[24] KOSAR, T., AND BALMAN, M. A new paradigm: Data-aware scheduling
in grid computing. Future Generation Computing Systems 25, 4 (2009),
406–413.

[25] KOSAR, T., AND LIVNY, M. Stork: Making data placement a first class
citizen in the grid. In Proceedings of ICDCS’04 (March 2004), pp. 342–
349.

[26] LEE, J., GUNTER, D., TIERNEY, B., ALLCOCK, B., BESTER, J., BRES-
NAHAN, J., AND TUECKE, S. Applied techniques for high bandwidth
data transfers across wide area networks. In International Conference
on Computing in High Energy and Nuclear Physics (April 2001).

[27] LIU, W., TIEMAN, B., KETTIMUTHU, R., AND FOSTER, I. A data
transfer framework for large-scale science experiments. In Proceedings
of DIDC Workshop (2010).

[28] LU, D., QIAO, Y., AND DINDA, P. A. Characterizing and predicting tcp
throughput on the wide area network. In Proceedings of ICDCS ’05
(June 2005), IEEE, pp. 414–424.

[29] LU, D., QIAO, Y., DINDA, P. A., AND BUSTAMANTE, F. E. Modeling
and taming parallel tcp on the wide area network. In Proceedings of
IPDPS (2005).

[30] MORAJKO, A. Dynamic Tuning of Parallel/Distributed Applications.
PhD thesis, Universitat Autonoma de Barcelona, 2004.

[31] NINE, M. S. Q. Z., GUNER, K., AND KOSAR, T. Hysteresis-based
optimization of data transfer throughput. In Proceedings of the Fifth
International Workshop on Network-Aware Data Management (New
York, NY, USA, 2015), NDM ’15, ACM, pp. 5:1–5:9.

[32] PRASAD, R. S., JAIN, M., AND DAVROLIS, C. Socket buffer auto-sizing
for high-performance data transfers. Journal of Grid Computing 1(4)
(Aug. 2004), 361–376.

[33] RAICIU, C., PLUNTKE, C., BARRE, S., GREENHALGH, A., WISCHIK,
D., AND HANDLEY, M. Data center networking with multipath tcp. In
Proceedings of Hotnets-IX (2010).

[34] SIVAKUMAR, H., BAILEY, S., AND GROSSMAN, R. L. Psockets:
The case for application-level network striping fpr data intensive ap-
plications using high speed wide area networks. In Proceedings of
SC’00 ACM/IEEE conference on Supercomputing (September 2001),
ACM/IEEE, pp. 37–es.

[35] XSEDE. Extreme Science and Engineering Discovery Environment.
http://www.xsede.org/.

[36] YILDIRIM, E., ARSLAN, E., KIM, J., AND KOSAR, T. Application-level
optimization of big data transfers through pipelining, parallelism and
concurrency. Cloud Computing, IEEE Transactions on PP, 99 (2015),
1–1.

[37] YILDIRIM, E., YIN, D., AND KOSAR, T. Balancing tcp buffer vs paral-
lel streams in application level throughput optimization. In Proceedings
of DADC Workshop (2009).

[38] YILDIRIM, E., YIN, D., AND KOSAR, T. Prediction of optimal
parallelism level in wide area data transfers. IEEE TPDS 22(12) (2011).

[39] YIN, D., YILDIRIM, E., AND KOSAR, T. A data throughput prediction
and optimization service for widely distributed many-task computing.
IEEE TPDS 22(6) (2011).

