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Distributed Data Sharing
Data Warehousing: (1-10 TB long-term)
Channel Current (and other power signal) Data Repository (~ 1TB)
Genome Repository (prokaryotic and eukaryotic) (~ 10TB)

Data Mining: (additional 1-10 TB short-term)
High Order sub-sequence interpolated Markov Model Construction
Distributed Hidden Markov Model Processing
Distributed SVM Chunk Processing

Application Areas:
Cheminformatics -- enables Nanopore Detector capabilities
Bioinformatics -- used for gene-structure identification (including

regulatory regions) and comparative genomics



The α-Hemolysin Nanopore  Detector

α-Hemolysin with a
9bp DNA hairpin

α-Hemolysin self-assembles
from solution soluble monomersHagan Bailey, Sci. Am.

Nanopore Conception:
J.J. Kasianowicz; S. Bezrukov, A.

Parsegian; I. Vodyanoy; D. Branton;
D. Deamer; M. Akeson; H. Bailey; …



The Streptavidin and Biotin Interaction: Ka~1014M-1

S. Freitag, I. Le Trong, L. Klumb, P.S. Stayton, R.E. Stenkamp; Structural Studies of the Streptavidin
Binding Loop; Protein Science 6 (1997), 1157 - 1166.

Tetrameric Streptavidin: Hydrogen Bonding with Biotin:

Streptavidin: 53,000 Daltons
Near Neutral pI

Biotin: 244.31 Daltons



Tetrameric Streptavidin binding to a Biotinylated DNATetrameric Streptavidin binding to a Biotinylated DNA
Hairpin (9gc-Hairpin (9gc-BiotBiot) Captured in the Nanopore Detector:) Captured in the Nanopore Detector:
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Modified DNA Hairpin

Our DNA hairpin has eight base pair
stem region terminating in GC and  a
four Thymine loop. An internal DNA
modification is added at the 10th base
using a modified Thymine with a six
carbon linker.

Thymine linker

Biotin



Bt-DNAhp Signal Suppression with Streptavidin Binding

The left column is a series of channel's current reading (each three minute in
length) displaying capture events of BiodT-DNA HP. On the right we show a
decrease of these capture events as a result of an increase in Streptavidin
concentration. Note the change in signal itself. Molar ratio of Streptavidin to
hairpin to 2:1.



The left column is a series of observations from a negative-specificity control experiment
involving “-DNHhp” before addition of Strepatvidin, the right column after addition of
streptavidin. Each signal trace is the signal observed during a 3-minute interval. “-DNHhp”
has the same structure of our biotinylated 8GC hairpin only without the biotin (just the six
carbon linker). Upon addition of Streptavidin no difference in capture rates or change in
toggle signal were observed (at equal streptavidin concentrations as used in previous
experiments).

Negative-Specificity Control: Mixtures of
“-DNAhp” molecules and Streptavidin



Cluster identification and counting via a SVM projection-score histogram. (This
corresponds to SVM-External Clustering in Decision Space). Biotinylated hairpin signals
comprise the positives. appearing as the large peak scoring around 1.0. The mixture
signals seen after introduction of streptavidin are shown as the light blue bars. The score-
clustering at 0.5 in the   projection-score   histogram corresponds to (unbound)
biotinylated DNA hairpin signals that are successfully projected towards their
corresponding signals in the positives. The other, clear, negative signals (in light blue),
that score around –1.0, are hypothesized to correspond to the streptavidin-bound
biotinylated DNA hairpins.

SVM Projection Score Histogram

Score





Our bifunctional Y-shaped aptamer with 5’-CGGC-3’ overhang (left), hairpin with
complementary overhang (right) and in the middle complement base pair annealing to form
composite molecule (center).  The base of the Y shape in the event-transduction terminus
that inserts into the alpha hemolysin channel to produce the blockade signal.

GC4-DNA Y-shaped Aptamer



Nanopore Cheminformatics & Control Architecture

LabWindows Server now used. Data sent to cluster of Linux Clients via TCP/IP channel. Linux clients run
expensive HMM analysis as distributed processes (similarly for off-line SVM training). The sample classification
is used by the Server to provide feedback to the nanopore apparatus to increase the effective sampling time on the
molecules of interest (this can boost nanopore detector productivity by magnitudes).



Real-time Channel Current Cheminformatics

Labwindows/Feedback Server Architecture with Distributed CCC processing. A capture signal generated with the nanopore
apparatus is filtered and amplified before it is sent through the DAQ. The Data AcQuisition device converts the analog signal to
digital format for use in the display and recording of data in binary Axon (Molecular Devices) format. In the pattern recognition
feedback loop, the first 200 ms detected after drop from baseline are sent via TCP-IP protocol to the HMM software, which
generates a profile for each signal sent. The HMM-generated profile is processed with the SVM classifier to compare the real-
time signal with previous training data in order to determine whether the signal is acceptable. The HMM learning (on-line) and
SVM learning (off-line), denoted in orange, are network distributed processes for N-fold speed-up, where N is the number of
computational threads in your cluster network.

Network

Nanopore
ApparatusAmplifierDAQ

LabWindows Software

Feedback Server

(Records signals, visualizes signals, uses feedback server to control the experiment)

ABF
File

HMM SVM
Feature
Vector

SVM Model Learning
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(Runs HMM and SVM on data. Response time is less than 1 second for 15.000 samples)



Kinetic feature enhancement via a novel HMM/EM filter that “projects” via a
gaussian parameterization on emissions with variance boosted by the factor indicated.

4.0 σ

2.0 σ

1.5 σ

1.1 σ

Source: 1.0 σ

 1.0 sec 

HMM/EM EVA (Emission Variance Amplification) Projection
for simplified tFSA Kinetic Feature Extraction:



HMM with Duration
The HMM-with-duration (HMMwD) is an HMM that directly
models the “true” sub-blockade duration probabilities, and provides
a strong link to the underlying kinetic (physical) information that is
desired (an EM optimization can be directly performed to yield the
best estimate of the probability distributions on state durations. The
means of those distributions, the kinetic half-lives, directly relate to
the underlying kinetic coefficients). HMMwD is parameterized by
the internal HMM signal representation (the emission and transition
probabilities, and the duration distributions on state lifetimes), and
can be efficiently implemented. With HMM-with-duration, feature
extraction is more robust on long-lifetime states.



          Novel, exact, HMMwD for EM and Viterbi

Standard HMM:
p(d = x) = (aii x-1) (1-aii).
Restricted to the geometric distribution.

New HMMwD:
p(d = x) = (∏i=1..x-1 p(d ≥ i+1)/p(d ≥ i)) (1-p(d ≥ x+1)/p(d ≥ x)).
This formula’s advantage is the calculation of p(d) can be
distributed among the x consecutive steps, and it provides the
exact distribution.

New HMM Table construction uses carry-sum cells for each state,
with the new HMMwD p(d = x) definition. Computational time
increases by a factor of D/N +1, where N=number of HMM states,
D=number of bins in the length distribution representation, 1000
is used. If the number of states > 1000, then the factor is approx.
1! This provides a 1,000,000 speedup factor over conventional
HMM-with-duration.



– Atomic states involving exon, ex, and intron, ix, are context-specific (frame,
direction), but not junk, j.

– Use ê, î in order to denote reverse encodings.
– * Support the 3 stop codons {TAA, TAG, TGA} explicitly.
– The result is 33 allowed transition states …

• 13 XX-types: ixix(3), îxîx(3), exey(3), êxêy(3), jj(1)
• 20 eij-types: exix(3), êxîx(3), ixex(3), îxêy(3), e2j(3*), ê2j(3*), je0(1),

jê0(1)
– Impose minimum length duration on states
– For each eij-dimer generate F-1 footprint states.
– The result is (13+20*(F-1)) allowed footprint states

• 13 XX-types: ixix->ixix(3), îxîx->îxîx(3), exey->ey ez (3), êxêy->êyêz(3), jj-
> jj(1)

• 20*(F-1) eij-types: exix(3*(F-1)), êxîx(3*(F-1)), ixex(3*(F-1)), îxêy(3*(F-
1)), e2j(3*(F-1)), ê2j(3 *(F-1)), je0(1*(F-1)), jê0(1*(F-1))

• Have approx. 20*F states, with typical F=50 footprint sizes will expect
to have approx. 1000-state HMM processing via this approach.

Footprint State & Transition Enumeration



• Chromosome I; C. Elegans; R=0, L=2, r=l=3 (or F=6)
– Individual exon bases

• sn= 0.88 (matching e base count/ annotated e base count)
• sp= 0.86 (matching e base count / predicted e base count)

– Full exon
• SN= 0.62 (full exon match count / annotated exon count)
• SP= 0.55 (full exon match count / predicted exon count)

– Best Overall: 6-6-6-0-vfull_m2_viterbi with 0.70
– Best je detection: 6-7-6-0-vfull_m2_viterbi with 1.0
– Best ej detection: 5-5-6-0-vfull_m2_viterbi with 0.78
– Best ie detection: 1-5-6-0-vfull_m2_viterbi with 0.8125
– Best ei detection: 2-1-10-0-vfull_m2_viterbi with 0.74

Preliminary Results



Distributed HMM/EM processing

Dynamic Programming Table

Partitioned Dynamic Programming Table

Computational time reduced by ~ N on cluster with N nodes.

Using Markov short-term memory
property, recover exact Viterbi traceback
at this point

Post EM-relaxation of join statistics (recover emission and transition probabilities:



Markov Model (MM) Profile (V. cholerae):
Index:  ∞   .….  -17   …....  -2  -1  |  0    1    2   3  ……  ∞
          ------------(A/G)-----------------|( A   T   G)----------------
A       0.25……..0.4…………..0.4 |.93   0   0  0.4……..0.25
C       0.25……..0.1…………..0.3 |.01   0   0  0.3……..0.25
G       0.25……..0.1…………..0.2 |.60   0   1  0.2……..0.25
T        0.25……..0.4…………..0.1 |.09   1   0  0.1……..0.25

Log odds ratio: log[Pstart(sub-sequence)/Pnon-start(sub-sequence)] > 0 --> a start region

Classifier based on log[Pstart/Pnon-start] = Σi log[Pstart(xi=bi)/Pnon-start(xi=bi)].

Rather than a classification built on the sum of the independent log odds ratios, the
sum of components could be replaced with a vectorization of components:

Σi log[Pstart(xi=bi)/Pnon-start(xi=bi)] --> {…., log[Pstart(xi=bi)/Pnon-start(xi=bi), ….}

These can be viewed as feature vectors for SVM classification. The SVM partially
recovers linkages lost with the Markov short-term memory approx..

 Markov Model --> SVM Feature Vector



Other MM-Variant Algorithms
There are generalizations for the MM sensor, and all are compatible with

the SVM f.v. classification profiling.

IMM: the order of the MM is interpolated according to some globally
imposed cut-off criterion, such as a minimum sub-sequence count:

gIMM: like IMM with its count cutoff, but when going to higher order in the
interpolation there is no constraint to contiguous sequence elements --
I.e., ‘gaps’ are allowed. The resolution of what gap-size to choose
when going to the next higher order is resolved by evaluating the
Mutual Information. Higher orders perform motif analysis as side-effect
via sub-sequence correlations to some reference ‘scaffolding’ (such as
the start codon).

hIMM/ghIMM: no longer employ a global cutoff criterion -- count cutoff
criterion applied at the sub-sequence level.

MM, IMM, gIMM, hIMM, ghIMM ==> SVM/MM, SVM/IMM, SVM/gIMM,
etc.



SVM Radial Gamma Kernel

EI Splice Site IE Splice Site



SVM DiscriminationSVM Discrimination

W-H SMO          Absdiff             94.0
W-H SMO          Entropic             94.0
W-H SMO          Gaussian            92.5
Platt SMO          Absdiff             86.5
Platt SMO          Entropic             70.0
Platt SMO          Gaussian            73.5
Keerthi1 SMO         Absdiff             94.0
Keerthi1 SMO         Entropic             89.5
Keerthi1 SMO         Gaussian             91.5
Keerthi2 SMO         Absdiff             94.0
Keerthi2 SMO         Entropic             89.5
Keerthi2 SMO         Gaussian             91.5

          SVM  Kernel Accuracy
Implementation                     (100%*(SN+SP)/2)

Kernel Model Fitting:

Distance-based Kernels (geometric):

      -- d2(x,y)=Σk(xk-yk)2  (Gaussian);

      -- d2=(Σk|xk-yk|)1/2 (Absdiff);

Divergence-based Kernels (Entropic):

      -- d2(x,y)=D(x||y)+D(y||x)

SVM discrimination is so strong and stable, andSVM discrimination is so strong and stable, and
user friendly, that it may serve a fundamentaluser friendly, that it may serve a fundamental
building-block role in Machine Learning likebuilding-block role in Machine Learning like
Integrated Circuit components in Circuit DesignIntegrated Circuit components in Circuit Design



Distributed Chunking

Training
 Chunk 1

Training
 Chunk 2

Training
 Chunk 3

Training
 Chunk 1

Training
 Chunk 2

Training
 Chunk 4

Final
 Chunk

User defined amount of 
features passed to the next chunks

User defined amount of 
features passed to the last chunk

speed up of



SVM-based Clustering (via multi-pass SVM)
1. Label & Converge: 2. Change Weakest Labels:

3. Converge on new Labels: 4. Iterate until Separability:



9AT/9CG DNA Hairpin Data
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Clustering Methods

SVM Relabel (Drop)=14.8% drop

K K-Means (SVM Drop)=19.8% drop

Robust Fuzzy (Drop)=0% drop
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SVM Relabel

SVM Relabel (Drop)

K K-Means

K K-Means (SVM

Drop)

Robust Fuzzy

Robust Fuzzy (Drop)

Single Class SVM

SVM-based Clustering outperforms other methods


